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Abstract: The distance energy of a graph G is defined as the sum of the absolute

values of the eigenvalues of the distance matrix of G . Two graphs with the same distance

energy (resp. different distance matrix spectra) are called D-equienergetic (resp. non-D-

cospectral). Recently, Indulal et. al. proved that there exists pairs of non-D-cospectral

D-equienergetic graphs of order n when n ≡ 1(mod 3) or n ≡ 0(mod 6) . In this paper,

we prove that there exist pairs of non-D-cospectral D-equienergetic graphs of order n for

every n ≥ 6 .

1 Introduction

Let G be a connected undirected simple graph with vertex set V (G) = {v1, v2, . . . , vn}.
The distance matrix, denoted by D(G), of G is defined as D(G) = [dij], where dij is the

distance between the vertices vi and vj in G. The eigenvalues μ1, . . . , μn of D(G) are

said to form the spectrum of D(G), denoted by specD(G). Since D is symmetric, its

eigenvalues are all real and can be arranged in non-increasing order: μ1 ≥ μ2 ≥ · · · ≥ μn.
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Two graphs G and H are said to be non-D-cospectral if specD(G) �= specD(H). The

characteristic polynomial of D(G) is defined as Φ(G, x) = det(xI −D(G)), where I is the

identity matrix. Recently, the distance energy ED(G) of a graph G is defined as [1]

ED(G) =
n∑

i=1

|μi| . (1)

The notation of distance energy is put forward in full analogy to the definition of the

(ordinary) graph energy E(G) [2], i. e.,

E(G) =
n∑

i=1

|λi|

where λ1, . . . , λn are the eigenvalues of the adjacency matrix of G. For more recent

research on E(G) see [3–6].

Two graphs with the same distance energy are called D-equienergetic [1]. We are, of

course, interested in D-equienergetic graphs only if these are non-D-cospectral.

The study of the spectrum of a distance matrix or the distance energy pertaining to

a graph became popular in past years. Balaban et al. [7] proposed the use of μ1 as a

molecular descriptor. In [7,8], it was successfully used to infer the extent of branching

and model boiling points of alkanes. For the application and the background of distance

matrix on the chemistry, one can refer to [7–13]. Recently, bounds for the distance energy

of graphs of diameter 2 were determined in [1]. Moreover, it has been proven [1] that there

exists pairs of non-D-cospectral D-equienergetic graphs of order n when n ≡ 1(mod 3)

or n ≡ 0(mod 6) . In this paper, we prove that there exist pairs of non-D-cospectral

D-equienergetic graphs of order n for each n ≥ 6 .

2 Main results

As usual, Ka,b denotes the complete bipartite graph with a vertices in one part and b in

the other, and Cn defines a cycle on n vertices.
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Lemma 2.1 [1, 17] Let M , N , P , Q be matrices, and let M be invertible. Let

S =

⎛⎝ M N

P Q

⎞⎠ .

Then, det S = detM · det [Q − PM−1N ].

By Lemma 2.1 we get:

Lemma 2.2 Let a, b be two positive integers. The characteristic polynomial of D(Ka,b)

is

Φ(Ka,b, x) = (x + 2)a+b−2(x2 − 2(a + b − 2)x + 3ab − 4a − 4b + 4) . (2)

The next result gives the distance energy for a complete bipartite graph

Theorem 2.1 Let n, a be two positive integers. If 2 ≤ a ≤ �n
2
	 , then ED(Ka,n−a) =

4n − 8.

Proof. Equality (2) implies that

specD(Ka,n−a) =

⎛⎝ n − 2 +
√

n2 − 3a(n − a) n − 2 −√n2 − 3a(n − a) −2

1 1 n − 2

⎞⎠ .

(3)

Thus, by equality (1) we only need to show that n − 2 ≥√n2 − 3a(n − a), equivalently,

we need to prove that 3a(n − a) − 4n + 4 ≥ 0. Once this is proven, we are done.

Let f(x) = 3x(n − x) − 4n + 4, where 2 ≤ x ≤ �n
2
	. Since f ′(x) = 3n − 6x, then

f(x) is an increasing function for 2 ≤ x ≤ �n
2
	. It follows that f(x) ≥ f(2) = 2n − 8 ≥ 0

for 2 ≤ x ≤ �n
2
	. Recall that 2 ≤ a ≤ �n

2
	, then 3a(n − a) − 4n + 4 = f(a) ≥ 0. This

completes the proof.

There only exist two graphs of order three, and only six graphs of order four (for

instance, see [17, pp. 270-275]). By an elementary computation, we can conclude that

there doesn’t exist any D-equienergetic graphs of order three or/and four.

Note that

specD(K2,3) = {3 +
√

7, 3 −
√

7,−2,−2,−2}
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and

specD(C5) = {6, −3 +
√

5

2
,
−3 +

√
5

2
,−3 +

√
5

2
,−3 +

√
5

2
} .

Then ED(K2,3) = 12 = ED(C5) . Therefore, C5 and K2,3 is a pair of non-D-cospectral

D-equienergetic graphs of order five. When n ≥ 6, as the following Theorem shows, there

exists a pair of non-D-cospectral D-equienergetic graphs of order n .

Theorem 2.2 If n ≥ 6 , then K2,n−2 and K3,n−3 is a pair of non-D-cospectral D-

equienergetic graphs.

Proof. By equality (3), K2,n−2 and K3,n−3 are non-D-cospectral because n ≥ 6 . Thus,

the result immediately follows from Theorem 2.1.

By Theorem 2.1, we also have the next more general result.

Theorem 2.3 Let a, b, n be three positive integers. If n − b ≥ b > a ≥ 2, then Ka,n−a

and Kb,n−b is a pair of non-D-cospectral D-equienergetic graphs.

Lemma 2.3 [1, 18] Let

A =

⎛⎝ A0 A1

A1 A0

⎞⎠
be a symmetric 2× 2 block matrix. Then the spectrum of A is the union of the spectra of

A0 + A1 and A0 − A1.

Next we construct another pair of D-equienergetic graphs of order n = 2t ≥ 8. Let

e = (u, v) denote an edge of G, whose end vertices are u and v. The notation G − e

indicates the graph obtained from G by deleting the edge e from G. In the following,

let Wt,t be the graph obtained from Kt,t by deleting t independent edges from Kt,t, i. e.,

Wt,t = Kt,t − (v1, vt+1) − (v2, vt+2) − · · · − (vt, v2t), where {v1, . . . , vt} is the vertex set in

one part of Kt,t, and {vt+1, . . . , v2t} in the other part.

Theorem 2.4 Suppose t ≥ 4, then Kt,t and Wt,t is a pair of non-D-cospectral D-equi-

energetic graphs.
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Proof. Let J , I be the all-one square matrix and identity matrix of order t, respectively.

Note that the distance matrix of Wt,t is

D(Wt,t) =

⎛⎝ 2J − 2I J + 2I

J + 2I 2J − 2I

⎞⎠ .

By Lemma 2.3, we have

specD(Wt,t) =

⎛⎝ 3t t − 4 −4 0

1 1 t − 1 t − 1

⎞⎠ . (4)

Since t ≥ 4, then ED(Wt,t) = 8t − 8 = ED(Kt,t) by equality (4) and Theorem 2.1.
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