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Abstract

The Balaban index of a connected (molecular) graph G is defined as J(G) =

m
μ+1

∑
uv∈E(G)

(DuDv)
−1/2. In this paper, sharp upper and lower bounds on the

Balaban index of trees are reported.

1 Introduction

The graphs considered in this paper are finite, undirected, connected and simple

(no loops or multiple edges). The sets of vertices and edges of a graph G are denoted

by V (G) and E(G), respectively. A vertex with degree 1 is called a leaf.

If vertices u and v are connected in G, the distance between u and v in G, denoted

byDuv, is the length of a shortest (u, v)-path in G. The diameter of G is the maximum

distance between two vertices of G, denoted by d(G). The distance matrix of G is the

matrix D(G) = [dij]n×n, where dij is the distance between vi and vj.
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Let Du =
∑

v∈V (G)

Duv be the distance sum of vertex u in G. The Balaban index

(also called the average distance-sum connectivity) of graph G is defined as

J(G) =
m

μ+ 1

∑
uv∈E(G)

(DuDv)
−1/2,

where m is the number of edges and μ is the cyclomatic number of G. Note that the

cyclomatic number of G is the minimum number of edges that must be removed from

G in order to transform it to an acyclic graph; it can be calculated using μ = m−n+1

where n is the number of vertices.

In [5], Zhou and Trinajstić obtained the upper and lower bounds on the Balaban

index of connected graphs using algebraic methods. In this paper, we study the

bounds on the Balaban index of trees.

2 Main Results

Theorem 2.1 If T is a tree with n vertices, then J(T ) ≤ (2n−3)−1/2(n−1)3/2, with

equality if and only if T is a star.

Proof. Since T is a tree with n vertices, we have m = n− 1 and μ = 0. Thus

J(T ) = (n− 1)
∑

uv∈E(T )

(DuDv)
−1/2.

If d(T ) = 1, then T is an edge and J(T ) = 1. The theorem obviously holds.

Otherwise d(T ) ≥ 2.

Consider the distance matrix [dij]n×n of T . We have the following properties:

(1) the diagonal entries are 0 and the other entries are positive integers;

(2) the entries in column u corresponding to the vertices except u, which are not

neighbors of u, are at least 2;

(3) the u column sum is Du;

(4) Du ≥ n− 1 and Du = n− 1 happens for at most one time.

If d(T ) = 2, then T is a star and Du = n− 1 or 2n− 3 for each u ∈ V (T ). Thus

we have J(T ) = (2n− 3)−1/2(n− 1)3/2.

Otherwise d(T ) ≥ 3.
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Let x ∈ V (T ) with d(x) = Δ(T ) and x be the root of T . Then the other vertices

of T can be divided into levels by the distance on x (see Figure 1). Note that the

vertices in the same level are independent.
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Figure 1. The root x and the levels of T

Let Y be the set of the vertices in level 1 and y ∈ Y . To simplify the notations,

let |Y | = Δ(T ) = t and d(y) = s (1 ≤ s ≤ t). By the properties (1)-(3) of distance

matrix of T , we have Dx ≥ n−1+(n−1−t) = 2n−2−t and Dy ≥ n−1+(n−1−s) =

2n− 2− s ≥ 2n− 2− t. Similarly for any vertex v in level i (i ≥ 2), Dv ≥ 2n− 2− t.

Since d(T ) ≥ 3, we have 2 ≤ t ≤ n− 2.

If t < n
2
, then we have

J(T ) = (n− 1)
∑

uv∈E(T )

(DuDv)
−1/2

≤ (n− 1)2[(2n− 2− t)2]−1/2

< (n− 1)2[(2n− 2− n

2
)2]−1/2

= (n− 1)2[(
3

2
n− 2)2]−1/2

Since

(
3

2
n− 2)2 =

9

4
n2 − 6n+ 4 > 2n2 − 5n+ 3 = (n− 1)(2n− 3), n ≥ 4,

we have

J(T ) < (n− 1)2[(n− 1)(2n− 3)]−1/2 = (2n− 3)−1/2(n− 1)3/2.

Otherwise t ≥ n
2
.
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From the proof above, we have Dx ≥ 2n − 2 − t. Additionally, we have Dy ≥
n− 1 + (t− 1) = n+ t− 2.

Let Z be the set of the vertices in level 2 and z ∈ Z. Then we have Dz ≥
n−1+1+2(t−1) = n+2t−2 ≥ 2n−2. Similarly for any vertex w in level i (i ≥ 3),

Dw ≥ n+ 3t− 2 > 2n− 3 > n− 1. Thus we have

J(T ) = (n− 1)
∑

uv∈E(T )

(DuDv)
−1/2

= (n− 1)[
∑
y∈Y

(DxDy)
−1/2 +

∑
y∈Y,z∈Z
yz∈E(T )

(DyDz)
−1/2 +

∑
u/∈Y

uv∈E(T )

(DuDv)
−1/2]

< (n− 1){t[(2n− 2− t)(n+ t− 2)]−1/2 + (n− 1− t)[(n− 1)(2n− 3)]−1/2}

Since

(2n− 2− t)(n+ t− 2)

= (2n− 3 + 1− t)(n− 1 + t− 1)

= (2n− 3)(n− 1) + (1− t)(n− 1) + (t− 1)(2n− 3)− (t− 1)2

= (2n− 3)(n− 1) + (t− 1)(n− 2)− (t− 1)2

= (2n− 3)(n− 1) + (t− 1)[(n− 2)− (t− 1)]

> (2n− 3)(n− 1),

we have

J(T ) < (n− 1)2[(n− 1)(2n− 3)]−1/2 = (2n− 3)−1/2(n− 1)3/2.

Therefore, J(T ) ≤ (2n− 3)−1/2(n− 1)3/2, with equality if and only if T is a star.

This completes the proof of Theorem 2.1. �

Theorem 2.2 If T is a tree, then J(T ) ≥ (n − 1)
n−1∑
i=1

(DiDi+1)
−1/2, where Di =

(n−i+1)(n−i)
2

+ (i−1)i
2

, with equality if and only if T is a path.

Proof. Since T is a tree with n vertices, we have m = n− 1 and μ = 0. Thus

J(T ) = (n− 1)
∑

uv∈E(T )

(DuDv)
−1/2.

If d(T ) = n − 1, then T is a path and J(T ) = (n − 1)
n−1∑
i=1

(DiDi+1)
−1/2, where

Di =
(n−i+1)(n−i)

2
+ (i−1)i

2
.
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D(Pn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 · · · n− 1

1 0 1 2 · · · n− 2

2 1 0 1 · · · n− 3
...

...
. . . . . . . . .

...

n− 1 n− 2 n− 3 n− 4 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D1

D2

D3

...

Dn

Note that {Di} has the following properties:

(i) {Di} is a symmetric sequence with Di = Dn−i+1, i = 1, 2, . . . n
2
for n is even

(n−1
2

for n is odd, respectively);

(ii) Di > Di+1 (1 ≤ i ≤ n
2
− 1 or n−1

2
).

Otherwise d(T ) ≤ n− 2.

Consider the distance matrix [dij]n×n of T . We have the following properties:

(1) the diagonal entries are 0 and the other entries are positive integers less than

n− 2;

(2) the u column sum is Du.

Let P = v1v2 · · · vk (k = d(T ) ≤ n− 2) be a longest path in T . Since P is longest,

we have that v1 and vk are leaves. Let v1 be the root of T . Then the other vertices

of T can be divided into levels by the distance on v1 (see Figure 2). Note that the

vertices in the same level are independent.
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Figure 2. The root v1 and the levels of T
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Let Li be the set of vertices in level i (1 ≤ i ≤ k). For any vertex xi ∈ Li, comparing

the distance matrix of T with that of a path, we are easy to have Dxi
< Di+1

(1 ≤ i ≤ k ≤ n− 2). Furthermore, Dv1 < D1.

Let ri be the number of edges between level i and level i+1 (1 ≤ i ≤ k−1). Note

that
k−1∑
i=1

ri = n− 2. Then we have

J(T ) = (n− 1)
∑

uv∈E(T )

(DuDv)
−1/2

= (n− 1)[(Dv1Dv2)
−1/2 +

∑
xixi+1∈E(T )

1≤i≤k−1

(Dxi
Dxi+1

)−1/2]

> (n− 1)[(D1D2)
−1/2 + (D2D3)

−1/2 + · · ·+ (DkDk+1)
−1/2 +

(r1 − 1)(D2D3)
−1/2 + (r2 − 1)(D3D4)

−1/2 + . . .+ (rk−1 − 1)(DkDk+1)
−1/2]

Since D1(= Dn) > D2(= Dn−1) > · · · > Dn
2
(= Dn

2
+1) or Dn+1

2
for n is odd, we have

1√
D1D2

(=
1√

Dn−1Dn

) <
1√

D2D3

(=
1√

Dn−2Dn−1

) < · · · < 1√
Dn

2
Dn

2
+1

or

1√
Dn−1

2
Dn+1

2

(= 1√
Dn+1

2
Dn+3

2

) for n is odd.

Thus we have

J(T ) > (n− 1)
n−1∑
i=1

(DiDi+1)
−1/2.

Therefore, we have J(T ) ≥ (n−1)
n−1∑
i=1

(DiDi+1)
−1/2, whereDi =

(n−i+1)(n−i)
2

+ (i−1)i
2

,

with equality if and only if T is a path. This completes the proof of Theorem 2.2. �
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