MATCH Commun. Math. Comput. Chem. 63 (2010) 783-788

MATCH Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Some New Sharp Bounds on the Distance Spectral Radius of Graph *

Chang-Xiang $He^{a^{\dagger}_{+}}$, Ying Liu^b, Zhen-Hua Zhao^c

^aCollege of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China

^bCollege of Mathematics and Information, Shanghai Lixin University of Commerce, Shanghai, 201620, China

^cSchool of Mathematics and Physics, Chongqing Institute of Technology, Chongqing, 400050, China

(Received April 28, 2009)

Abstract: The *D*-eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ of a graph *G* are the eigenvalues of its distance matrix *D* and form the *D*-spectrum of *G* denoted by $\operatorname{spec} D(G)$. The greatest *D*-eigenvalue is called the distance spectral radius of *G*, denoted by λ_1 . In this paper we obtain some new lower and upper bounds for λ_1 , and also show that all of our bounds are sharp.

1 Introduction

Let G be a connected graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$. The distance matrix D = D(G) of G is defined so that its (i, j)-entry, d_{ij} , is equal to $d_G(v_i, v_j)$, the distance (length of the shortest path) between the vertices v_i and v_j of G. Then the distance matrix of a connected distance graph is irreducible and symmetric. The eigenvalues of D(G) are said to be the D-eigenvalues of G and form the Dspectrum of G, denoted by $\operatorname{spec} D(G)$. Since the distance matrix is symmetric, all

^{*}Research supported by the National Natural Science Foundation of China 10601038 and slg07032.

[†]Corresponding author email: changxianghe@hotmail.com.

its eigenvalues $\lambda_i, i = 1, 2, \dots, n$, are real and can be labeled so that $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n$.

The ordinary spectrum of G, which is the spectrum of the adjacency matrix of G is well studied and many properties of graphs in connection with the spectrum are revealed during the past years. For details see the book [1] and the references cited therein. The greatest eigenvalue of the distance matrix of a graph G, λ_1 is called the distance spectral radius. For some recent works on distance spectrum of graphs, see [2–4]. In [3], the author gave some lower bounds for λ_1 and characterize those graphs for which these bounds are best possible. In this paper, we present some new lower and upper bounds for λ_1 , and also prove that all of our bounds are sharp.

2 Main results and lemmas

Definition 2.1 Let G be a graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and a distance matrix $D = (d_{ij})$. Then the distance degree of v_i , denoted by D_i is given by $D_i = \sum_{i=1}^n d_{ij}$.

Definition 2.2 Let G be a graph with $V(G) = \{v_1, v_2, \dots, v_n\}$, a distance matrix $D = (d_{ij})$, and a distance degree sequence $\{D_1, D_2, \dots, D_n\}$. Then the second distance degree of v_i , denoted by T_i is given by $T_i = \sum_{i=1}^n d_{ij}D_j$.

Definition 2.3 Let G be a graph with distance degree sequence $\{D_1, D_2, \dots, D_n\}$ and second distance degree sequence $\{T_1, T_2, \dots, T_n\}$. Then G is pseudo k-distance regular if $\frac{T_i}{D_i} = k$ for all $1 \le i \le n$.

Definition 2.4 Let A be a matrix. We use $s_i(A)$ to denote the *i*th row sum of A.

The proof of Lemma 2.1 in [5] implies the following slightly stronger version.

Lemma 2.1 [5] Let A be a real symmetric $n \times n$ matrix, and let λ be an eigenvalue of A with an eigenvector x all of whose entries are nonnegative. Then

$$\min_{1 \le i \le n} s_i(A) \le \lambda \le \max_{1 \le i \le n} s_i(A).$$

Moveover, if all entries of x are positive then either of the equalities holds if and only if the row sums of A are all equal.

Lemma 2.2 [6] Let A be a nonnegative irreducible $n \times n$ matrix with spectral radius λ . Then λ is a simple eigenvalue of A, and if x is an eigenvector with eigenvalue λ , then all entries of x are nonzero and have the same sign.

Corollary 2.1 Let A be a nonnegative irreducible $n \times n$ matrix with spectral radius λ . Then

$$\min_{1 \le i \le n} s_i(A) \le \lambda \le \max_{1 \le i \le n} s_i(A).$$

Equalities holds if and only if the row sums of A are all equal.

Theorem 2.1 Let G be a connected graph with distance degree sequence $\{D_1, D_2, \dots, D_n\}$, second distance degree sequence $\{T_1, T_2, \dots, T_n\}$, and distance spectral radius λ_1 . Then

$$\min\{m_i: 1 \le i \le n\} \le \lambda_1 \le \max\{m_i: 1 \le i \le n\}.$$

$$\tag{1}$$

where $m_i = \frac{T_i}{D_i}$. Moveover, any equality holds if and only if G is pseudo distance regular.

Proof. Let $M = diag(D_1, \dots, D_n)$. Then (i, j)-entry of $M^{-1}DM$ is $\frac{d_{ij}D_j}{D_i}$, and $s_i(M^{-1}DM) = \frac{T_i}{D_i} = m_i$ $(1 \le i \le n)$.

It is not difficult to see that $M^{-1}DM$ is a nonnegative irreducible $n \times n$ matrix with spectral radius λ_1 . Now we use Corollary 2.1 by taking $A = M^{-1}DM$, the desired result holds.

Now we assume that G is pseudo distance regular, then $m_i = \frac{T_i}{D_i} = k$ for all i, and hence $\min\{m_i: 1 \le i \le n\} = \max\{m_i: 1 \le i \le n\} = k$. Thus both of the equalities hold.

Conversely, if one of the equalities holds, by Corollary 2.1, the row sums of $M^{-1}DM$ are all equal. That is, $m_i = \frac{T_i}{D_i}$ $(1 \le i \le n)$ are all equal, which may implies that G is a pseudo distance regular graph.

-786-

Theorem 2.2 Let G be a connected graph with second distance degree sequence $\{T_1, T_2, \dots, T_n\}$, and distance spectral radius λ_1 . Then

$$\min\{\sqrt{T_i}: 1 \le i \le n\} \le \lambda_1 \le \max\{\sqrt{T_i}: 1 \le i \le n\}.$$
(2)

Moveover, any equality holds if and only if G has same value of T_i for all i.

Proof. Let $D = (d_{ij})$ be the distance matrix of G and $\{D_1, D_2, \dots, D_n\}$ be the distance degree sequence of G. Since $(D^2)_{ij} = \sum_{k=1}^n d_{ik}d_{kj}$, we have

$$s_i(D^2) = \sum_{j=1}^n \sum_{k=1}^n d_{ik} d_{kj}$$
$$= \sum_{k=1}^n d_{ik} \sum_{j=1}^n d_{kj}$$
$$= \sum_{k=1}^n d_{ik} D_k$$
$$= T_i$$

Let x be an eigenvector corresponding to λ_1 , all of whose entries are positive, that is, $Dx = \lambda_1 x$, then $D^2 x = \lambda_1^2 x$. By Lemma 2.1,

$$\min\{T_i: 1 \le i \le n\} \le \lambda_1^2 = \lambda(D^2) \le \max\{T_i: 1 \le i \le n\}$$

Thus $\min\{\sqrt{T_i}: 1 \le i \le n\} \le \lambda_1 \le \max\{\sqrt{T_i}: 1 \le i \le n\}.$

Now we assume that G has same value of T_i for all i, then $\min\{\sqrt{T_i}: 1 \le i \le n\} = \max\{\sqrt{T_i}: 1 \le i \le n\}$, both of the equalities hold.

Conversely, if one of the equalities holds, that is, $\lambda_1^2 = \min\{T_i: 1 \le i \le n\}$ or $\lambda_1^2 = \max\{T_i: 1 \le i \le n\}$. By Corollary 2.1, $s_i(D^2) = T_i^2$ $(1 \le i \le n)$ all are equal. So G has same value of T_i for all i.

Theorem 2.3 Let G be a connected graph of order n, and λ_1 be the distance spectral radius, then

$$\lambda_1 \le \max\{\sqrt{m_i m_j}: \ 1 \le i, j \le n\},\tag{3}$$

where $m_i = \frac{T_i}{D_i}$. Moreover, the equality holds if and only if G is a pseudo distance regular graph.

Proof. Let $M = diag(D_1, \dots, D_n)$ and $x = (x_1, x_2, \dots, x_n)^T$ be an eigenvector of $M^{-1}DM$ corresponding to the eigenvalue λ_1 . Also let one entry, say x_i , be equal to 1 and the other entries be less than or equal to 1, that is, $x_i = 1$ and $0 \le x_k \le 1$ for any k. Let $x_j = \max\{x_k : k \ne i\}$.

Now the (i, j)-entry of $M^{-1}DM$ is $\frac{d_{ij}D_j}{D_i}$, and

$$M^{-1}DMx = \lambda_1 x \tag{4}$$

From the *i*th equation of (4),

$$\lambda_1 x_i = \sum_{k=1}^n \frac{d_{ik} D_k x_k}{D_i}$$

$$= \frac{1}{D_i} \sum_{k=1}^n d_{ik} D_k x_k$$

$$\leq \frac{d_{ii} D_i x_i}{D_i} + \frac{x_j}{D_i} \sum_{k=1, k \neq i}^n d_{ik} D_k$$

$$= \frac{x_j}{D_i} \sum_{k=1, k \neq i}^n d_{ik} D_k$$

$$= \frac{x_j}{D_i} \sum_{k=1}^n d_{ik} D_k$$

$$= \frac{T_i}{D_i} x_j = m_i x_j \qquad (5)$$

From the *j*th equation of (4),

$$\lambda_1 x_j = \sum_{k=1}^n \frac{d_{jk} D_k x_k}{D_j}$$
$$= \frac{1}{D_j} \sum_{k=1}^n d_{jk} D_k x_k$$
$$\leq \frac{1}{D_j} \sum_{k=1}^n d_{jk} D_k$$
$$= \frac{T_j}{D_j}$$
$$= m_j \qquad (6)$$

Combing (5), (6) and $x_i = 1$, we get $\lambda_1^2 \leq m_i m_j$.

Therefore, $\lambda_1 \leq \sqrt{m_i m_j} \leq \max\{\sqrt{m_i m_j}: 1 \leq i, j \leq n\}.$

Now we assume that G is pseudo distance regular, so $\frac{T_i}{D_i} = k$ or $T_i = kD_i$ for all *i*. Then

$$D(D_1, D_2, \cdots, D_n)^T = k(D_1, D_2, \cdots, D_n)^T$$

showing that $(D_1, D_2, \dots, D_n)^T$ is an eigenvector corresponding to k. Note that $\lambda_1 \leq \sqrt{k^2}$, we have $\lambda_1 = k$. Thus the equality holds.

Conversely, if λ_1 attains the upper bound then all equalities in the above argument must hold. In particular, from (6) that $x_k = 1$, for $1 \le k \le n$, that is, $x = (1, 1, \dots, 1)^T$. Hence $M^{-1}DM(1, 1, \dots, 1)^T = \lambda_1(1, 1, \dots, 1)^T$, this then implies that

$$\frac{T_k}{D_k} = \frac{\sum\limits_{j=1}^n d_{kj} D_j}{D_j} = \lambda$$

or in other words G is pseudo distance regular.

References

- D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980.
- [2] G. Indulal, I. Gutman, On the distance spectra of some graphs, Math. Commun. 13 (2008) 123–131.
- [3] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, *Lin. Algebra Appl.* 430 (2009) 106–113.
- [4] G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 461–472.
- [5] M. N. Ellingham, X. Zha, The spectral radius of graphs on surface, J. Combin. Theory Ser. B 78 (2000) 45–56.
- [6] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.