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Abstract

The Laplacian Estrada index of a graph G is defined as LEE(G) =
∑n

i=1 eμi ,
where μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥ μn = 0 are the eigenvalues of its Laplacian
matrix. An unsolved problem in [19] is whether Sn(3, n − 3) or Cn(n − 5)
has the third maximal Laplacian Estrada index among all trees on n vertices,
where Sn(3, n − 3) is the double tree formed by adding an edge between the
centers of the stars S3 and Sn−3 and Cn(n− 5) is the tree formed by attaching
n − 5 pendent vertices to the center of a path P5. In this paper, we partially
answer this problem, and prove that LEE(Sn(3, n − 3)) > LEE(Cn(n − 5))
and Cn(n− 5) cannot have the third maximal Laplacian Estrada index among
all trees on n vertices.

1 Introduction

The Estrada index of G is defined as

EE(G) =
n∑

i=1

eλi

where λ1, λ2, . . . , λn are the eigenvalues of its adjacency matrix. This graph invariant

based on graph-spectrum was put forward by Estrada in [1,2], where it was shown

that EE(G) can be used as a measure of the degree of folding of long chain polymeric
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molecules. Further, it was shown in [3] that the Estrada index provides a measure

of the centrality of complex networks. Estrada et al. pointed out in [4] a connection

between EE and the concept of extended atomic branching. Some mathematical

properties of the Estrada index were studied in [5–15].

In analogy to the equation above, the Laplacian Estrada index [16] of G is defined

as

LEE(G) =

n∑
i=1

eμi

where μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥ μn = 0 are the eigenvalues of its Laplacian matrix.

Some bounds for the Laplacian Estrada index may be found in [16-18]. Specially, a

relation between the Laplacian Estrada index of a bipartite graph G and the Estrada

index of its line graph L(G) was proved in [18].

Theorem 1([18]). Let G be a graph with n vertices and m edges. If G is bipartite,

then LEE(G) = n − m + e2EE(L(G)) .

The measure of branching is important in chemistry. In order to add some further

evidence to support the use of LEE as a measure of branching in alkanes, it is

worth to characterize the extremal graph or order the trees on n vertices with respect

to LEE. Using the connection between Estrada index of a line graph and Laplacian

Estrada index, it was proven in [19] that the path Pn and the star Sn have the minimal

and maximal LEE among all trees on n vertices, respectively; while the double star

Sn(2, n−2) is the unique tree with the second maximal Laplacian Estrada index, where

the double star Sn(a, b) is the tree formed by adding an edge between the centers of

the stars Sa and Sb, a + b = n. An unsolved problem in [19] is whether Sn(3, n − 3)

or Cn(n− 5) (see Figure 1) has the third maximal Laplacian Estrada index. By their

method, the third maximal Laplacian Estrada index of trees on n ≥ 6 vertices is

uniquely achieved by Sn(3, n−3) or the tree with maximum Laplacian Estrada index

among all caterpillar trees on n vertices and diameter 4. At the same time, testing

by computer, Ilić and Zhou [19] pointed out that Sn(3, n− 3) is the unique tree with

the third maximal Laplacian Estrada index and Cn(n−5) is the unique tree with the

fourth maximal Laplacian Estrada index for 6 ≤ n ≤ 22 .

In this paper, we partially answer this problem, and prove in a rigorous mathe-
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matical manner that the Laplacian Estrada index of Sn(3, n− 3) is greater than that

of Cn(n − 5). This shows that Cn(n − 5) cannot have the third maximal Laplacian

Estrada index among all trees on n vertices, and Sn(3, n− 3) is the unique trees with

the third maximal Laplacian Estrada indices for n ≥ 6 if Cn(n− 5) has the maximal

Laplacian Estrada index among all trees om n vertices and diameter 4.

n-4
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n-3 n-3K K
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v
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S (3,n-3) C (n-5)

L(S (3,n-3))
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n nL(C (n-5))

Fig. 1. Sn(3, n − 3) , Cn(n − 5) , and their line graphs.

2 LEE(Sn(3, n − 3)) > LEE(Cn(n − 5))

The following formulas can be used to compute the characteristic polynomials of some

graphs.

Theorem 2([20]). Let φ(G, x) be the characteristic polynomial of a graph G.

(i)If v is a vertex of degree 1 in G, and w is the vertex adjacent to v, then

φ(G, x) = xφ(G − v, x) − φ(G − v − w, x) .

(ii)If e = vw is an edge of G, and C(e) is the set of all cycles containing e, then

φ(G, x) = φ(G − e, x) − φ(G − v − w, x) − 2
∑

Z∈C(e)

φ(G − V (Z), x) .

Note that the characteristic polynomial of the complete graph Kn is

φ(Kn, x) = (x + 1 − n)(x + 1)n−1 .
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Let G = L(Sn(3, n − 3)) and H = L(Cn(n − 5)) . By Theorem 2, we have

φ(G, x) = φ(G − uw, x) − φ(Kn−3, x) − 2φ(Kn−4, x)

= xφ(G − v, x) − xφ(Kn−4, x) − φ(Kn−3, x) − 2φ(Kn−4, x)

= x(xφ(Kn−3, x) − φ(Kn−4, x)) − xφ(Kn−4, x)

− φ(Kn−3, x) − 2φ(Kn−4, x)

= (x2 − 1)φ(Kn−3, x) − (2x + 1)φ(Kn−4, x)

= (x + 1)n−4(x3 − (n − 4)x2 − 3x + (3n − 14))

and

φ(H, x) = xφ(H − v1, x) − φ(H − v1 − v2, x)

= x(xφ(H − v1 − v4, x) − φ(H − v1 − v4 − v3, x))

− (xφ(H − v1 − v2 − v4, x) − φ(H − v1 − v2 − v4 − v3, x)

= x(xφ(Kn−3, x) − φ(Kn−4, x)) − (xφ(Kn−4, x) − φ(Kn−5, x))

= x2φ(Kn−3, x) − 2xφ(Kn−4, x) + φ(Kn−5, x)

= (x + 1)n−6(x2 + x − 1)(x3 − (n − 5)x2 − (n − 3)x + (n − 6)) .

The spectrum of L(Sn(3, n − 3)) consists of three real roots a1 ≤ a2 ≤ a3 of

polynomial f(x) = x3 − (n − 4)x2 − 3x + (3n − 14) and −1 with multiplicity n − 4,

while the spectrum of L(Cn(n − 5)) consists of three real roots b1 ≤ b2 ≤ b3 of

polynomial g(x) = x3 − (n − 5)x2 − (n − 3)x + (n − 6), two real roots c1 ≤ c2 of

x2 + x − 1 and −1 with multiplicity n − 6, where c1 = −1−√
5

2
and c2 = −1+

√
5

2
.

Theorem 3. LEE(Sn(3, n − 3)) > LEE(Cn(n − 5)) .

Proof. It is true for n ≤ 22 in [19] tested by computer. We prove that LEE(Sn(3, n−
3)) > LEE(Cn(n − 5)) for n ≥ 9. By Theorem 1, it is enough to show that

EE(L(Sn(3, n − 3))) > EE(L(Cn(n − 5))) for n ≥ 9.

From the discussion above, we know that the spectra of L(Sn(3, n−3)) consists of

three real roots a1 ≤ a2 ≤ a3 of polynomial f(x) and −1 with multiplicity n−4, while

the spectra of L(Cn(n − 5)) consists of three real roots b1 ≤ b2 ≤ b3 of polynomial

g(x), two real roots c1 ≤ c2 of x2 + x− 1 and −1 with multiplicity n− 6. So, we only

need to show that R1 > R2, where

R1 = ea1 + ea2 + ea3 + 2e−1
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R2 = eb1 + eb2 + eb3 + ec1 + ec2 .

For n ≥ 9, we have{
f(−2) = −n < 0
f(−1) = 2n − 8 > 0

{
f(3

2
) = 3

4
n − 49

8
> 0

f(2) = 4 − n > 0

{
f(n − 4) = −2 < 0
f(n − 3) = n2 − 6n + 4 > 0

{
g(−2) = −n < 0
g(−1) = n − 5 > 0

{
g(0) = n − 6 > 0
g(1) = 3 − n < 0

{
g(n − 4) = −2 < 0
g(n − 3) = n2 − 5n + 3 > 0 .

And a1 ∈ [−2,−1], a2 ∈ [3
2
, 2], a3 ∈ [n − 4, n − 3]; b1 ∈ [−2,−1], b2 ∈ [0, 1], b3 ∈

[n − 4, n − 3] .

Since e−2 + e
3
2 + 2e−1 ≈ 5.35278 , e−1 + e1 + ec1 + ec2 ≈ 5.13973,

ea1 + ea2 + 2e−1 ≥ e−2 + e
3
2 + 2e−1 > e−1 + e1 + ec1 + ec2 ≥ eb1 + eb2 + ec1 + ec2 .

Now, a3 > n − 4, b3 > n − 4 and f(x) − g(x) = −x2 + (n − 6)x + (2n − 8) < 0

for x ≥ n − 4, i.e., f(x) < g(x) for x ≥ n − 4. We have a3 ≥ b3 and ea3 ≥ eb3 . So,

R1 > R2 .
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Estrada index, Chem. Phys. Lett. 447 (2007) 233–236.

[9] J. A. de la Peña, I. Gutman, J. Rada, Estimating the Estrada index, Lin. Algebra

Appl. 427 (2007) 70–76.

[10] I. Gutman, Lower bounds for Estrada index, Publ. Inst. Math. (Beograd) 83

(2008) 1–7.

[11] H. Deng, A proof of a conjecture on the Estrada index, MATCH Commun. Math.

Comput. Chem. 62 (2009) 599–606.

[12] H. Deng, A note on the Estrada index of trees, MATCH Commun. Math. Com-

put. Chem. 62 (2009) 607–610.

[13] B. Zhou, On Estrada index, MATCH Commun. Math. Comput. Chem. 60 (2008)

485–492.
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