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Aleksandar Ilić𝑎 and Bo Zhou𝑏‡

𝑎Faculty of Sciences and Mathematics, University of Nǐs,
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Abstract

Let 𝐺 be a simple graph with 𝑛 vertices and let 𝜇1 ⩾ 𝜇2 ⩾ . . . ⩾ 𝜇𝑛−1 ⩾ 𝜇𝑛 = 0

be the eigenvalues of its Laplacian matrix. The Laplacian Estrada index of a graph 𝐺

is defined as 𝐿𝐸𝐸(𝐺) =
𝑛∑

𝑖=1

𝑒𝜇𝑖 . Using the recent connection between Estrada index

of a line graph and Laplacian Estrada index, we prove that the path 𝑃𝑛 has minimal,

while the star 𝑆𝑛 has maximal 𝐿𝐸𝐸 among trees on 𝑛 vertices. In addition, we find

the unique tree with the second maximal Laplacian Estrada index.

1. INTRODUCTION

Let 𝐺 be a simple graph with 𝑛 vertices. The spectrum of 𝐺 consists of the eigenvalues

𝜆1 ⩾ 𝜆2 ⩾ . . . ⩾ 𝜆𝑛 of its adjacency matrix [1]. The Estrada index of 𝐺 is defined as

𝐸𝐸(𝐺) =
𝑛∑

𝑖=1

𝑒𝜆𝑖 . (1)

‡Corresponding author.

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 63 (2009) 769-776  

                                          ISSN 0340 - 6253  

 

Administrator
Правокутник

Administrator
Typewriter
2010



This graph–spectrum–based graph invariant was put forward by Estrada in [2, 3],

where it was shown that 𝐸𝐸(𝐺) can be used as a measure of the degree of folding of

long chain polymeric molecules. Further, it was shown in [4] that the Estrada index

provides a measure of the centrality of complex networks, while a connection between

the Estrada index and the concept of extended atomic branching was pointed out

in [5]. Some mathematical properties of the Estrada index were studied in [6–17].

For a graph 𝐺 with 𝑛 vertices, let 𝜇1 ⩾ 𝜇2 ⩾ . . . ⩾ 𝜇𝑛−1 ⩾ 𝜇𝑛 = 0 be the

eigenvalues of its Laplacian matrix [18]. In full analogy with Eq. (1), the Laplacian

Estrada index of 𝐺 is defined as [19]

𝐿𝐸𝐸(𝐺) =
𝑛∑

𝑖=1

𝑒𝜇𝑖 .

Bounds for the Laplacian Estrada index may be found in [19–21].

Let ℒ(𝐺) be the line graph of 𝐺. In [21], the authors proved the following relation

between Laplacian Estrada index of 𝐺 and Estrada index of a line graph of 𝐺.

Theorem 1. [21] Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges. If 𝐺 is bipartite,

then

𝐿𝐸𝐸(𝐺) = 𝑛−𝑚+ 𝑒2 ⋅ 𝐸𝐸(ℒ(𝐺)) .

Our goal here is to add some further evidence to support the use of 𝐿𝐸𝐸 as a

measure of branching in alkanes. While the measure of branching cannot be formally

defined, there are several properties that any proposed measure has to satisfy [22, 23].

Basically, a topological index 𝑇𝐼 acceptable as a measure of branching must satisfy

the inequalities

𝑇𝐼(𝑃𝑛) < 𝑇𝐼(𝑇 ) < 𝑇𝐼(𝑆𝑛) or 𝑇𝐼(𝑃𝑛) > 𝑇𝐼(𝑇 ) > 𝑇𝐼(𝑆𝑛),

for 𝑛 = 5, 6, . . ., where 𝑃𝑛 is the path, 𝑆𝑛 is the star on 𝑛 vertices, and 𝑇 is any

𝑛-vertex tree, different from 𝑃𝑛 and 𝑆𝑛. For example, the first relation is obeyed by

the largest graph eigenvalue [24] and Estrada index [15], while the second relation is

obeyed by the Wiener index [25], Hosoya index and graph energy [26].

We show that among the 𝑛-vertex trees, the path 𝑃𝑛 has minimal and the star 𝑆𝑛

maximal Laplacian Estrada index,

𝐿𝐸𝐸(𝑃𝑛) < 𝐿𝐸𝐸(𝑇 ) < 𝐿𝐸𝐸(𝑆𝑛),

where 𝑇 is any 𝑛-vertex tree, different from 𝑃𝑛 and 𝑆𝑛. We also find the unique tree

with the second maximal Laplacian Estrada index.
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2. LAPLACIAN ESTRADA INDEX OF TREES

In our proofs, we will use a connection between Estrada index and the spectral mo-

ments of a graph. For 𝑘 ⩾ 0, we denote by 𝑀𝑘 the 𝑘th spectral moment of 𝐺,

𝑀𝑘 = 𝑀𝑘(𝐺) =
𝑛∑

𝑖=1

𝜆𝑘
𝑖 .

A walk of length 𝑘 in 𝐺 is any sequence of vertices and edges of 𝐺,

𝑤0, 𝑒1, 𝑤1, 𝑒2, . . . , 𝑤𝑘−1, 𝑒𝑘, 𝑤𝑘,

such that 𝑒𝑖 is the edge joining 𝑤𝑖−1 and 𝑤𝑖 for every 𝑖 = 1, 2, . . . , 𝑘. The walk is

closed if 𝑤0 = 𝑤𝑘. It is well-known (see [1]) that 𝑀𝑘(𝐺) represents the number of

closed walks of length 𝑘 in 𝐺. Obviously, for every graph 𝑀0 = 𝑛, 𝑀1 = 0 and

𝑀2 = 2𝑚. From the Taylor expansion of 𝑒𝑥, we have that the Estrada index and the

spectral moments of 𝐺 are related by

𝐸𝐸(𝐺) =
∞∑
𝑘=0

𝑀𝑘

𝑘!
. (2)

Thus, if for two graphs 𝐺 and 𝐻 we have 𝑀𝑘(𝐺) ⩾ 𝑀𝑘(𝐻) for all 𝑘 ⩾ 0, then

𝐸𝐸(𝐺) ⩾ 𝐸𝐸(𝐻). Moreover, if the strict inequality 𝑀𝑘(𝐺) > 𝑀𝑘(𝐻) holds for at

least one value of 𝑘, then 𝐸𝐸(𝐺) > 𝐸𝐸(𝐻).

Among the 𝑛-vertex connected graphs, the path 𝑃𝑛 has minimal and the complete

graph 𝐾𝑛 maximal Estrada index [8, 15],

𝐸𝐸(𝑃𝑛) < 𝐸𝐸(𝐺) < 𝐸𝐸(𝐾𝑛), (3)

where 𝐺 is any 𝑛-vertex connected graph, different from 𝑃𝑛 and 𝐾𝑛.

Theorem 2. Among the 𝑛-vertex trees, the path 𝑃𝑛 has minimal and the star 𝑆𝑛

maximal Laplacian Estrada index,

𝐿𝐸𝐸(𝑃𝑛) < 𝐿𝐸𝐸(𝑇 ) < 𝐿𝐸𝐸(𝑆𝑛),

where 𝑇 is any 𝑛-vertex tree, different from 𝑃𝑛 and 𝑆𝑛.

Proof. The line graph of a tree 𝑇 is a connected graph with 𝑛− 1 vertices. The line

graph of a path 𝑃𝑛 is also a path 𝑃𝑛−1, while the line graph of a star 𝑆𝑛 is a complete

graph 𝐾𝑛−1. Using the relation (3) it follows that

𝐸𝐸(ℒ(𝑃𝑛)) ⩽ 𝐸𝐸(ℒ(𝑇 )) ⩽ 𝐸𝐸(ℒ(𝑆𝑛)),

and from Theorem 1 we get 𝐿𝐸𝐸(𝑃𝑛) ⩽ 𝐿𝐸𝐸(𝑇 ) ⩽ 𝐿𝐸𝐸(𝑆𝑛) with left equality if

and only if 𝑇 ∼= 𝑃𝑛 and right equality if and only if 𝑇 ∼= 𝑆𝑛. □
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3. SECOND MAXIMAL LAPLACIAN ESTRADA OF TREES

Definition 1. Let 𝑣 be a vertex of degree 𝑝 + 1 in a graph 𝐺, which is not a star,

such that 𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑝 are pendent edges incident with 𝑣 and 𝑢 is the neigh-

bor of 𝑣 distinct from 𝑣1, 𝑣2, . . . , 𝑣𝑝. We form a graph 𝐺′ = 𝜎(𝐺, 𝑣) by removing

edges 𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑝 and adding new edges 𝑢𝑣1, 𝑢𝑣2, . . . , 𝑢𝑣𝑝. We say that 𝐺′ is

𝜎-transform of 𝐺.

Figure 1: 𝜎-transformation applied to 𝐺 at vertex 𝑣.

Theorem 3. Let 𝐺′ = 𝜎(𝐺, 𝑣) be a 𝜎-transform of a bipartite graph 𝐺. Then

𝐿𝐸𝐸(𝐺) < 𝐿𝐸𝐸(𝐺′) . (4)

Proof. The graphs 𝐺 and 𝐺′ are both bipartite and have the same number of vertices

and edges. Using Theorem 1, it is enough to prove inequality

𝐸𝐸(ℒ(𝐺)) < 𝐸𝐸(ℒ(𝐺′)) .

Let 𝑢1, 𝑢2, . . . , 𝑢𝑚 be the neighbors of 𝑢 in 𝐺, different from 𝑣. Consider the induced

subgraph 𝐻 of ℒ(𝐺) formed using vertices 𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑝, 𝑣𝑢, 𝑢𝑢1, 𝑢𝑢2, . . . , 𝑢𝑢𝑚. It

is easy to see that these vertices are grouped in two cliques of sizes 𝑝+ 1 and 𝑚+ 1

with the vertex 𝑢𝑣 in common. Similarly, consider the induced subgraph 𝐻 ′ of ℒ(𝐺′)

formed using corresponding vertices 𝑢𝑣1, 𝑢𝑣2, . . . , 𝑢𝑣𝑝, 𝑣𝑢, 𝑢𝑢1, 𝑢𝑢2, . . . , 𝑢𝑢𝑚. Here,

we have one clique of size 𝑚+ 𝑝+ 1.

Since 𝐻 is a proper subgraph of 𝐻 ′, it follows that for every 𝑘 ⩾ 0, 𝑀𝑘(𝐻
′) ⩾

𝑀𝑘(𝐻) and then 𝑀𝑘(ℒ(𝐺′)) ≥ 𝑀𝑘(ℒ(𝐺)), which is strict for some 𝑘. Finally, using

the relation (2), we have 𝐿𝐸𝐸(𝐺) < 𝐿𝐸𝐸(𝐺′). □
Let 𝑇 be an arbitrary tree on 𝑛 vertices with root 𝑣. We can find a vertex 𝑢 that is

the parent of the leaf on the deepest level and apply 𝜎-transformation at 𝑢 to strictly

increase the Laplacian Estrada index.
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Corollary 1. Let 𝑇 be a tree on 𝑛 vertices. If 𝑇 ∕∼= 𝑆𝑛, then 𝐿𝐸𝐸(𝑇 ) < 𝐿𝐸𝐸(𝑆𝑛).

Let 𝑆𝑛(𝑎, 𝑏) be the tree formed by adding an edge between the centers of the stars

𝑆𝑎 and 𝑆𝑏, where 𝑎 + 𝑏 = 𝑛 and 2 ⩽ 𝑎 ⩽ ⌊𝑛
2
⌋. We call 𝑆𝑛(𝑎, 𝑏) the double star. By

direct calculation, the characteristic polynomial of the Laplacian matrix of the double

star 𝑆𝑛(𝑎, 𝑏) is equal to

𝑃 (𝑥) = (−1)𝑛𝑥(𝑥− 1)𝑛−4
(
𝑥3 − (𝑛+ 2)𝑥2 + (𝑛+ 2 + 𝑎𝑏)𝑥− 𝑛

)
.

We may assume that 𝑛 > 5. The Laplacian spectra of 𝑆𝑛(𝑎, 𝑏) consists of three

real roots of polynomial 𝑓𝑛,𝑎(𝑥) = 𝑥3 − (𝑛 + 2)𝑥2 + (𝑛 + 2 + 𝑎(𝑛 − 𝑎))𝑥 − 𝑛, 1 with

multiplicity 𝑛 − 4, and 0 with multiplicity one. In order to establish the ordering

of double stars with 𝑛 vertices by 𝐿𝐸𝐸 values it is enough to consider the following

function 𝑔𝑛,𝑎(𝑥1, 𝑥2, 𝑥3) = 𝑒𝑥1 + 𝑒𝑥2 + 𝑒𝑥3 , where 𝑥1 ⩾ 𝑥2 ⩾ 𝑥3 > 0 are the roots of

𝑓𝑛,𝑎(𝑥).

We locate 𝑥1, 𝑥2 and 𝑥3. First we have

𝑓𝑛,𝑎(𝑛− 𝑎+ 1) = 1− 𝑎 < 0

and

𝑓𝑛,𝑎

(
𝑛− 𝑎+

3

2

)
=

15

8
+ 𝑎2 + 𝑛+

𝑛2

2
− 11𝑎

4
− 3𝑛𝑎

2
.

The last function (considered as a quadratic function of 𝑎) is decreasing for 𝑎 < 11
8
+ 3𝑛

4
,

and then for 𝑎 ⩽ 𝑛
2
− 1, we have

𝑓𝑛,𝑎

(
𝑛− 𝑎+

3

2

)
⩾ 𝑓𝑛,𝑎

(
𝑛− 𝑛

2
+ 1 +

3

2

)
=

45 + 𝑛

8
> 0 .

Next we have

𝑓𝑛,𝑎(𝑎) = (𝑎− 1)(𝑛− 2𝑎) ⩾ 0 and 𝑓𝑛,𝑎(𝑎+ 1) = 1 + 𝑎− 𝑛 < 0 .

Finally we have

𝑓𝑛,𝑎(0) = −𝑛 < 0 and 𝑓𝑛,𝑎(1) = (𝑎− 1)(𝑛− 1− 𝑎) > 0 .

Thus 𝑥3 ∈ [0, 1], 𝑥2 ∈ [𝑎, 𝑎 + 1] and 𝑥1 ∈
[
𝑛− 𝑎+ 1, 𝑛− 𝑎+ 3

2

]
for 2 ⩽ 𝑎 ⩽ 𝑛

2
− 1.

The function

ℎ(𝑎) = 𝑒0 + 𝑒𝑎 + 𝑒𝑛−𝑎+1 − 𝑒1 − 𝑒𝑎+2 − 𝑒𝑛−𝑎+1/2

is decreasing for 𝑎 > 0 (since ℎ′(𝑎) < 0), and then for 𝑎 ⩽ 𝑛
2
− 1 we have

ℎ(𝑎) ⩾ ℎ
(𝑛
2
− 1
)
= 𝑒𝑛/2

(
𝑒−1 − 𝑒+ 𝑒2 − 𝑒3/2

)
+ 1− 𝑒 >

𝑒𝑛/2

2
+ 1− 𝑒 > 0 .
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Thus, for 2 ⩽ 𝑎 < ⌊𝑛
2
⌋ − 1, we have

𝑒0 + 𝑒𝑎 + 𝑒𝑛−𝑎+1 > 𝑒1 + 𝑒𝑎+2 + 𝑒𝑛−𝑎+1/2,

and then 𝐿𝐸𝐸(𝑆𝑛(𝑎, 𝑏)) > 𝐿𝐸𝐸(𝑆𝑛(𝑎 + 1, 𝑏 − 1)). The special case 𝑎 = ⌊𝑛
2
⌋ can be

handled easily,

𝐿𝐸𝐸(𝑆𝑛(2, 𝑛− 2))− 𝐿𝐸𝐸
(
𝑆𝑛

(⌊𝑛
2

⌋
,
⌈𝑛
2

⌉))
> 𝑒𝑛−1 + 𝑒2 − 𝑒⌈𝑛/2⌉ − 𝑒⌈𝑛/2⌉+2 − 𝑒 > 𝑒⌈𝑛/2⌉ ⋅ (𝑒⌊𝑛/2⌋−1 − 1− 𝑒2

)− 𝑒 > 0 for 𝑛 > 7

and by direct calculation, we also have 𝐿𝐸𝐸(𝑆𝑛(2, 𝑛−2))−𝐿𝐸𝐸
(
𝑆𝑛

(⌊
𝑛
2

⌋
,
⌈
𝑛
2

⌉))
> 0

for 𝑛 = 6, 7. By Theorem 3, the second maximal 𝐿𝐸𝐸 for 𝑛-vertex trees is a double

star 𝑆𝑛(𝑎, 𝑏), and then from discussions above, we have

Corollary 2. The unique tree on 𝑛 ⩾ 5 vertices with the second maximal Laplacian

Estrada index is a double star 𝑆𝑛(2, 𝑛− 2).

Note that as above, 𝐿𝐸𝐸(𝑆𝑛(3, 𝑛 − 3)) − 𝐿𝐸𝐸
(
𝑆𝑛

(⌊
𝑛
2

⌋
,
⌈
𝑛
2

⌉))
> 0 for 𝑛 ⩾ 8

(the cases for 𝑛 = 8, 9 need direct calculation). By Theorem 3 and discussions above,

the third maximal Laplacian Estrada index for trees on 𝑛 ⩾ 6 vertices is uniquely

achieved by 𝑆𝑛(3, 𝑛 − 3) or a caterpillar of diameter four. Tested by computer on

trees with at most 22 vertices, 𝑆𝑛(3, 𝑛− 3) is the unique tree with the third and the

caterpillar formed by attaching 𝑛 − 5 pendent vertices to the center of a path 𝑃5 is

the unique tree with the fourth maximal Laplacian Estrada index for 𝑛 ⩾ 6.
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