MATCH MATCH Commun. Math. Comput. Chem. 63 (2010) 737-750

Communications in Mathematical
and in Computer Chemistry ISSN 0340 - 6253

Some Graphs Are More Strongly-Isospectral than Others’

Milan Randié,'
National Institute of Chemistry, Ljubljana, Slovenia

Boris Horvat,2 Toma Pisanski >
IMFM and FMF, University of Ljubljana, Ljubljana, Slovenia

(Received March 25, 2009)

Abstract

Let 4 be the adjacency matrix of a graph G, let D be its distance matrix and let V" be
the diagonal matrix with elements that indicate the valence of corresponding vertices. We
explore possibility of discriminating the degree of similarity between isospectral graphs
(having the same eigenvalues of the adjacency matrix A) by examining their spectral
properties with respect to additional graph matrices: 4 — V' matrix, which is essentially the
Laplace matrix multiplied by -1; 44" — ¥ matrix, which is obtained from 44" where elements
on the main diagonal are replaced by zeros; natural distance matrix DD, constructed from
distances between columns of the adjacency matrix viewed as vectors in N-dimensional
space; terminal matrix, which is really the distance matrix between the vertices of degree 1,
also called terminal vertices. We found that matrices of form 4” — V, the elements of which
count non-returning walk of length m in a graph, discriminate some isospectral mates, but not
others. We refer to pair of graphs which agree in eigenvalues of several matrices as strongly-
isospectral, or S-isospectral graphs, as opposed to those less strongly similar. Hence, in other
words, some graphs are more S-isospectral than other.
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1. Introduction

The eigenvalues of the adjacency matrix, the graph spectrum, are one of most
elementary graph invariants. Already in 1943 U. Sinogowitz, who perished in WW II, has
found that there are trees that have all eigenvalues equal, hence graph spectra are not unique
to a graph [1]. Graphs that have all eigenvalues equal are often referred in chemical literature
as isospectral and in mathematical literature as co-spectral. There was a considerable interest
in isospectral (or co-spectral) graphs in mathematical [2] and chemical circles [3]. In
chemistry the eigenvalues of the adjacency matrix represent molecular orbital energies of 7 -
electrons of conjugated polycyclic hydrocarbons [4]. According to one of the early theoretical
model of m-electron structure of mid 1930s of E. Hiickel, known today as the Hiickel
Molecular Orbital Theory (HMO), monocyclic conjugated hydrocarbons having 4n+2 =-
electrons are aromatic, while those having 4n m-clectrons are anti-aromatic. From
mathematical point of view the energies of @ -electron molecular orbitals are equivalent to the
graph spectral theory.

The Hiickel 4n+2 Rule on aromaticity has been considered one of the early triumphs
of Quantum Chemistry even though it has not been widely recognized that it is a consequence
of molecular connectivity (Graph Theory) and not Quantum Chemistry. Many attempts have
been made over the past 20-30 years to generalize the Hiickel 4#+2 Rule on aromaticity to
polycyclic conjugated hydrocarbons but all these attempts failed. Finally in 1976 the notion of
conjugated circuits was introduced [5] and it was shown that polycyclic conjugated
hydrocarbons having only 4n+2 conjugated circuits are aromatic and those having only 4n
conjugated circuits are anti-aromatic [6, 7]. It is interesting to mention that while HMO model
dominated theoretical chemistry, which was for at least some 20 years, nothing was known
about isospectral graphs (and molecules). It was only in 1973, when HMO was already fading
out as a viable chemical model of m-electrons in conjugated systems, that Zivkovi¢ [8] by
browsing pages of widely available “Dictionary of n-Electron Calculations” [9], found a pair
of simple benzene derivatives: 1,4-divynylbenzene and 2-phenylbutadiene (molecular
skeleton of which are illustrated in Figure 1) which are isospectral. Typically molecular
orbitals and m-orbital energies of each molecule occupied a single page, and the two
isospectral substituted benzenoid compounds having the same HMO eigenvalues were

separated by few pages!
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Finally we should add that Hiickel MO Theory is not dead [10, 11] and even less dead
is the “Conjugated Circuits Theory,” which as Klein and collaborators have shown [12-20],
can be cast in rigorous Quantum Theory formalism.

Although isospectrality is today of no much interest in chemistry, in view that HMO is
no longer adequate theoretical model for spectra of conjugated polycyclic hydrocarbons, it is
nevertheless of interest to understand structural reasons why isospectrality occurs for some
pairs of compounds and not for others. It turned out that the reason that structurally closely
related 1,4-divynylbenzene and 2-phenylbutadiene (illustrated in Figure 1) are isospectral
because they posses special sites, two critical vertices, which when erased produce subgraphs
having the same characteristic polynomial. Therefore, when the two sites are substituted by
the same molecular fragment, they will always produce pairs of isospectral graphs [21-23].
However, there are graphs which are isospectral and which do not have such special vertices,
which could be classified as “sporadic.” Such pairs of graphs are isospectral accidentally, or
for yet unknown structural reasons. On the other hand, one can refer to isospectrality of 1,4-
divynylbenzene and 2-phenylbutadiene as “structural” or ‘“regular”, because the

isospectrality of such graph, as mentioned above, can be traced to definite structural elements.

Figure 1: Isospectral pair of graphs found by Zivkovié.

In this contribution, we are interested in characterization of the degree of hidden
structural similarity or “intensity” of isospectral graphs. Clearly any pair of non-isospectral
graphs can already be differentiated by their spectra, while though graph spectra cannot
differentiate between isospectral graphs, we believe that in general isospectral graphs can be
differentiated by having at least one invariant different — the problem of interest for graph
isomorphism testing [24, 25] is that nobody knows in advance which invariants are this to be.
Hence, in such cases, one needs to continue with examination of additional graph invariants,

an approach which need not to be efficient. For some graphs such discriminatory properties
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may be found in few steps but in some cases a pair of graphs may resist differentiation and
require considerable effort in finding a set of invariants in which they differ.

Hosoya and coworkers seems to be the first to search for graphs that are isospectral
(having the same set of eigenvalues of the adjacency matrix 4) and have the same set of
eigenvalues of graph distance matrix D [26]. If in addition such graphs have also identical Z-
counting polynomial, matching polynomial, the Wiener number [27] and the Hosoya
topological index Z [28], Hosoya, Nagashima and Hyugaji referred to such graphs
colloquially as “twin graphs” [26]. Three pairs of such graphs are illustrated at the top in
Figure 2. Non-isomorphic graphs may have many common invariants, as is the case with the
twin graphs, but, as already mentioned, they should have at least one non-common invariant.
For instance, as Hosoya indicated, his twin nonahedra shown at the top of Figure 2, have
different connectivity index 3.9285 and 3.9317. In comparison the other two pairs of twin
graphs of Figure 2 have the same connectivity indices 'y, which may hint that there are
various degrees of structural “isospectrality” in the sense that some isospectral graphs have
many common invariants while other may have few. The connectivity index 'y [29], also
often referred to as Randi¢ index, (see, for example, the structure-property-activity software

CODESSA [30]) is defined as a bond additive quantity in which bond (m, n), where m, n are

1
T

Here we will investigate possibility to differentiate among twin graphs based on

the degrees of vertices forming bond, contribute

to the molecular connectivity index.

considering isospectrality of additional graph matrices. We will refer to isospectral graphs
having the same eigenvalues of the distance matrix for “historical” reasons as twin graphs,
regardless whether they have the same matching polynomial, Wiener number and Hosoya Z
topological index. Twin graphs (according to our “simplified” definition just stated above)
which are found to have the same eigenvalues with respect to any additional (not trivially
related) matrix will be referred to as strongly-isospectral graphs or S-isospectral graphs.
Observe the distinction between isospectral graphs and S-isospectral graphs, the former have
the same eigenvalues of adjacency matrix, the latter have same eigenvalues with respect to S-
number of matrices. Thus the “twin” graphs are 2-isospectral, the second matrix showing the
same spectra being the graph distance matrix. In view that two pairs of graphs having the
same S-isospectrality may involve different sets of matrices the letter S in S-isospectrality also
stand for a set of matrices S to which isospectrality relates. Hence, for 2-isospectral twin

graphs S = {4, D}, where again, A and D stand for the adjacency and the graph distance
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matrix. For example, for important applications of spectral properties of line distance

matrices, see [41].

2. Graph Matrices beyond Adjacency and Distance Matrix

There are numerous matrices associated with graph that one can consider as
supplementary tool to be used for discrimination of graphs. Recently Janezic et al. [32] listed
in their monograph on matrices of interest in chemistry several dozen-graph matrices. First
matrix suggested specifically for the use in differentiating among isospectral graphs was
matrix of Johnson and Newman [33], in which triples (x, 0, 1) in the adjacency matrix were
replaced by (4, 1, x); incidentally, this matrix was not mentioned in the monograph of Janezi¢
et al. on graph matrices.

As before, let 4 be the adjacency matrix of a graph G, let D be its distance matrix and
let V be the diagonal matrix having as entries on the diagonal the valences of corresponding
vertices of G (sometimes called the degree matrix of G). We decided to consider the
following matrices:

(1) Matrix AA”, that can be interpreted as the scalar product of columns of the
adjacency matrix 4, when viewed as vectors;

(ii) Natural distance matrix “DD, where

N
" DD:;_/ = Z(Ai,k - Ak,_,‘ )2 5
k=1

which can be interpreted as the Euclidean distance matrix in N-dimensional space
between columns of the adjacency matrix viewed as vectors [34];

(iii)  Laplace matrix L = V' — A4, which can be viewed as a proper discretization of the
familiar Laplacian differentian operator; It is known, that if G is a regular graph,
then the spectra of the Laplacian matrix is determined by the eigenvalues of the
adjacency matrix of G [41];

(iv)  Matrix AA" — v, which in other words, is the A4” matrix in which the diagonal
entries are set to zero [35];

v) Terminal matrix 7, which is defined as the sub-matrix of D spanned on rows and

columns that belong to terminal vertices of G [37, 38];

and Johnson-Newman polynomial py(x,4) [33].
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(E, F) Fischer twin

graphs.
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We initiate this project by considering the twin graphs of Figure 2 for which we will
construct eigenvalues of above listed matrices in order to see if these graphs will be
discriminated by the selected additional matrices. We have designated the three pairs of
graphs of Figure 2: (A, B), (C, D) and (E, F), as H, and H,, M, and M, and F, and F>,
respectively, where H, M and F stand for Hosoya et al. [26], McKay [35] and Fisher [39],
who have introduced those graphs. Graphs H; and H, are Schlegel projections of eight
vertices polyhedra which have the same eigenvalues for 4 and D matrix. Graphs M, and M,
are the smallest pair of trees (acyclic graphs) which have the same eigenvalues for 4 and D
matrices, while F and F, are isospectral graphs of Fisher, which Hosoya ef al. [26] found to

have also the same distance eigenvalues.

3.1 AA" matrix

Because the adjacency matrix A is symmetric, the matrix A4 is equivalent to 4% and
therefore its entries count the number of walks of length two between the corresponding
column and row vertices. The diagonal entries, which correspond to self-returning walks of
length two are the same as vertex valences. Because matrix A4 is positive semi-definite, all
eigenvalues of A% are non-negative and, when observing trees M, and M, all eigenvalues
appear at least twice. It is well-known that the eigenvalues of 4% could be obtained by
squaring the eigenvalues of adjacency matrix 4 and thus, two graphs with the same spectrum
will also have the same spectra of corresponding A4” matrices.

In Table 1 we have listed the eigenvalues of the 44" matrices for the six graphs

considered. The exponent indicates the multiplicities of eigenvalues of corresponding A4”.

Graph | Eigenvalues

H, 15.0555; 5.79312; 4.39026; 1.83785; 1.55357; 0.597787; 0.544113; 0.227777

H,

M, 492257 3.909257%; 3.000007%; 1.75659%; 1.15567% 1.000007%; 0.2559867; 0.00000

M, the same

Fy

o

F

Table 1: The spectra of 447 matrices.
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As is to be expected the eigenvalues of the 44" matrix do not discriminate the
isospectral mates. In the case of Hosoya twin graphs all eigenvalues of 44" are different,
while in the cases of Fisher’s and McKay’s graphs, some of eigenvalues are degenerate. It is
interesting that despite that the twin graphs have apparent symmetry all the eigenvalues are
different, while the McKay’s trees, which have no apparent symmetry show degenerate

eigenvalues.

3.2 Natural distance matrix "DD

One could expect that NDD matrix, also referred to as natural distance matrix, will
have better chance to discriminate between isospectral graphs in view that its matrix elements
in general are not integers, but real numbers. As one can see below, the calculation of

eigenvalues for the three pairs of isospectral graphs confirmed our expectations:

Graph | Eigenvalues

H,

H, 14.3999; -3.93886; -3.12959; -1.88845; -1.84319; -1.33998; -1.23001; -1.02986

M,
2 -1.17814; -1.06686; -0.914618; -0.680228; 0.000000

M,

% -1.16858; -1.05313; -0.852104; -0.732321; 0.000000

F

Table 2: The spectra of "DD matrices.

As we see, all twin graphs are discriminated by eigenvalues of the DD matrix.
Observe that in the case of Fisher’s graphs the spectra differ only in the eigenvalues of
multiplicity 2. All eigenvalues of Hosoya twin graphs are again different, and this is almost

true also for McKay’s acyclic twins, except for a single eigenvalue V2 of multiplicity 2.

”»

Thus for the three sets of twin graphs show identical “behavior,” they remain non-
differentiated by the 44" matrix and they are fully discriminated by the natural distance

matrix ¥DD.
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3.3 Negative Laplace matrix 4 — V'

It is of interest to continue to explore eigenvalues of different graph matrices to see if
isospectral graphs may show different “behavior” with respect to different matrices. We have
calculated the characteristic polynomials for the six graphs for the case of the Johnson and
Newman matrix (listed in the Appendix), which also as AA" could not differentiate among
isospectral mates, which justifies the statement of Hosoya and coworkers [26] that this “also
shows that our twin graphs are strongly similar to each other”. This being the case, it is of
interest to see if all twin graphs are equally “strongly similar,” or perhaps, some are more
“strongly similar” than others? We therefore decided to search for a graph matrix that would
differentiate some twin graphs, but not others, in analogy with a search for graph invariants
(topological indices) that are different for similar graphs.

We decided to examine the eigenvalues of the well-known Laplace matrix L = V' — 4,
which can be viewed as a proper discretization of the familiar Laplacian operator, see [41]. Of
course, the eigenvalues of negative Laplace matrix —L are essentially the eigenvalues of the

Laplace matrix L, multiplied by -1.

Graph | Eigenvalues

H,

H,

M,
-0.665458; -0.391223; -0.381966; -0.139194; -0.0651425; 0.00000

Table 3: The spectra of A-} matrices.

As we see, (negative) Laplace matrix A-J can discriminate between the two Hosoya
twins, but not between other two isospectral pairs. Thus, using the vocabulary of Hosoya et
al., one may say, based on the above results, McKay twins M; and M, are more “strongly
similar” than Hosoya twins /, and H>, or in other words that some isospectral graphs (M, and

M) are more isospectral!
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3.4 AA" - V matrix

We decided to test in this respect the recently introduced “next nearest neighbors”
matrix [40], the elements of which count the number of neighbors two bonds away. Formally,
this matrix can be obtained as 44" — ¥, where again V' is diagonal matrix, the elements of
which are given by the valence of vertices. One can view this matrix as the first “higher order
adjacency matrix,” 2A, matrix of order 2, while the matrix of the first order being the standard

adjacency matrix 4. Using this matrix on the six twin graphs gives for their eigenvalues:

Graph | Eigenvalues

H,

H,

M
-0.414214; -0.397982; 0.365175; 0.00000

M,

2

F, | 12.5279; 5.82805%; -4.63247; -4.541287, -2.23607%; -2.20997; -1.89541; -1.86615%; -0.210721%;

F

Table 4: The spectra of 44"~V matrices.

As we see, matrix 44" — V can discriminate between all pairs of twins. Thus, using the
vocabulary of Hosoya ef al., one may say, based on the above results, that the McKay twins

M, and M,, and the Fisher twins F| and F, are equally “strongly similar”!

3.5 Terminal matrix T

The terminal matrix is well-defined only for trees (acyclic graphs) and is the distance
matrix involving only distances between terminal vertices — the vertices of degree one. The
only pair of acyclic twin graphs reported by Hosoya et al. are McKay twin trees. The

following table shows that the terminal matrix 7" discriminates between McKay twin graphs.

Graph
M,
M,

Table 5: The spectra of terminal matrices of McKay twin trees.
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Appendix

Fischer

Pon(xA) = -512+4992 x-19296 x*+37256 x*-35928 x*+11184 x’+9476 x*-11754 x’+6792 x*-2820
x’+348 x"'+450 x"'-224 xP+12 xP+12 X2 xP4(2112425824 x-118980 x’+268848 x’-316824
X' +179856 x*-21531 x°-30492 X" +26130 x-16848 x°+6879 x'*-528 x"'-582 x?+180 x"-15 x'*) A+(-
576+33408 x-241776 xX’+700128 x°-994260 x'+721368 x’-258780 x"+45876 x’-864 x*-15300
X+13212 x"'-4140 x"'+444 x°) P+(9100-43536 x-78888 x*+712080 x’-1398825 x*+1211844 x’-
538440 x"+176436 x"-75795 x*+21400 x°+918 x'"’-1464 x''+165 x'?) 2’ +(13800-149376 x+383580
x*-80970 x’-762300 x*+910644 x’-409164 x°+120780 x’-61140 x"+23880 x°-3444 x'"+60 x'') 2*+(-
3312-107040 x+555399 x*-777876 x*+169764 x*+226548 x*-77784 x*-13332 x"-3834 x*+5124 x°-684
x") X +(-23308+53172 x+217068 x*-621684 x*+372204 x*-39396 x’+26628 x°-31356 x"+6720 x*-88
x°) AP+(-18219+117036 x-109896 x’-164388 x’+140040 x*-5028 x*+780 x°-6516 x’+1146 x*) X' +(-
156+54768 x-131040 x’+15810 xX’+14700 x*+12240 x’-4908 x°-24 x') )*+(6394-3156 x-44115
X2 11940 x*+1830 x*+2856 x°-774 x°) 2°+(2724-10992 x-5184 x*-120 x’+1524 x*+36 x°) )"+ (-177-
3540 x-234 x’-372 X’ +228 x*) 111 +(-376-372 x-156 x’-6 x*) A7 +(-78-27 x°) A +1"

Hosoya

pon(2) = 1-8 x-4 X’+74 X*-62 x*-108 X’ +157 x°-66 x"+9 x*+(-4-32 x+168 x*-72 x*-300 x*+208 x’-4
X912 x7) A+(-28+138 x-54 x’-156 x*-223 x*+218 x*-35 x°) X+(16+60 x-128 x*-256 x*+56 x*+28 x°)
234(34-88 x-65 x*-132 X*+41 %) N +(-8-40 x-52 X712 x*) X’ +(-13-15 x*) 2°+)¢

McKay

pon(2) = 20 x-546 X’ +4992 x*-22042 x*+52576 x*-66360 x"+29624 x’+30996 x*-56444 x’+39078
x""-14556 x''+2892 x"2-248 x"+2 x"+(20-796 x+7442 x*-24308 x’+3187 x'+167768 x*-438452
X5+503640 x"-266136 x°+13652 x*+57946 x'°-29724 x''+5828 x'*-296 x"*-26 x') A+(-250+1948
x+11182 x’-137104 x*+437200 x*-497624 x’-150808 x°+870864 x’-816618 x*+320576 x°-30102 x'’-
14520 x"'+3258 x"?+152 x"-58 x') JP+(-502+15800 x-93408 x’+90824 x’+593786 x*-1752912
X' +1643460 x°-240624 x'-559374 x*+372080 x°-79826 x''+872 x''+814 x"*+200 x"-30 x)
1P4(2352-156 x-184154 x*+818488 x’-897130 x'-916296 x’+2319324 x°-1445400 x'+194982
X+113580 x°-34044 x""-812 x"'+706 x") 1 +(5537-74380 x+132410 x*+716780 x’-2311383
X 1561416 x’+590604 x°-994200 x'+322770 x*-12020 x°-4780 x'’-1036 x''+214 x°) X’ +(-2474-
77372 x+555254 x*-622992 x’-1284084 x*+2064384 x°-702492 x- 143424 x"+93852 x*-2320 x*-2092
x") 204 (-14628+62528 x+348888 x-1341696 x’+438576 x*+754992 x’-485628 x°+52800 x’+7956
X5 +1680 x°-500 x") X +(-8276+149280 x-213240 x*-739596 x*+729162 x*-30384 x°-92766 x*+8784
X' +2556 x°) 25+(9583+64832 x-386568 x*-57432 X’ +271725 x*-67464 x-4230 x°-1168 x'+552 x°)
2PH(13120-41100 x-200212 X°+89160 x’+32306 x*-8496 x’-1466 x°) 2''+(3124-54920 x-41930
X*+32000 x*-192 x*+360 x°-322 x°) A'+(-3434-24120 x-766 x*+3180 x’+388 x*) 112+(-2895-4968
X662 x-40 X*+101 x*) )3+(-918-404 x-38 x°) 1M *+(-120-16 x°) 27 +2"7





