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Abstract 

 Let A be the adjacency matrix of a graph G, let D be its distance matrix and let V be 
the diagonal matrix with elements that indicate the valence of corresponding vertices. We 
explore possibility of discriminating the degree of similarity between isospectral graphs 
(having the same eigenvalues of the adjacency matrix A) by examining their spectral 
properties with respect to additional graph matrices: A – V matrix, which is essentially the 
Laplace matrix multiplied by -1; AAT – V matrix, which is obtained from AAT where elements 
on the main diagonal are replaced by zeros; natural distance matrix NDD, constructed from 
distances between columns of the adjacency matrix viewed as vectors in N-dimensional 
space; terminal matrix, which is really the distance matrix between the vertices of degree 1, 
also called terminal vertices. We found that matrices of form Am – V, the elements of which 
count non-returning walk of length m in a graph, discriminate some isospectral mates, but not 
others. We refer to pair of graphs which agree in eigenvalues of several matrices as strongly-
isospectral, or S-isospectral graphs, as opposed to those less strongly similar. Hence, in other 
words, some graphs are more S-isospectral than other. 
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1. Introduction 
The eigenvalues of the adjacency matrix, the graph spectrum, are one of most 

elementary graph invariants. Already in 1943 U. Sinogowitz, who perished in WW II, has 

found that there are trees that have all eigenvalues equal, hence graph spectra are not unique 

to a graph [1]. Graphs that have all eigenvalues equal are often referred in chemical literature 

as isospectral and in mathematical literature as co-spectral. There was a considerable interest 

in isospectral (or co-spectral) graphs in mathematical [2] and chemical circles [3]. In 

chemistry the eigenvalues of the adjacency matrix represent molecular orbital energies of π -

electrons of conjugated polycyclic hydrocarbons [4]. According to one of the early theoretical 

model of π-electron structure of mid 1930s of E. Hückel, known today as the Hückel 

Molecular Orbital Theory (HMO), monocyclic conjugated hydrocarbons having 4n+2 π-

electrons are aromatic, while those having 4n π-electrons are anti-aromatic. From 

mathematical point of view the energies of π -electron molecular orbitals are equivalent to the 

graph spectral theory.  

The Hückel 4n+2 Rule on aromaticity has been considered one of the early triumphs 

of Quantum Chemistry even though it has not been widely recognized that it is a consequence 

of molecular connectivity (Graph Theory) and not Quantum Chemistry. Many attempts have 

been made over the past 20-30 years to generalize the Hückel 4n+2 Rule on aromaticity to 

polycyclic conjugated hydrocarbons but all these attempts failed. Finally in 1976 the notion of 

conjugated circuits was introduced [5] and it was shown that polycyclic conjugated 

hydrocarbons having only 4n+2 conjugated circuits are aromatic and those having only 4n 

conjugated circuits are anti-aromatic [6, 7]. It is interesting to mention that while HMO model 

dominated theoretical chemistry, which was for at least some 20 years, nothing was known 

about isospectral graphs (and molecules). It was only in 1973, when HMO was already fading 

out as a viable chemical model of π-electrons in conjugated systems, that Živković [8] by 

browsing pages of widely available “Dictionary of π-Electron Calculations” [9], found a pair 

of simple benzene derivatives: 1,4-divynylbenzene and 2-phenylbutadiene (molecular 

skeleton of which are illustrated in Figure 1) which are isospectral. Typically molecular 

orbitals and π-orbital energies of each molecule occupied a single page, and the two 

isospectral substituted benzenoid compounds having the same HMO eigenvalues were 

separated by few pages! 
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Finally we should add that Hückel MO Theory is not dead [10, 11] and even less dead 

is the “Conjugated Circuits Theory,” which as Klein and collaborators have shown [12-20], 

can be cast in rigorous Quantum Theory formalism. 

Although isospectrality is today of no much interest in chemistry, in view that HMO is 

no longer adequate theoretical model for spectra of conjugated polycyclic hydrocarbons, it is 

nevertheless of interest to understand structural reasons why isospectrality occurs for some 

pairs of compounds and not for others. It turned out that the reason that structurally closely 

related 1,4-divynylbenzene and 2-phenylbutadiene (illustrated in Figure 1) are isospectral 

because they posses special sites, two critical vertices, which when erased produce subgraphs 

having the same characteristic polynomial. Therefore, when the two sites are substituted by 

the same molecular fragment, they will always produce pairs of isospectral graphs [21-23]. 

However, there are graphs which are isospectral and which do not have such special vertices, 

which could be classified as “sporadic.” Such pairs of graphs are isospectral accidentally, or 

for yet unknown structural reasons. On the other hand, one can refer to isospectrality of 1,4-

divynylbenzene and 2-phenylbutadiene as “structural” or “regular”, because the 

isospectrality of such graph, as mentioned above, can be traced to definite structural elements.  

 

 
Figure 1: Isospectral pair of graphs found by Živković. 

 

In this contribution, we are interested in characterization of the degree of hidden 

structural similarity or “intensity” of isospectral graphs. Clearly any pair of non-isospectral 

graphs can already be differentiated by their spectra, while though graph spectra cannot 

differentiate between isospectral graphs, we believe that in general isospectral graphs can be 

differentiated by having at least one invariant different – the problem of interest for graph 

isomorphism testing [24, 25] is that nobody knows in advance which invariants are this to be. 

Hence, in such cases, one needs to continue with examination of additional graph invariants, 

an approach which need not to be efficient. For some graphs such discriminatory properties 
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may be found in few steps but in some cases a pair of graphs may resist differentiation and 

require considerable effort in finding a set of invariants in which they differ.  

Hosoya and coworkers seems to be the first to search for graphs that are isospectral 

(having the same set of eigenvalues of the adjacency matrix A) and have the same set of 

eigenvalues of graph distance matrix D [26]. If in addition such graphs have also identical Z-

counting polynomial, matching polynomial, the Wiener number [27] and the Hosoya 

topological index Z [28], Hosoya, Nagashima and Hyugaji referred to such graphs 

colloquially as “twin graphs” [26]. Three pairs of such graphs are illustrated at the top in 

Figure 2. Non-isomorphic graphs may have many common invariants, as is the case with the 

twin graphs, but, as already mentioned, they should have at least one non-common invariant. 

For instance, as Hosoya indicated, his twin nonahedra shown at the top of Figure 2, have 

different connectivity index 3.9285 and 3.9317. In comparison the other two pairs of twin 

graphs of Figure 2 have the same connectivity indices 1χ, which may hint that there are 

various degrees of structural “isospectrality” in the sense that some isospectral graphs have 

many common invariants while other may have few. The connectivity index 1χ [29], also 

often referred to as Randić index, (see, for example, the structure-property-activity software 

CODESSA [30]) is defined as a bond additive quantity in which bond (m, n), where m, n are 

the degrees of vertices forming bond, contribute 1
m n

 to the molecular connectivity index. 

Here we will investigate possibility to differentiate among twin graphs based on 

considering isospectrality of additional graph matrices. We will refer to isospectral graphs 

having the same eigenvalues of the distance matrix for “historical” reasons as twin graphs, 

regardless whether they have the same matching polynomial, Wiener number and Hosoya Z 

topological index. Twin graphs (according to our “simplified” definition just stated above) 

which are found to have the same eigenvalues with respect to any additional (not trivially 

related) matrix will be referred to as strongly-isospectral graphs or S-isospectral graphs. 

Observe the distinction between isospectral graphs and S-isospectral graphs, the former have 

the same eigenvalues of adjacency matrix, the latter have same eigenvalues with respect to S-

number of matrices. Thus the “twin” graphs are 2-isospectral, the second matrix showing the 

same spectra being the graph distance matrix. In view that two pairs of graphs having the 

same S-isospectrality may involve different sets of matrices the letter S in S-isospectrality also 

stand for a set of matrices S to which isospectrality relates. Hence, for 2-isospectral twin 

graphs S = {A, D}, where again, A and D stand for the adjacency and the graph distance 
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matrix. For example, for important applications of spectral properties of line distance 

matrices, see [41]. 

 

2. Graph Matrices beyond Adjacency and Distance Matrix 

There are numerous matrices associated with graph that one can consider as 

supplementary tool to be used for discrimination of graphs. Recently Janežič et al. [32] listed 

in their monograph on matrices of interest in chemistry several dozen-graph matrices. First 

matrix suggested specifically for the use in differentiating among isospectral graphs was 

matrix of Johnson and Newman [33], in which triples (x, 0, 1) in the adjacency matrix were 

replaced by (λ, 1, x); incidentally, this matrix was not mentioned in the monograph of Janežič 

et al. on graph matrices. 

As before, let A be the adjacency matrix of a graph G, let D be its distance matrix and 

let V be the diagonal matrix having as entries on the diagonal the valences of corresponding 

vertices of G (sometimes called the degree matrix of G). We decided to consider the 

following matrices: 

(i) Matrix AAT, that can be interpreted as the scalar product of columns of the 

adjacency matrix A, when viewed as vectors; 

(ii) Natural distance matrix NDD, where 

N DDi, j � (Ai,k � Ak , j )
2

k�1

N

� ,
 

which can be interpreted as the Euclidean distance matrix in N-dimensional space 

between columns of the adjacency matrix viewed as vectors [34];  

(iii) Laplace matrix L = V – A, which can be viewed as a proper discretization of the 

familiar Laplacian differentian operator; It is known, that if G is a regular graph, 

then the spectra of the Laplacian matrix is determined by the eigenvalues of the 

adjacency matrix of G [41]; 

(iv) Matrix AAT – V, which in other words, is the AAT matrix in which the diagonal 

entries are set to zero [35]; 

(v) Terminal matrix T, which is defined as the sub-matrix of D spanned on rows and 

columns that belong to terminal vertices of G [37, 38]; 

 

and Johnson-Newman polynomial pJN(x,λ) [33]. 
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Figure 2: (A, B) Hosoya twin graphs. (C, D) McKay twin graphs. (E, F) Fischer twin 

graphs. 
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We initiate this project by considering the twin graphs of Figure 2 for which we will 

construct eigenvalues of above listed matrices in order to see if these graphs will be 

discriminated by the selected additional matrices. We have designated the three pairs of 

graphs of Figure 2: (A, B), (C, D) and (E, F), as H1 and H2, M1 and M2 and F1 and F2, 

respectively, where H, M and F stand for Hosoya et al. [26], McKay [35] and Fisher [39], 

who have introduced those graphs. Graphs H1 and H2 are Schlegel projections of eight 

vertices polyhedra which have the same eigenvalues for A and D matrix. Graphs M1 and M2 

are the smallest pair of trees (acyclic graphs) which have the same eigenvalues for A and D 

matrices, while F1 and F2 are isospectral graphs of Fisher, which Hosoya et al. [26] found to 

have also the same distance eigenvalues.  

 

3.1 AAT matrix 

 Because the adjacency matrix A is symmetric, the matrix AAT is equivalent to A2, and 

therefore its entries count the number of walks of length two between the corresponding 

column and row vertices. The diagonal entries, which correspond to self-returning walks of 

length two are the same as vertex valences. Because matrix A is positive semi-definite, all 

eigenvalues of A2 are non-negative and, when observing trees M1 and M2 all eigenvalues 

appear at least twice. It is well-known that the eigenvalues of A2 could be obtained by 

squaring the eigenvalues of adjacency matrix A and thus, two graphs with the same spectrum 

will also have the same spectra of corresponding AAT matrices. 

In Table 1 we have listed the eigenvalues of the AAT matrices for the six graphs 

considered. The exponent indicates the multiplicities of eigenvalues of corresponding AAT. 

 
Graph Eigenvalues 

H1 15.0555; 5.79312; 4.39026; 1.83785; 1.55357; 0.597787; 0.544113; 0.227777 

H2 the same 

M1 4.92252; 3.909252; 3.000002; 1.756592; 1.155672; 1.000002; 0.2559862; 0.000003 

M2 the same 

F1 17.0147; 10.01252; 5.82843; 2.618032; 1.935942; 0.579969; 0.405351; 0.3819662; 0.171573; 

0.05159012 

F2 the same 

 

Table 1: The spectra of AAT matrices. 
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 As is to be expected the eigenvalues of the AAT matrix do not discriminate the 

isospectral mates. In the case of Hosoya twin graphs all eigenvalues of AAT are different, 

while in the cases of Fisher’s and McKay’s graphs, some of eigenvalues are degenerate. It is 

interesting that despite that the twin graphs have apparent symmetry all the eigenvalues are 

different, while the McKay’s trees, which have no apparent symmetry show degenerate 

eigenvalues. 

 

3.2 Natural distance matrix NDD 

 One could expect that NDD matrix, also referred to as natural distance matrix, will 

have better chance to discriminate between isospectral graphs in view that its matrix elements 

in general are not integers, but real numbers. As one can see below, the calculation of 

eigenvalues for the three pairs of isospectral graphs confirmed our expectations: 

 

Graph Eigenvalues 

H1 14.3976; -4.01619; -3.07864; -1.83543; -1.78651; -1.31702; -1.2567; -1.10714 

H2 14.3999; -3.93886; -3.12959; -1.88845; -1.84319; -1.33998; -1.23001; -1.02986 

M1 29.6088; -3.67742; -3.56595; -3.04046; -2.8198; -2.59151; -2.13607; -1.92521; -1.63028; -1.55383; -

1.414212; -1.17814; -1.06686; -0.914618; -0.680228; 0.000000 

M2 29.6089; -3.80707; -3.3542; -3.01755; -2.90494; -2.61763; -2.11516; -1.96908; -1.61875; -1.56995; -

1.414212; -1.16858; -1.05313; -0.852104; -0.732321; 0.000000 

F1 32.5438; -5.338852; -3.68033; -2.55184; -2.374162; -2.149622; -1.24784; -1.208152; -0.990487 2; -

0.941247;  

F2 32.5438; -5.3410652; -3.68033; -2.55184; -2.366542; -2.160642; -1.24784; -1.118222; -1.07478 2; -

0.941247; 

 

Table 2: The spectra of NDD matrices. 

 

As we see, all twin graphs are discriminated by eigenvalues of the NDD matrix. 

Observe that in the case of Fisher’s graphs the spectra differ only in the eigenvalues of 

multiplicity 2. All eigenvalues of Hosoya twin graphs are again different, and this is almost 

true also for McKay’s acyclic twins, except for a single eigenvalue 2  of multiplicity 2. 

Thus for the three sets of twin graphs show identical ”behavior,” they remain non-

differentiated by the AAT matrix and they are fully discriminated by the natural distance 

matrix NDD. 
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3.3 Negative Laplace matrix A – V 

It is of interest to continue to explore eigenvalues of different graph matrices to see if 

isospectral graphs may show different “behavior” with respect to different matrices. We have 

calculated the characteristic polynomials for the six graphs for the case of the Johnson and 

Newman matrix (listed in the Appendix), which also as AAT could not differentiate among 

isospectral mates, which justifies the statement of Hosoya and coworkers [26] that this “also 

shows that our twin graphs are strongly similar to each other”. This being the case, it is of 

interest to see if all twin graphs are equally “strongly similar,” or perhaps, some are more 

“strongly similar” than others? We therefore decided to search for a graph matrix that would 

differentiate some twin graphs, but not others, in analogy with a search for graph invariants 

(topological indices) that are different for similar graphs.  

We decided to examine the eigenvalues of the well-known Laplace matrix L = V – A, 

which can be viewed as a proper discretization of the familiar Laplacian operator, see [41]. Of 

course, the eigenvalues of negative Laplace matrix –L are essentially the eigenvalues of the 

Laplace matrix L, multiplied by -1. 

 
Graph Eigenvalues 

H1 -6.68554; -6.00000; -5.41421; -4.3349; -2.72867; -2.58579; -2.25088; 0.00000 

H2 -6.90321; -5.84776; -4.80606; -4.76537; -3.23463; -2.29072; -2.15224; 0.00000 

M1 -4.80746; -4.42173; -4.11491; -3.39559; -3.07466; -2.61803; -2.44093; -1.7459; -1.5222; -1.2156; -

1.00000; -0.665458; -0.391223; -0.381966; -0.139194; -0.0651425; 0.00000 

M2 the same 

F1 -8.128732; -5.302782; -5.00000; -4.466612; -3.000002; -1.697222; -1.404652; -1.00000; 0.00000 

F2 the same 

 

Table 3: The spectra of A-V matrices. 

As we see, (negative) Laplace matrix A-V can discriminate between the two Hosoya 

twins, but not between other two isospectral pairs. Thus, using the vocabulary of Hosoya et 

al., one may say, based on the above results, McKay twins M1 and M2 are more “strongly 

similar” than Hosoya twins H1 and H2, or in other words that some isospectral graphs (M1 and 

M2) are more isospectral!  
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3.4 AAT – V matrix 

We decided to test in this respect the recently introduced “next nearest neighbors” 

matrix [40], the elements of which count the number of neighbors two bonds away. Formally, 

this matrix can be obtained as AAT – V, where again V is diagonal matrix, the elements of 

which are given by the valence of vertices. One can view this matrix as the first “higher order 

adjacency matrix,” 2A, matrix of order 2, while the matrix of the first order being the standard 

adjacency matrix A. Using this matrix on the six twin graphs gives for their eigenvalues:  

 

Graph Eigenvalues 

H1 11.1078; -3.48119; -3.44703; -3.00000; -2.2524; -1.91321; -1.68889; 0.1070086 

H2 11.1151; -4.49764; -2.72026; -2.49743; -2.04473; -1.81682; 1.42706; 1.03472 

M1 2.8027; 2.41421; -2.00000; 2.00000; -1.93916; 1.67813; -1.61803; -1.50886; -1.000003; 1.00000; 

0.618034; -0.414214; -0.397982; 0.365175; 0.00000 

M2 2.77241; 2.47283; 2.04672; -2.02092; -1.93543; -1.61803; 1.4626; -1.44645; 1.20089; -1.000003; -

0.69676; 0.618034; 0.144105; 0.000002 

F1 12.5279; 5.828052; -4.63247; -4.541282; -2.236072; -2.20992; -1.89541; -1.866152; -0.2107212;  

F2 12.5279; 5.831142; -4.63247; -4.496182; -2.618032; -2.236072; -1.89541; -1.334972; -0.3819662; 

 

Table 4: The spectra of AAT-V matrices. 

As we see, matrix AAT – V can discriminate between all pairs of twins. Thus, using the 

vocabulary of Hosoya et al., one may say, based on the above results, that the McKay twins 

M1 and M2, and the Fisher twins F1 and F2 are equally “strongly similar”!  

 

3.5 Terminal matrix T 

The terminal matrix is well-defined only for trees (acyclic graphs) and is the distance 

matrix involving only distances between terminal vertices – the vertices of degree one. The 

only pair of acyclic twin graphs reported by Hosoya et al. are McKay twin trees. The 

following table shows that the terminal matrix T discriminates between McKay twin graphs. 

 

Graph Eigenvalues 

M1 33.4964; -15.984; -7.78525; -4.00000; -3.72721; -2.00000 

M2 33.3056, -15.6424, -7.83602, -4.00000, -3.82714, -2.00000 

 

Table 5: The spectra of terminal matrices of McKay twin trees. 
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Appendix 
 
Fischer 

pJN(x,λ) = -512+4992 x-19296 x2+37256 x3-35928 x4+11184 x5+9476 x6-11754 x7+6792 x8-2820 
x9+348 x10+450 x11-224 x12+12 x13+12 x14-2 x15+(-2112+25824 x-118980 x2+268848 x3-316824 
x4+179856 x5-21531 x6-30492 x7+26130 x8-16848 x9+6879 x10-528 x11-582 x12+180 x13-15 x14) λ+(-
576+33408 x-241776 x2+700128 x3-994260 x4+721368 x5-258780 x6+45876 x7-864 x8-15300 
x9+13212 x10-4140 x11+444 x12) λ2+(9100-43536 x-78888 x2+712080 x3-1398825 x4+1211844 x5-
538440 x6+176436 x7-75795 x8+21400 x9+918 x10-1464 x11+165 x12) λ3+(13800-149376 x+383580 
x2-80970 x3-762300 x4+910644 x5-409164 x6+120780 x7-61140 x8+23880 x9-3444 x10+60 x11) λ4+(-
3312-107040 x+555399 x2-777876 x3+169764 x4+226548 x5-77784 x6-13332 x7-3834 x8+5124 x9-684 
x10) λ5+(-23308+53172 x+217068 x2-621684 x3+372204 x4-39396 x5+26628 x6-31356 x7+6720 x8-88 
x9) λ6+(-18219+117036 x-109896 x2-164388 x3+140040 x4-5028 x5+780 x6-6516 x7+1146 x8) λ7+(-
156+54768 x-131040 x2+15810 x3+14700 x4+12240 x5-4908 x6-24 x7) λ8+(6394-3156 x-44115 
x2+11940 x3+1830 x4+2856 x5-774 x6) λ9+(2724-10992 x-5184 x2-120 x3+1524 x4+36 x5) λ10+(-177-
3540 x-234 x2-372 x3+228 x4) λ11+(-376-372 x-156 x2-6 x3) λ12+(-78-27 x2) λ13+λ15 
 

Hosoya 

pJN(x,λ) = 1-8 x-4 x2+74 x3-62 x4-108 x5+157 x6-66 x7+9 x8+(-4-32 x+168 x2-72 x3-300 x4+208 x5-4 
x6-12 x7) λ+(-28+138 x-54 x2-156 x3-223 x4+218 x5-35 x6) λ2+(16+60 x-128 x2-256 x3+56 x4+28 x5) 
λ3+(34-88 x-65 x2-132 x3+41 x4) λ4+(-8-40 x-52 x2-12 x3) λ5+(-13-15 x2) λ6+λ8 
 

McKay 

pJN(x,λ) = 20 x-546 x2+4992 x3-22042 x4+52576 x5-66360 x6+29624 x7+30996 x8-56444 x9+39078 
x10-14556 x11+2892 x12-248 x13+2 x14+(20-796 x+7442 x2-24308 x3+3187 x4+167768 x5-438452 
x6+503640 x7-266136 x8+13652 x9+57946 x10-29724 x11+5828 x12-296 x13-26 x14) λ+(-250+1948 
x+11182 x2-137104 x3+437200 x4-497624 x5-150808 x6+870864 x7-816618 x8+320576 x9-30102 x10-
14520 x11+3258 x12+152 x13-58 x14) λ2+(-502+15800 x-93408 x2+90824 x3+593786 x4-1752912 
x5+1643460 x6-240624 x7-559374 x8+372080 x9-79826 x10+872 x11+814 x12+200 x13-30 x14) 
λ3+(2352-156 x-184154 x2+818488 x3-897130 x4-916296 x5+2319324 x6-1445400 x7+194982 
x8+113580 x9-34044 x10-812 x11+706 x12) λ4+(5537-74380 x+132410 x2+716780 x3-2311383 
x4+1561416 x5+590604 x6-994200 x7+322770 x8-12020 x9-4780 x10-1036 x11+214 x12) λ5+(-2474-
77372 x+555254 x2-622992 x3-1284084 x4+2064384 x5-702492 x6-143424 x7+93852 x8-2320 x9-2092 
x10) λ6+(-14628+62528 x+348888 x2-1341696 x3+438576 x4+754992 x5-485628 x6+52800 x7+7956 
x8+1680 x9-500 x10) λ7+(-8276+149280 x-213240 x2-739596 x3+729162 x4-30384 x5-92766 x6+8784 
x7+2556 x8) λ8+(9583+64832 x-386568 x2-57432 x3+271725 x4-67464 x5-4230 x6-1168 x7+552 x8) 
λ9+(13120-41100 x-200212 x2+89160 x3+32306 x4-8496 x5-1466 x6) λ10+(3124-54920 x-41930 
x2+32000 x3-192 x4+360 x5-322 x6) λ11+(-3434-24120 x-766 x2+3180 x3+388 x4) λ12+(-2895-4968 
x+662 x2-40 x3+101 x4) λ13+(-918-404 x-38 x2) λ14+(-120-16 x2) λ15+λ17 
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