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Abstract: The greatest eigenvalue of a line distance matrix D, denoted by λ(D), is called

the spectral radius of D. In this paper, we obtain some sharp upper and lower bounds

for λ(D).

1 Introduction

Let t= (t1, t2, ..., tn), t1 < t2 < ... < tn, ti ∈ R, be a given position vector (i.e., a list of

points on the real line). A line distance matrix D ∈ R
n×n, associated with t is defined as

D = (dij), where dij = |ti − tj|. The symbol λ(D), called the spectral radius of D, is the

largest eigenvalue of D. Throughout this paper, D is always defined as the line distance

matrix of t.

One of the main areas of Bioinformatics is the study of biological sequences. Recently,

alternative routes for quantitative measure of the degree of similarity of DNA sequences

were considered, which have also been extended to protein sequences. The novel method-

ology starts with a graphical representation of DNA, such as proposed by Nandy [1], which

are subsequently numerically characterized by associating with the selected geometrical

object that represents DNA, a matrix [2]. Another approach is to associate a matrix to a
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given sequence and study its properties instead [3]. Such a representation, based on the

sequential labels of each of the four nucleotides A, T , G, and C separately for construc-

tion of matrix elements is given in [4]. A line distance matrix represents distance between

points on the real line, therefore it gives a natural way of studying biological sequences.

For more information on the application of line distance matrix to Biology and the recent

results one can refer to [3,9] and the references cited therein.

Recently, it has been shown that a line distance matrix of size n > 1 has one positive

and n− 1 negative eigenvalues [3]. In this paper, some sharp upper and lower bounds for

the spectral radius of a line distance matrix are obtained.

2 Main results

For the spectral radius of a non-negative matrix, it is well known that

Lemma 2.1 [5] Let M = (mij) be an n× n irreducible non-negative matrix with spectral

radius λ(M), and let Ri(M) be the i-th row sum of M , i.e., Ri(M) =
∑n

j=1 mij. Then,

min{Ri(M) : 1 ≤ i ≤ n} ≤ λ(M) ≤ max{Ri(M) : 1 ≤ i ≤ n}. (1)

Moreover, if the row sums of M are not all equal, then the both inequalities in (1) are

strict.

In the following, let Di denote the i-th row sum of D, i.e., Di =
∑n

j=1 dij. Recall that D

is the line distance matrix of t, where t= (t1, t2, ..., tn) and t1 < t2 < ... < tn, it follows

that

Di =

{
ti+1 + · · ·+ tn − (n− 2i+ 1)ti − t1 − · · · − ti−1 if 1 ≤ i ≤ n− 1
(n− 1)tn − t1 − · · · − tn−1 if i = n

(2)

Theorem 2.1 Let t= (t1, t2, ..., tn), t1 < t2 < ... < tn, D be the line distance matrix of t,

and Di as denoted in equality (2). If s is a real number, then

min{
n∑

j=1

dij(
Dj

Di

)s : 1 ≤ i ≤ n} ≤ λ(D) ≤ max{
n∑

j=1

dij(
Dj

Di

)s : 1 ≤ i ≤ n}. (3)

Equality on both sides of (3) is attained if and only if
∑n

j=1 d1j(
Dj

D1
)s =

∑n
j=1 d2j(

Dj

D2
)s =

· · · =∑n
j=1 dnj(

Dj

Dn
)s.
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Proof. Let B = diag(Ds
1, D

s
2, ..., D

s
n), i.e., the diagonal matrix withDs

i as its i-th diagonal

element and zero elsewhere. Denote by B−1DB = C = (cij), then cij = dij(
Dj

Di
)s. Since

t1 < t2 < ... < tn, D is a non-negative irreducible matrix. This implies that C is also a

non-negative irreducible matrix. Note that λ(D) = λ(B−1DB), then Lemma 2.1 implies

the inequalities (3), and the corresponding statements for equalities hold.

Corollary 2.1 Let t= (t1, t2, ..., tn), t1 < t2 < ... < tn, D be the line distance matrix of

t, and Di as denoted in equality (2). If k is an integer, then

min{
n∑

j=1

dij(
Dj

Di

)k : 1 ≤ i ≤ n} ≤ λ(D) ≤ max{
n∑

j=1

dij(
Dj

Di

)k : 1 ≤ i ≤ n}.

Equality on both sides is attained if and only if
∑n

j=1 d1j(
Dj

D1
)k =

∑n
j=1 d2j(

Dj

D2
)k = · · · =∑n

j=1 dnj(
Dj

Dn
)k.

Theorem 2.2 Let t= (t1, t2, ..., tn), t1 < t2 < ... < tn. If D is the line distance matrix of

t , then

2

n

∑
1≤i<j≤n

(tj − ti) ≤ λ(D) ≤ max{(n− 1)tn −
n−1∑
i=1

ti,

n∑
i=2

ti − (n− 1)t1}. (4)

Equality on both sides of (4) is attained if and only if n = 2.

Proof. Recall that the i-th row sum of D is equal to Di, where Di is denoted in equality

(2). Clearly,

Di −Di+1 =

{
(n− 2i)(ti+1 − ti) ≥ 0 when 1 ≤ i ≤ �n

2
�

(n− 2i)(ti+1 − ti) ≤ 0 when �n
2
� ≤ i ≤ n− 1

(5)

By Lemma 2.1 and equality (5) it follows that λ(D) ≤ max{Di : 1 ≤ i ≤ n} =

max{D1, Dn}. Thus, the upper bound of (4) follows. If n = 2, then λ(D) = t2 − t1,

thus the equality holds. On the converse, if n ≥ 3, then D1 > D2 by equality (5). By

Lemma 2.1, the right inequality is strict. Thus, the right equality only holds for n = 2.

Let x = 1√
n
(1, ..., 1) be a unit n-vector. Apply Raleigh principle to the line distance

matrix D of t, we have

λ(D) ≥ xDxT

xxT
=

1

n

n∑
i=1

Di =
2

n

∑
1≤i<j≤n

(tj − ti).
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If the left equality holds, then xT is the eigenvector corresponding to λ(D), and hence

DxT = λ(D)xT . This implies that Di = λ(D) for all i. Thus, n = 2 by the above

discussion. Conversely, if n = 2, then λ(D) = t2 − t1, thus the left equality also holds.

Remark 1. Take s = 0 in Theorem 2.1 (and Corollary 2.1), we have

λ(D) ≤ max{
n∑

j=1

dij : 1 ≤ i ≤ n} = max{Di : 1 ≤ i ≤ n} = max{D1, Dn}.

Thus, the upper bound of Theorem 2.2 is just a special case of Theorem 2.1 (and Corollary

2.1).

Theorem 2.3 Let t= (t1, t2, ..., tn), t1 < t2 < ... < tn, and D be the line distance matrix

of t. Let Di be denoted as equality (2), and Ti(s) =
∑n

j=1 dijD
s
j , where s is a real number.

Then,

λ(D) ≥
√

T 2
1 (s) + · · ·+ T 2

n(s)

D2s
1 + · · ·+D2s

n

.

Equality holds if and only if Ti(s)
Ds

i
= k for 1 ≤ i ≤ n.

Proof. This proof follows ideas of Indulal, used for obtaining the lower bound for the spec-

tral radius of the distance matrix pertaining to a graph [6]. Let x = 1√
D2s

1 +···+D2s
n

(Ds
1, ..., D

s
n),

then x is a unit positive n-vector. By Raleigh principle, we have

λ(D) =
√
λ(D2) ≥

√
xD2xT

xxT
=
√
xD2xT .

On the other hand, since

xD2xT = xDDxT = (DxT )TDxT =
T 2
1 (s) + · · ·+ T 2

n(s)

D2s
1 + · · ·+D2s

n

,

the inequality holds. Now assume the equality holds, then xT is the eigenvector corre-

sponding to λ(D), thus Ti(s)
Ds

i
= k = λ(D). Conversely, if Ti(s)

Ds
i

= k, then DxT = kxT . By

the Perron-Frobenius Theorem, k is simple and the greatest eigenvalue of D.

Set s = 0 in Theorem 2.3 and note that Ti(0) = Di, we have

Corollary 2.2 Let t= (t1, t2, ..., tn), t1 < t2 < ... < tn, and D be the line distance matrix

of t. Let Di be denoted as in equality (2), then

λ(D) ≥
√

D2
1 + · · ·+D2

n

n
.

Equality holds if and only if n = 2.
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Set s = 1 in Theorem 2.3, it follows that

Corollary 2.3 Let t= (t1, t2, ..., tn), t1 < t2 < ... < tn, and D be the line distance matrix

of t. Let Di be denoted as equality (2), and Ti =
∑n

j=1 dijDj. Then,

λ(D) ≥
√

T 2
1 + · · ·+ T 2

n

D2
1 + · · ·+D2

n

.

Equality holds if and only if Ti

Di
= k for 1 ≤ i ≤ n.

Lemma 2.2 T1 + · · ·+ Tn = D2
1 + · · ·+D2

n.

Proof. Recall that Di =
∑n

j=1 dij and Ti =
∑n

j=1 dijDj, then

T1 + · · ·+ Tn = [1, 1, ..., 1](D[D1, D2, ..., Dn]
T )

= ([1, 1, ..., 1]D)[D1, D2, ..., Dn]
T

= [D1, D2, ..., Dn][D1, D2, ..., Dn]
T

= D2
1 + · · ·+D2

n.

Thus, the equality holds.

Theorem 2.4 The lower bound for λ(D) is improving from Theorem 2.2 to Corollary

2.2, and also improving from Corollaries 2.2 to 2.3.

Proof. This proof is fully analogous to what Indulal has done in the case of the spectral

radius of the distance matrix pertaining to a graph [6]. By Lemma 2.2 and Cauchy-

Schwartz inequality, it follows that√
T 2
1 + · · ·+ T 2

n

D2
1 + · · ·+D2

n

≥
√

(T1 + · · ·+ Tn)2

n(D2
1 + · · ·+D2

n)

=

√
(D2

1 + · · ·+D2
n)

2

n(D2
1 + · · ·+D2

n)

=

√
D2

1 + · · ·+D2
n

n

≥
√

(D1 +D2 + · · ·+Dn)2

n2

=
1

n

n∑
i=1

Di =
2

n

∑
1≤i<j≤n

(tj − ti).
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This completes the proof.

Remark 2. By Theorem 2.2, it follows that

λ(D) ≥ 2

n

∑
1≤i<j≤n

(tj − ti) =
1

n

n∑
i=1

Di ≥ min{Di : 1 ≤ i ≤ n} = min{
n∑

j=1

dij : 1 ≤ i ≤ n}.

Thus, the lower bound of Theorem 2.2 (and Corollaries 2.2–2.3 by Theorem 2.4) is better

than lower bound of Theorem 2.1 for s = 0. But unfortunately, the lower bounds of

Theorem 2.1 and Corollary 2.3 are incomparable. For example, take t= (1, 4, 7) and

s = 0.77. By Theorem 2.1 and Corollary 2.3, we have

λ(D) ≥ min{
3∑

j=1

dij(
Dj

Di

)0.77 : 1 ≤ i ≤ 3}

= 6 + 3× (2/3)0.77

> 8.195

>

√
722 + 542 + 722

92 + 62 + 92

=

√
T 2
1 + T 2

2 + T 2
3

D2
1 +D2

2 +D2
3

.

Thus, the lower bound of Theorem 2.1 is finer than Corollary 2.3 in this case.

Remark 3. By Theorem 2.4 and Remark 2, the lower bounds of Corollary 2.2 and

Theorem 2.1 are incomparable, and the lower bound of Theorem 2.1 is also incomparable

with Theorem 2.2.

Lemma 2.3 [7] (Papendieck and Recht) Let q1, q2, ..., qn be n positive numbers, then

min{pi
qi

: 1 ≤ i ≤ n} ≤
∑n

i=1 pi∑n
i=1 qi

≤ max{pi
qi

: 1 ≤ i ≤ n}

for any real number p1, p2, ..., pn. Equality holds on either side if and only if all the ratios

pi/qi are equal.

Remark 4. By Lemma 2.3, we can conclude that√
T 2
1 (s) + · · ·+ T 2

n(s)

D2s
1 + · · ·+D2s

n

≥
√

min{(Ti(s)

Ds
i

)2 : 1 ≤ i ≤ n}

= min{Ti(s)

Ds
i

: 1 ≤ i ≤ n}

= min{
n∑

j=1

dij(
Dj

Di

)s : 1 ≤ i ≤ n}.
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Thus, the lower bound of Theorem 2.3 is always finer than Theorem 2.1.

Given two n× n matrixes B = (bij) and C = (cij), by C ≥ B we mean that cij ≥ bij

for any i and j.

Lemma 2.4 [8] Let M = (mij) be a non-negative irreducible matrix of order n > 1, and

B = (bij) be a non-negative matrix of order n. If M ≥ B, then λ(M) ≥ λ(B). Moreover,

the equality holds if and only if M = B.

Theorem 2.5 Let t= (t1, t2, ..., tn), t1 < t2 < ... < tn, and t’= (t′1, t
′
2, ..., t

′
n), t

′
1 < t′2 <

... < t′n. Let D and D′ be the line distance matrices of t and t’, respectively. If t1 > t′1

and ti = t′i for 2 ≤ i ≤ n, or tn < t′n and ti = t′i for 1 ≤ i ≤ n− 1, then λ(D) < λ(D′).

Proof. We only consider the case of t1 > t′1 and ti = t′i for 2 ≤ i ≤ n, because another

case can be considered similarly. Suppose D = (dij) and D′ = (d′ij).

If 1 < i ≤ n, then dij = |tj − ti| = |t′j − t′i| = d′ij holds for 1 < j ≤ n.

If 1 < i ≤ n, then di1 = ti − t1 < t′i − t′1 = d′i1.

If i = 1, then d1j = tj − t1 ≤ t′j − t′1 = d′1j holds for 1 ≤ j ≤ n.

Thus, the result follows from Lemma 2.4.
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