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Abstract

In this paper, a general approach is presented to compute the Homfly polynomials
of even polyhedral links formed from a polyhedron by ‘n-branched curve and 2k-
twisted double-line covering’. We show that Homfly polynomials of the whole
family of even polyhedral links can be obtained from the Tutte polynomial of
the 1-skeleton of the polyhedron by special parametrizations. As applications, by
using computer algebra (Maple) techniques, Homfly polynomials of even Platonic
polyhedral links are calculated.

1 Introduction

Knots and links occurs in proteins, and knotted and linked DNA also exist in nature. In
addition, chemists and molecular biologists have succeeded in synthesizing many knotted
and linked molecules. See [1] and references therein. As the potential structure for
synthesizing new types of topologically complex molecules, in a series of papers [2-6], Qiu
etc introduced several types of polyhedral links with highly symmetry. In this paper, we
restrict ourselves to one type of such polyhedral links introduced in [6], formed from a
polyhedron by ‘n-branched curve and k-twisted double-line covering’. Now we describe
the construction of such polyhedral links.

Given a polyhedron, to construct a polyhedral link, two types of basic building blocks
are needed. One is an n-branched curve designed to replace the vertex with degree n of

a polyhedron. The other is an m-twisted double-line (m = 0, 1,2, ---), which is proposed
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to replace the edge of a polyhedron. See Fig. 1 for examples. By connecting these two
building blocks we obtain an alternating link called a polyhedral link!. A polyhedral link
having m-twisted double-line is called a 7},-polyhedral link. When m = 2k, we call a

T,,-polyhedral link an even polyhedral link.
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Fig. 1: A 5-branched curve and a 4-twisted double-line.

In [6], the authors also determined some parameters of Platonic polyhedral links in-
cluding the component number, the crossing number, the linking number, the writhe and
the configuration. However, there are some errors on the calculation of the Homfly poly-
nomials of such links. For example, the Homfly polynomial for the T5-tetrahedral link
in the Appendix is wrong. In this paper we shall study the calculation of the Homfly
polynomials of even polyheral links.

The Homfly polynomial is a very powerful invariant of oriented links, introduced in
[7] and [8] independently. It is the generalization of the Alexander polynomial [9], Con-
way [10] polynomial and the Jones polynomial [11]. It is closely related to many other
invariants [12] [13], say, component number, the genus, the braid index of links, etc. In
particular, Homfly polynomials play a significant role in the analysis of chirality problems
in chemistry [14] [1].

The surface of a polyhedron is topologically homeomorphic to the sphere S%. Thus
the graph consisting of vertices and edges of a polyhedron, i.e the 1-skeleton, is a planar
graph via the well-known stereographic projection. Conversely, a planar graph, say the
3-cycle, is not necessarily the 1-skeleton of some polyhedron. The above construction of
links from polyhedra can be naturally generalized to any plane graph. Furthermore, we
can use different twisted double-lines to cover the edges. To be precise, let G be a plane
graph with edge set {e1,es, -+, €.}, we use m;-twisted double-line to cover the edge e;
for i = 1,2,---,q. We call the link thus obtained the link corresponding to the plane
graph G and denote it by D(G). When m; is even for each i = 1,2,---, ¢, we call D(G)

to be an even link corresponding to G and denote it by Dp(G). When m; = 2k for each

!The polyhedral link in this paper is the mirror image of the polyhedral link defined in [6].
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i=1,2,---,¢, we denote D(G) by Day(G).

Let G is the plane graph obtained from G by replacing the edge e; by a path P,
with length n;. D(G) is actually can be obtained from G via the the well-known medial
construction in knot theory [13][15]. Obviously D;(G) i.e. m; =1 for each i =1,2,--- ¢
in D(G) is the link obtained from the plane graph G by the medial construction. And
D,(G) were once constructed and their Homfly polynomials were once computed in [16].
In this paper, we generalize the method in [16] for computing the Hofmly polynomials
of Dy(G) to deal with the general even link Dg(G). The orientations of Dg(G) will be
discussed in Section 3. We shall build a relation between the weighted Tutte polynomial
of the plane graph G and the Homfly polynomial of the corresponding even link Dp(G).
As applications, using computer algebra (Maple) techniques Homfly polynomials of some
even Platonic polyhedral links are calculated.

The graph G = (V, E) in this paper allows loops and multiple edges. For e € E we use
G — e and G/e to denote the graphs obtained from G by deleting and contracting (that
is, deleting the edge and identifying its ends) the edge e, respectively. In particular, If e
is a loop of G, then G — e = G/e. Let S be a set, we denote by |S| the cardinality of the
set S.

2 The Tutte and Homfly polynomials

The Tutte polynomial for graphs was constructed by Tutte in 1954 [17], building on his
work seven years earlier [18]. L. Traldi generalized it to weighted graphs in 1989 [19], he
introduced a dichromatic polynomial for weighted graphs. We shall call the dichromatic
polynomial for weighted graphs the weighted Tutte polynomial.

A weighted graph Gisa graph G together with a weight function w mapping the edge
set E/ of GG into some commutative ring R with unity 1. If e is an edge of the weighted

graph G, then w(e) is the weight of e.

Definition 2.1 [19] The weighted Tutte polynomial Qz(t,z) of a weighted graph G can

be defined by the following recursive rules:
1. [fé is an edgeless graph with n > 1 vertices, then
Qg(t,z) =1t". (1)
2. If e is a loop of é, then

Qa(t,z2) = (1 +w(e)z)Qa_(t, 2). (2)
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If e is not a loop of G, then

Qa(t,2) = Qa_(t, 2) + w(e)Qg/.(t: 2). 3)

We should point out that despite the weighted Tutte polynomial is defined to be a
polynomial in ¢ and z, we do not require that ¢t and z be indeterminates; indeed, it is
often convenient to treat ¢ and z as elements of R.

The following Lemma opens out the relation between the Tutte polynomial and the

weighted Tutte polynomial, and will be used later.

Lemma 2.2 Let GY be a connected weighted graph the weight of each of whose edges is
w. Let Tg(x,y) be the Tutte polynomial of the unweighted graph G. Then

t
Qaw(t,z) = w7 To(1+ =, 14 w2). (4)
w

Proof. Given a graph G = (V| E), its rank is equal to |V| — k(G), where k(G) is the
number of connected components of G. The Tutte polynomial is defined as [20]
Ta(z,y) = Z(JL — 1) B @A)y — A=) (5)
ACE

where 7(A) is the rank of the spanning subgraph (V, A). Note that the weighted Tutte

polynomial Qg(t, z) can also be written as [19]

Qa(t,2) =) (H w(a)> {R(A) LJAl=r(4) ©)

ACE \a€A

When the weight of each edge of G is w, we have

Qau(t,z) = Zw‘A‘t’“(A)Z‘AHW
ACE

— Zw*(/l)tlv\—f(/l)(wz)\/\I—T(/\)
ACE

t
— w®Ey ZAr(E)=r(A) (4 ) AT (A)
WO Y (YO D wz)
ACE

t
= WV To(1+ =1+ w2).
w
This completes the proof of Lemma 2.2.0

Definition 2.3 [12] The Homfly polynomial of an oriented link L, denoted by Pp(v,z),

can be defined by the three following axioms.
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1. Pr(v,z) is invariant under ambient isotopy of L.

2. If L is the trivial knot then
Pr(v,z) = 1. (7)
3. Skein relation:
v P (v,2) —vPp_(v,2) — 2P (v,2) = 0, (8)

where Ly, L_ and Ly are link diagrams which are identical except near one crossing

where they are as in Fig. 2 and are called a skein triple.

KX

Fig. 2: L (positive), L_ (negative) and Lg

The Homfly polynomial possesses the following basic properties, see [7], [12], [21]:
(1) If L is the connected sum of links L; and L, then
Pr(v,2) = Pr,(v,2)Pp,(v, ).

(2) If L is the disjoint union of links L; and L, then

-1 _

Pr(v,z) = UPLl (v, 2)Pr, (v, 2).

(3) If L" is the reverse of L, then Pp-(v, z) = Pr(v, 2).

(4) If L™ is the mirror image of L, then Prm(v,z) = Pr(—v71,2).

3 Orientations of even links

To compute the Homfly polynomials of links, we need to assign orientations to them
firstly.
Let G be a plane graph, Dg(G) be an even link constructed from G. We orient each

n-branched curve counterclockwise as shown in Fig. 3 (left). The orientations naturally
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Fig. 3: An oriented 5-branched curve and an oriented 4-twisted double-line.

Fig. 4: Orientations of Dy(Ky).

induce orientations of even twisted double-lines, see Fig. 3 (right). Thus we obtain an
orientation of the whole even link. As an example, Dy(K}) is oriented as shown in Fig. 4
Under the orientation given above, Dg(G) is a positive link, i.e. each crossing is
positive. Let f(G) be the number of faces (including the unbounded face) of the plane
graph G, then Dg(G) has f(G) components, which were discussed in [6].
In the next section we shall establish a relation between the Homfly polynomial of

Dg(G) and the weighted Tutte polynomial of G.

4 A general result

Let G be a plane graph with edge set {eq, €2, -, ¢e,}. Let Dg(G) be the link diagram
obtained from G by replacing each edge e; by the 2n;-twisted double-line fori = 1,2, - ¢q.

The following lemma is the key to prove the main theorem.

Lemma 4.1 Let e be an edge of the plane graph G. Let Dg(G) be the even link corre-
sponding to G. If the edge e is replaced by the 2n-twisted double-line, then

(1) when e is a loop,

Ppye) = (—+( - — ,U)Uzn)PDE(G—e)% 9)



-663-

(2) otherwise,
z 5 5
Poya) =~ (1= 0" Ppyice) + 0" Ppycye), (10)

where Dp(G — e) and Dp(G/e) are the oriented even links obtained from G — e and G /e

with original replacements unchanged, respectively.

Proof. By the definition and properties of Homfly polynomial in Section 2, we obtain

the following equations which we describe pictorially for simplicity.

1. If e is a loop, then

So we have
(11)
(12)
Py (Gyeen—1) = V' PDy(Gpe(zn-6) + V2 Ppg(Gc), (13)
Ppuaye = ?fz(ii_v)Pun(G—a +v2Ppy(c-e) (14)

where Dp(G) : e(2k) is the same to Dg(G) except that the edge e is replaced by a
2k-twisted double-line.

vlow
z

It deserves pointing out (14) has another factor

produced by a trivial knot.
Multiplying (12) by v?, (13) by v* and so on, then adding all the equations, we

obtain

-1

n—. n v —v
PDE(G) = UZ(l +’U2+"' +U2 Z)PDE(Gfe) +U2 ( )PDE(G—E)
z U71 —v
— 1— 2n 221 P, .
(o (1= 0™) + ™) Py
2 vl —w 2z ,
= ( 1 +( - )UZH)PDE(G,C).
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2. If e is not a loop, then

Thus we have

Pppc) =V Ppy(Gyeen-2) + v2Ppyc-e), (15)
Ppp(Gyea—2) = V2 Pp(Gye@n—1) + 0V2PpyG—c). (16)
PppG)en—1) = V* Poy@)e@n—6) + v2Ppyc-e), (17)
PGy = V2 Ppycre) + v2PpyG—e). (18)

Multiplying (16) by v?, (17) by v* and so on, then adding all the equations, we

obtain

PDE(G) = ’UZ(l + U2 + 4+ UZTL?Z)PDE(G_C) + ’UZHPDE(G/S)
z

e O 0*) Pp(a-e) + V" Pog(le)-

This completes the proof of Lemma 4.1. O

Using Lemma 4.1, we can prove the following main theorem.

Theorem 4.2 Let G be a plane graph. Let Dg(G) be the oriented even link described
above. Let G be the weighted graph with w(e) = v 0™ ife s replaced by the 2n-

z  1—w2n
twisted double-line. Then

z v i—v v t—w

Ppp)(v:2) = (-or—) IT v ] @at

- c€E(G)

) (19)

z oz

where v(e) is —5—(1 —v™) if the edge e is replaced by the 2n-twisted double-line.
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Proof. By induction on the number of edges of G. If G ia an edgeless graph with p
-1

vertices, Dp(G) is the unlink with p components. Thus Pp,(q)(v, z) = (2—==2)P"* by the

z

second property of the Homfly polynomial. The right hand of (19) equals to

z v — v v — v

Ny = (=

vl —w z z

(

Theorem 4.2 holds. If E(G) # 0, suppose that e is an edge and it is replaced in Dg(G)

by the 2n-twisted double-line.

1. when e is a loop.

By induction hypothesis and (2), we have

Pp-o(v,2)

ecE(G—e)

SR B ) (0] I

vl-w, . 5
ecE(G—e) + z 11.(6) o “

= )| I @ ﬁx

e€E(G—e) 1—v2n
v i—v vl —w
P
z 1 1
= (——) e P n v(e) | x
vl —o'1 4+ (1‘%)21312 —i— (1 —v™) EEIE_([G)
v i—ov v l—w
Qa(—=2, =)
1 z
= — — . (— ) v(e) | x
v=1—y + ( z 11*1—11)’02" vl -v (GI;(I:G)
vl—v vl —w
Q(‘:( e 5 P
By Lemma 4.1 (1), we have
z vl—w z 5
Pope) = (ot (= o5 =) ) Poee-o)
( z ) H @] o (7)_1 —v vl—w
= vie =
vl — v ¢ z oz

Hence, Theorem 4.2 holds.
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2. when e is not a loop.

By induction hypothesis, we have

z vt—v vt —w
Ppy(-e)(v.2) = (——) H v(e) | Qa_.( , ).
v v z z
ecE(G—e)
and
2 vl—v vl—v
Ppyare(@,y,2) = (TT) H u(e) Qé/e(TT > ).
ecE(G/e)
By Lemma 4.1 (2) and Equation (3), we have
PDE(G)(/Uﬂ Z)
— < 2n 2421
= Ty (L") Popc-o T 0" Poy(are)
-1 -1
B Z ) ’ e
= ey [T v ) e Y
e E(G—e)
277,( Z ) H © o (’U’l—’u v’l—v)
v _
vl — vie Gle P ) >
e€E(G/e)
T v ) Qe (T T )
= v(e = ,
vl —w G—e z oz vl —w
ecE(G)
vl—o o vl—v vl —y
H v(e) P 1 — p2n QCN?/G( P P )
e€E(G)
z
= II v ] x
ecB(G)
T R vl—v v l—w
(= )+ wle)Qg, ()
B z vl—v vl —w
1 B RO ==
e€E(G)

Hence, Theorem 4.2 also holds. This complete the proof of Theorem 4.2.

The following corollary is a direct consequence of Theorem 4.2.

Corollary 4.3 Let P be a polyhedron with q edges. Let Da, (P) be the Ty, -polyhedral link

constructed from P. Assigning an orientation to Da,(P) as described in Section 3. Let
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vly 20

z  1—p?n”

P be the weighted 1-skeleton of P each of whose edges is assigned the weight
Then

v i—v v t—w

S L= Qe

vl —o z oz )

Pp,,p)(v,2) = (

Theorem 4.4 Let P be a polyhedron with p vertices and q edges. Let Do, (P) be the
Ty, -polyhedral link constructed from P. Assigning an orientation to D, (P) as described

in Section 3. Let Tp(x,y) be the Tutte polynomial of the 1-skeleton of P. Then

Py py(v,2) = (1~ p?)) iyl o (20)
vl —w 2"
Tp(v™", 1+ ).
P 1+ ()
Proof. By Corollary 4.3 and Lemma 2.2, we obtain
Pp,,p) (v, 2)
z ; v i—v v l—w
— q+1 1— 2n\q "
()1 = Qe (2 )
z v -y o2 vt —w
- (v* - v)qﬂ(l = o) z 11— v2")p 1 z x
v i—v., v
T, )—Zn 1 2
P 1+ ()
_ ( Z (1 _ ,U2n))qu+1v2n(p—1)T (U—Qn 1+ (’Ufl —v )2 U2n )
 wl—y r ’ z 1 -2’

This completes the proof of Theorem 4.4. O

Remark 4.5 In the case of n =1, Theorem 4.4 reduces to Proposition 1 in [16].

5 Tutte polynomials for 1-skeletons of Platonic poly-
hedra

The Tutte polynomial is a very powerful invariant of the graph up to isomorphism.
It contains a great deal of information of the graph. See [20] for a survey. However,
computing the Tutte polynomials is, in general, very difficult. In fact, one has proved that
the problem of evaluating the Tutte polynomial at any point (a, b) is #P-hard except that
when (a, b) is on one special hyperbola and 8 special points [22]. The Tutte polynomial of
some (relatively simple) well-known graph families has been computed, including complete
graphs [23], ladders (prisms) [24] [25], wheels (pyramids) [24] [26], and some other families
[27] 28] [29].
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A &
)

Fig. 5: l-skeletons of five regular polyhedra.

There are five Platonic polyhedra together [30] and their 1-skeletons are shown in
Fig. 5. Note that the 1-skeletons of hexahedron and octahedron are dual graphs, and
the 1-skeletons of dodecahedron and icosahedron are dual graphs. Let GG be a connected

plane graph with dual G*, then [20]
To-(x,y) = Te(y, x). (21)

Note that the tetrahedron is the wheel graph with three spokes, the hexahedron is
the prisms with four rungs. Using the formulae given in [24] and [25], we can obtain the
Tutte polynomials of 1-skeletons of tetrahedron and hexahedron. The Tutte polynomial
of 1-skeleton of dodecahedron can be found in [31]. We point out that the Maple 12 has
a function called TuttePolynomial in the GraphTheory package, which can also be used

to calculate the Tutte polynomial of 1-skeletons of five Platonic polyhedra. Let
To(w,y) = Zci,jxiyf (22)
)

By (21), here we only list non-zero coefficients of the Tutte polynomial of 1-skeletons of

tetrahedron, hexahedron and dodecahedron in Tables 1-3, respectively.

ciy |j=0 j=1 j=2 j=3
i=0 2 3 1
i=1] 2 4

i=2| 3

i=3| 1

Table 1: ¢; ;’s for tetrahedron.



cij |i=0 j=1 j=2 j=3 j=4 j=5
i=0 11 25 20 7

i=1| 11 46 39 8

i=2| 32 52 12

i=3| 40 24
i=4| 29 6
i=5| 15
i=6 5
i=7 1

Table 2: ¢; ;’s for hexahedron.

j=0 j=1 j=2 j=3 j=4 j=5 j=6 =7
4412 17 562 30686 31540 21 548 10439 3 693
4412 38 864 95 646 115448 82550 38322 12046 2 542
25 714 128 918 218 682 185071 90 860 27 825 5 390 610
72 110 245880 295915 174870 57735 11 230 1240 60
131380 320990 275910 112365 24 140 2775 140
176 968 316 256 193 791 53 350 7175 468 12
189 934 250 692 108 884 19 810 1620 60
170 690 167 140 50 850 5 870 270
132 920 96 400 19 980 1350 30
91 740 48 710 6 510 220
56 852 21 530 1674 20
31 792 8 198 306
16 016 2 610 30
7216 660
2 871 120
989 12
286
66
11
1

ciy | J=8 j=9 j=10 j=11

i=0 | 950 170 19 1
i=1 | 330 20
i=2 30

Table 3: ¢; ;’s for dodecahedron, see [31].
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6 Computational results for Homfly polynomials of
even Platonic polyhedral links

In this section, we use Corollary 4.3 and Theorem 4.4 to compute the Homfly polyno-
mials of even Platonic polyhedral links.
1. Ty,-tetrahedral link A,,.

The edges of 1-skeleton 7' of the tetrahedron are labeled as shown in Fig. 6 and
cach edge is assigned the weight w. Now we calculate Qrw(t,t) according to (6). The

contribution of its each edge subset is listed in Table 4.

Fig. 6: Labels of edges of Kj.

Edge subset F Contribution
[ t
1-edge subsets 6wt?
2-edge subsets 15wt?
{e1,e2,¢6}, {e1, €3, 65}, {ea, e3,e4}, {es, €5, 66} 4w3t3
other 3-edge subsets 16w3t
4-edge subsets 15w't?
H-edge subsets 6wot?
6-edge subsets wbt?

Table 4: The contribution of each edge subset of T'.

Hence, we have
Qr(t,t) = t1(1 + w°) + (6w + dw® + 6w®) + £*(15w* + 15w*) + 16tw?.
By Corollary 4.3, we obtain

i )3{(1 _ ,L,2n)6 + 6(1 _ U2n)5,u2n +

PA(n)(/U#Z) = (1}71 —v
15(1 _ U21L)4,U4n + 16(1 _ 1)2'”)37)6”} +



-671-

( Z ){4(1 _ U2n>3v6n, + 15(1 _ ’UQn)2L'8"} +
( z

vl — g
(™).

vl —w

vl —w 21y, 100
H6(L — o™} +

However, the expression we obtained is not a polynomial. By applying computer
algebra (MAPLE) techniques, we can transform the expression into a polynomial for each

n=1,2,---. Some computational results are listed in Table 5.

link | Homfly polynomial

A(L) | (607 + 607 + 30° + v%)2% + (=110 + 0¥ + 407) 2+

(601 — 1201 + 60%) 271 + (=01 4 3013 — 3vll 4+ 09)273

A2) [ (180T + 24T + 240" + 60 + 210" + 1501 + 1007 + 607 + 30°
+0%)28 + (= 1103 + 40 — 110 + 7o' + 7017 + 4013) 2+

(60 — 602 — 6021 + 6019)21 + (=027 + 302 — 3p + p?!) 23
A@3) | (540 + 360% + 54v™ 4 6v% + 510! + 48077 + 450" + 1803+
3607 4 280! + 21013 + 150 + 100° + 607 + 3v° + v3) 23+
(—110% 4+ 7027 — 1103 4+ 70 + 40 + T0? + 402! — 110+
A1)z + (6037 + 602 — 6035 — 6031) 27 + (=0 + 03 4 3037 —
303) 23

A(4) | (60™ 4+ 900 + 9603 4 9603 + 7857 + 9302 + 360! 4 87w+
18v* + 780 + 600% + 660> 4 550! + 450" + 360'7 + 2807+
210" 4 1501 4+ 1009 + 607 + 30° + v?) 2% + (= 11047 + Tu
—110% + 70 — 1101 — 110" 4 7037 4 403! 4 40® + To®+
4% + 40?2 + (601 — 601! — 6017 + 6030) 27 + (=Pt + o
+301% — 3017) 273

Table 5: Homfly polynomials of A(n) for n = 1,2,3,4.

2. Ty,-hexahedral link B,, and Ts,-octahedral link C,,.

According to Table 2 and Theorem 4.4, we can obtain the formulae of Homfly polyno-
mials of B,, and C,,. However, they are too lengthy and we omit them here. Using Maple,

we can obtain some computational results listed in Table 6.
3. T),-dodecahedral link D,, and Ty,-icosahedral link F,,.

Similarly, we can obtain the formulae of Homfly polynomials of D, and E,. We
compute Ppy(v,z) and Py (v, z) by using Maple and list them in Tables 7 and 8.
7 Concluding remarks

Although Theorem 4.2 is not very difficult in mathematics, it converted the computa-

tion of the Homfly polynomial of all even polyhedral links to that of the Tutte polynomial



-672-

Homfly polynomial

(640" + 104017 + 350 + 960" + 640" + 150% 4 507 + v°) 25+
(6010 + 72017 + 60!t + 180" — 15402t + 52019)23 + (137v%—
2110% + 23019 + 39017 + 1201%) 2 + (—580v% — 15002 + 16603+
8ul7 + 34019) 271 + (12077 — 48v% + T20%3 — 48v* + 1201%)273
+(=v2 4 1002 + 50% — 502! 4 19 — 100?%) 273

(11600°7 + 640" + 14560% + 74403 + 1584v% + 9110+
1155027 + 68502 + 154403 + 489021 + 320v*! + 33001+
138402 + 21007 + 1260 + 700! + 350 + 150° + 507 + 0°)2°
+(—4620" — 1360% + 1740%° + 22803 + 6019 + 106v%" — 45601
+600% + 268v% + 3603 — 1540 + 90037 + 180! + 2220%)23
+(1370* + 137047 + 12031 — 2110* + 390%° — 2110* + 1202+
39038 + 23037 4 230%) 2 + (—58v%0 4 58v*T — 8u¥7 + {uP—
108v* + 108v%° + 42039 — 42041271 + (120% + 120 — 3601+
2407 + 240" — 36v13) 273 + (=0 4 10017 + 5v°! — o+

o™ 10049) 25

(280™T 1 760 + 707 + o7 + 13007 + 133077)27 + (1830% + 5503
177017 + 8! — 423019)25 + (98401 + 264017 + 120134
1360 + 5720%) 2% + (—4410% + 48015 + 127502 + 297017 —
11790) 2 + (60 + 190017 — 8200 — 8500% + 21402+
1260021) 27! + (66002! + 3300% — 3300 — 660v* — 6607+
66017) 273 + (=720 4 180v% — 720%7 + 120% — 2400 4 1207
+180v21) 275 + (—v®! + 210% — 3507 — 210% + T — Tw!?

+0l7 + 350%) 277

(74200% + 819003 + 5908v%" + 4228v% + 5628v% + 1330*!
+29320%7 + 166002! + 2764v% + 916019 + 9310% + 46207+
765003 4 210010 + 84013 + 28vM + 7o + 0727 4 (226203 +
14730% 4 77302 — 4230% + 400'° + 277003 4 35502 + 228202
—2115v* + 13502t — 3345037 — 1620% — 405303 + 8v'7) 2%+
(—1920% 4 928v3 + 4200%° — 2688v%7 + 5720% + 17207+
7320% 4 67205 1 3607 + 17160 — 238005 + 120%) 25+
(12750 — 11790%7 — 117903 + 12750 + 2970*° + 48031+
48v% + 297038 — 4410*7 — 4410%) 2 + (1960*° — 19607 —
6240 + 6360* — 6360*° + 2140 — 603° + 624v* — 214047
+60%) 271 + (—660° + 6601 — 3300 + 66037 — 19803+
3300% — 66017 + 198v%) 273 + (108v* + 120% — 600 —
600% — 600%7 + 108040 + 120°3 — 600°1)27% 4 (—v®® 4 210*°
—350%7 — 21050 + vt — 713 4 35019 4 T05%) T

Table 6: Homfly polynomials of B(n) and C(n) for n = 1,2.
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link

Homfly polynomial

(80076v% 4 1471800 4 394820v%° 4 859040v™ 4- 390180017+
1865602 + 1210200 + 8677000 + 25068003 + 7876023+
5710000%7 + 7480200% + 29910 + 40296027 4 10010 4 6831000v*
+2860'7 4 660" + 11013 + o) 21 + (7814003 + 360330037
—4633100°" + 161280 + 36400% — 4697100*7 4 3360900*34
6140077 + 374520%1 4 108v?! + 426180v*" + 2010v%° + 2471400%7+
5400% — 7278900% + 120 4 1470000°%)2° + (782108v°3 + 116040
+1254560%3 + 246077 4 400803 — 519973017 — 6551710 —
1186900% + 115202 + 1145630 + 288300 + 62684v°7 + 3260°!
+162827v* + 300%) 27 + (=780286v°° + 3180v° + 10230037+
5228504 + 87003 — 4287050% + 2383050°1 — 29830007 4+ 160v> +
116194003 + 606050%% + 2568003 + 2002° — 459840%)2° + (3515037
—2250% + 118050 4 1446450°" + 11606850° — 15000000°°+
5173600°7 + 10200°7 + 3003 — 110955047 — 25291504 + 24885043+
1500%%)23 + (66550%% — 118510v% + 60550%° — 15658050°°+
10230450°7 — 2416050 4 15150 — 87400°! + 2400% — 22505017+
6003 + 9195950°3) 2 + (40077 4 556810053 — 448972v% + 8162201+
6801 + 240007 + 120% 4 10000* — 642600°F — 108238005+
9902700°7 — 366100%) 271 + (—20023v% + 60v*3 + 4300*° — 554104
—43869v°! + 121207 — 5116650°° + 5827530v°7 — 38001907+
134259051 4 2424030v5%) 272 + (270017 4 2600 + 71540053 —
1619800°° — 154000°! — 181960v°° 4+ 9395005 — 274900%% + 35000
+300% + 2172800°7)27° + (—30150°! + 1326003 + 497700°7 —
506100° — 1476005 + 371505 — 4150%7 + 23501 + 20047 —
323400°° + 341400°1) 277 + (—36000°° + 6300v%" — 300057 + 3009
+300% + 135007 — 3000°! — 75600°Y 4+ 63000°7 4+ 13500%°—
36000%3) 279 + (—v™ — 110°! + 55052 — 1650 + 330057 — 46209
+46205" — 3300%3 + 165055 + 49 + 1105 — 55¢57) 211

Table 7: Homfly polynomials of D(n) and E(n) for n = 1.
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link

Homfly polynomial

(295920053 + 128574007 + 1310v2° + 102228v°T + v + 19021 + 292670 + 1111968v*T
190023 4 6905027 + 1651392039 4 69906003%) 219 4 (20023 + 23224029 + 114296031 +
3552027 + 440298033 4 370025 4 131758003% + 3389040039 — 7171160v*3 — 959380041 +
2842160057)217 + (225949640° + 6439503 + 730027 4 3002° — 25856130013 + 354045033
+4031490057 + 8520029 + 144522603% + 5140515039 — 7783785041 ) 215 + (190645033 +
1740029 4 1129945035 — 598001150%3 + 7437100039 — 46655060017 + 4431220037
—16928795v4! + 22630031 + 60027 4 110170630v%°) 213 + (—22812393v*! +

659965v3° + 3862895037 + 300202017v%° + 5215031 + 73005033 + 200027+

9819945039 — 111856893013 + 7115965201 — 2511136080721 + (290775035
—1765517700% + 12029 + 10866813v3° + 20225033 + 26560950°7 — 711794115017
+768v31 — 85371335051 — 20496318041 + 397584615049 + 582794235045)29
+(14275160%7 + 873918290045 + 3990033 — 10365022v*! + 9618003 + 60031 —
233952316043 + 113214648801 + 9669032039 + 83530946053 — 480700768v°1 —
1375774396v17) 27 + (—19907441250%7 + 2342003° — 68090965v°° + 5924500°7+
682383009 4 166117501 — 25761508501 + 510033 + 464967175053 + 104788519501°
—13489938750°! + 2143490295v49) 25 + (1021291320045 + 9227400v* + 468055400°7
+399003% — 234240060013 + 12672922800°% + 297811815004 + 186240037 — 3690090600°°
—2252801280v%7 + 3798100039 + 30033 — 24706726500°1)2% + (—2038731660v7 —
32674410900°1 + 1656300039 — 27292965059 — 9640417200°° + 1038646501 —
17529808503 + 815226300045 + 3183095790049 + 243575385057 + 42003° 4 42900037
+22188219600°%) 2 4 (2005% + 2763798880v°% — 1491955920017 + 2681942292049 4
602064450057 + 534349350015 — 134559176v°9 + 1351880600 — 327551497201 —
10772648003 + 559584039 4 7543466011 + 6820037 — 159402712005%) 2~ 1 4
(—18473904900°% + 666037 — 54210981v%3 — 2551620786v°" — 310385433059 —
886597767v47 + 180279732604 + 2571450552053 — 567357100 4 2873416150%°
+4048563v1! 4+ 927838351057 + 143732039 + 622582230v01) 273 + (970469280019
+30v%7 — 42738861007 — 15740026500°° + 200460005 + 183042981003+
126253050040 + 27210039 — 1562192280051 + 1319727900%! + 9862135800°7 —
22242180043 — 24027630093 — 4391927400%9 4 1675740041 )25 + (41712742509
—1661302500%7 — 10075923000°° — 7387575043 + 449806500%° + 756595125057+
3600039 — 752991525071 + 543075041 4 10060479000°3 — 589875057 — 420731025059
—45963450003 4 168423450001 + 7664775055)2~7 + (300030 + 142194059 — 1963416043
—283771488v°1 + 4259789820°3 — 1990416057 + 1293545405° + 142226994001 —
51458316047 + 426407982v°7 + 141735594019 — 487108908v°° + 137994v4! —
51731316093 + 12830454045 — 284372088v%9)2~9 4 (27213041 — 2876085007 —
12447435047 + 37355409049 — 82201119051 + 1762138950°7 + 1370247450°3 —
137065929059 — 27393071 + 410883059 — 37385985053 — 409635013 + 12039 —
1761967350°° + 28708050%% + 1246255505% + 82244799v61) 2~ 11 4 (—~177340800°"
—64960v%% + 738920009 — 64960071 + 4060073 — 22736000*7 — 46446400070+
406004 + 7389200019 — 46446400057 + 32512480051 + 522522000°7 + 487200059
48720005 — 2273600057 + 32512480053 — 17734080003) 213 4 (—295800017 +
538356003 — 7395043 — 43507° + 59160v%° — 10353000°7 + 295800057 —

105748500°% + 10353000% + 7395073 + 435041 — 2691780v°! + 105748500°7
—53835600%° + 2691780055 — 59160071 — 845988005 4 8459880v01) 215+

(45900%° + 91800v? + 55692005% + 1312740051 + 5569200°% — 24480047 —

9547200%° — 54003 + 30077 + 4590073 + 91800059 — 2448007 + 1312740057
—2570400°1 — 54007° + 3001 — 257040057 — 954720053 — 14586000°9) 217+

(=™ 4+ v — 3876071 — 11628051 — 969047 + 171040 + 271320°3 + 19077+

969073 — 7558205% — 50388055 + 387600 — 19043 4 75582057 — 171070 + 50388095
—27132057 4 116280%9 — 92378059 4 92378v61)2 19

Table 8: Homfly polynomials of D(n) and E(n) for n = 1.
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of the polyhedron in a unified way. Software packages which can use compute the Homfly
polynomial usually can only deal with knots and links with small crossing numbers. By
using Theorem 4.2, once we obtain the Tutte polynomial of one polyhedron the Homfly
polynomials of all even polyhedral links (which can have very large number of crossings.)
can be obtained almost immediately. In addition, the Tutte polynomial of many polyhedra
can be obtained by Maple.

Secondly, Theorem 4.2 can be naturally generalized to the polyhedral links obtained
from a polyhedron by taking some edges to be replaced by positive even-twisted double-
lines and other edges to be replaced by negative even-twisted double-lines with different
numbers of twists. Note that such links may be non-alternating. Actually Theorem 4.2
can be generalized further as L. Traldi did in [19].

Thirdly, naturally one will ask whether there exists a similar approach to deal with
odd polyhedral links. We suspect the existence of this similar approach. We point out
that as for the Jones polynomial, we can compute the its main part, i.e. the Kauffman
brackets of (odd or even) polyhedral links via the chain polynomial of the polyhedron
[32].
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