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Abstract

Polyhedral links, the interlinked and interlocked architectures, have been pro-

posed for the description and analysis of knotted configurations in the backbone

of DNA and proteins. Motivated by tangled polyhedral links, we utilize cycle-

crossovers to cover all edges of an arbitrary convex polyhedron to produce many

interlocked polyhedral frameworks. We also discuss some essential conditions for

the realization of these models by DNA molecules. Meanwhile, a formula for com-

puting Jones polynomial is obtained by using generalized Tutte polynomial and

chain polynomial, which can greatly simplify the computation compared to the use

of Jones skein relation.

1 Introduction

One gigantic challenge in supramolecular chemistry is to attain total control of the ar-

rangement of molecular knots and links by the design of building blocks [1–6]. Polyhe-

dral catenanes, the interlinked and interlocked architectures synthesized by using DNA

molecules [7–18], include some DNA Platonic and Archimedean solids and DNA bipyra-

mids and buckyballs. In addition, polyhedral links are also found in the backbone of
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some proteins of virus. These fancy objects hint some topological structures which give

us many new targets for theoretical characterization by using mathematical methods [19].

On the theoretical side, knot theory has been applied to solving these fancy objects

[20–26]. In the knot theory, it is basic and important to determine whether two knots or

links are equivalent or not. Knot and link invariants are extremely useful tools. Take Jones

polynomial for an example. It can distinguish many links from their mirror images and also

has many chemical and physical applications. Now we recall that the Jones polynomial

Vt(L) ∈ Z[t] of an oriented link L is related to the Kauffman bracket polynomial by

Vt(L) = (−A3)−w(D)〈D〉|A=t−1/4 , (1)

where D is the diagram of L, w(D) the writhe and 〈D〉 the Kauffman bracket polynomial

of D. In knot theory, the Jones polynomials of many types of knots, such as the 2-bridge

knot, prezel links, and tours links [27, 28, 29], have been calculated. Recently, Jin and

Zhang established a relation between Kauffman bracket polynomial and chain polynomial

for a signed chain graph G. The relation is described as

Q[G] =
Am

(−A2 − A−2)q−p+1
Ch[R], (2)

where m is the sum of all signs of G, and p and q are the numbers of vertices and edges

of reduced graph R, respectively. According to the formula (2), Jin and Zhang gave a

classification for all knots and links [30]. Meanwhile, they also calculated the Kauffman

bracket polynomials of rational links by using W -polynomial [31].

In this paper, motivated by tangled polyhedral links, we fabricate a class of cycle-

crossover polyhedral links by utilizing cycle-crossovers to cover all edges of an arbitrary

convex polyhedron. The resulting structures have not been synthesized but might con-

stitute interesting targets for a topology-aided molecular design. Meanwhile, we also

calculate their Kauffman bracket polynomials by using chain polynomial and generalized

Tutte polynomial. In biology, considering the fact that DNA double-strands could appear

with two orientations, parallel or antiparallel, the cycle-crossover polyhedral links with

the orientation of global parallel or antiparallel have biological meanings. And then we

give out the Jones polynomials of such two cases. In mathematics, the method has the

advantage of simplifying the computation of Jones polynomial. This constructed model

could form the basis of future development of more complex models, and can aid synthetic
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chemists and biologists in testing and developing their synthetic strategies. Our result

may provide further insight into the theoretical characterization of the DNA polyhedral

links.

2 Construction of cycle-crossover polyhedral links

In the section, we first introduce the conception of adding tangles, and then give the

definition of cycle-crossover polyhedral links.

We define a way to add n tangles T1, T2, · · · , Tn to obtain a new tangle called adding

tangle. Glue NE, SE of Ti to NW, SW of Ti+1, respectively, where i = 1, 2, · · · , n, as seen
in Fig. 1.

1
T n

T
2

T 1
T

2
T n

T

NE

SE

NW

SW

)(a

)(b

Fig. 1. (a) Four ends of a tangle. (b) Adding tangles.

In Ref. [26], Qiu et al constructed a type of tangled polyhedral links whose building

blocks are some n-twisted double lines with arbitrary twists [26]. These links are DNA

polyhedra, which have been synthesized in the laboratory. For example, the construction

of tangled tetrahedral link can be seen in Fig. 3(a). Here, n-twisted double line can be

clarified by adding tangle.

If Ti, i = 1, 2, · · · , n is a 1-tangle, then T = T1 + T2 + · · · + Tn is called n-twisted

double line, where n is the number of twists of T .

If Ti is a 2-tangle, then C = T1 + T2 + · · · + Tn is called cycle-crossover. Here n

is called the length of C. For instance, a cycle-crossover C with length 5 is shown in

Fig. 2. Motivated by the tangled polyhedral links, we extend tangled polyhedral links

to cycle-crossover polyhedral links L(P ) whose building blocks are some cycle-crossovers

with arbitrary lengths. That is, L(P ) can be constructed by using cycle-crossovers with
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arbitrary lengths to cover each edge of a polyhedron P . For instance, the construction of

cycle-crossover tetrahedral polyhedral links as shown in Fig. 3(b).

Fig. 2. Cycle-crossover C with length 5.

)(a )(b

Tetrahedron TetrahedronTangled tetrahedral link Cycle-crossover tetrahedral link

Fig. 3. Tangle and cycle-crossover are building blocks, respectively, in the construction

of the tetrahedral polyhedral link.

Note that L(P ) is alternating in our construction.

In the following, we will take two examples to illuminate the construction. For in-

stance, every edge of a tetrahedron P is labeled with a, b, c, d, e, f , firstly. Whereafter,

we use 6 cycle-crossovers C(a), C(b) · · · , C(f) with length 4, 4, 4, 2, 2, 5, respectively, to

cover each edge of P , and then the resulting link L(P ) is the tetrahedral link, as shown

in Fig. 4. Similarly, use 8 cycle-crossovers and 4 cycle-crossovers with length 5 and 2,

respectively, to cover each edge of a cube, and then the resulting link is the cubic link, as

shown in Fig. 5.

For the type of cycle-crossover polyhedral links, they can be realized in terms of DNA.

The reason is that DNA double strands can form some types of tangles. Hence, the tangled

polyhedral links and the cycle-crossover polyhedral links L(P ) are DNA polyhedral models

which can be synthesized by using some DNA molecules.

For linked molecular framework, symmetry plays an important role as a guiding princi-

ple for the design of novel molecules. Remarkably, the symmetry breaking happens during

the construction of our links. For instance, the cycle-crossover cubic link and tetrahedral
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Fig. 4. Cycle-crossover tetrahedral link with the length 4, 5 and 2, respectively.

Fig. 5. Cycle-crossover cubic link with the length 5 and 2, respectively.

link reduce the symmetry group to O and T , respectively, from Oh and Td of cube and

tetrahedron.

3 Kauffman bracket polynomial of cycle-crossover

polyhedral links

In the section, we first introduce the relation between plane graph and its correspond-

ing knot or link, and then introduce the conceptions of Kauffman bracket polynomial,

generalized Tutte polynomial and chain polynomial.

A connected plane medial graph M(G) is a 4-regular plane graph which can be ob-

tained from a connected planar graph G. An example is shown in Fig. 6. A signed graph

is a graph with each of its edges labeled with a sign (+ or −). According to the sign of

the edge (see Fig. 7), a knot or link L(G) can be easily obtained by changing each vertex

of medial graph M(G) into a crossing, as illustrated in Fig. 8.

There exists a one-to-one correspondence between link diagrams and signed plane
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G )(GM

Fig. 6. A planar graph G becomes a medial graph M(G).

e e

sign(e)= - sign(e)=+

Fig. 7. Signs of edges.

G )(GL

+

+

-

- -

Fig. 8. A signed graph G becomes a link L(G).
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graphs via the medial construction [32]. Given a link diagram L, we create a corresponding

planar graph in the following way. First shade the regions of the link diagram as black

and white so that the unbounded region is white. Then associate a graph G to the link

diagram so that the vertices correspond to the black regions and the edges correspond to

the crossings shared by the black regions.

Definition 3.1. [33, 34, 35] The Kauffman bracket polynomial 〈L〉 of a link diagram L

is defined by the following three relations:

(1) 〈©〉 = 1.

(2) 〈© ∪ L〉 = (−A2 − A−2)〈L〉.
(3) 〈 〉 = A〈 〉+ A−1〈 〉.

Kauffman introduced the generalized Tutte polynomial for signed graphs, which is a

generalization of both the Tutte polynomial for graphs and the Kauffman bracket poly-

nomial for link diagrams.

Theorem 3.2. [32] The generalized Tutte polynomial Q[G] for a signed graph G is defined

by the following properties:

1. If e is neither an isthmus (i.e., a cut edge) nor a loop in G, then

Q(G) = BQ(G− e) + AQ(G/e) sign(e) = +,

Q(G) = AQ(G− e) + BQ(G/e) sign(e) = −,

where G−e, G/e are obtained from G by deleting and contracting the edge e, respectively.

2. If every edge of G is either an isthmus or a loop and G is connected, then

Q(G) = X i++l−Y i−+l+ ,

where X = −A−3, Y = −A3 ; i+(i−) is the number of the positive (respectively negative)

isthmuses; l+(l−) is the number of the positive (respectively negative) loops.

3. If G is the disjoint union of graphs G1 and G2 , then

Q(G) = (−A2 − A−2)Q(G1)Q(G2).

The relation of Kauffman bracket polynomial and Tutte polynomial is given as follows:
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Theorem 3.3. [32] Let G be a signed plane graph, L(G) be the link diagram associated

with G via the medial construction. Then

Q(G) = 〈L(G)〉.

To compute Kauffman bracket polynomial of L(P ), we need find corresponding signed

plane graph from L(P ). Let R be the signed plane graph of L(P ). Since L(P ) is al-

ternating, the sign of each edge of R is the same. For instance, the planar graph from

cycle-crossover tetrahedral link is illustrated in Fig. 9.

C ycle-crossover Parallel pair chain

Fig. 9. The planar graph R from cycle-crossover tetrahedral link L(P ).

Let md denote the length of parallel pair chain d in R. Here md = e(d)/2, where e(d)

is the number of edges of the chain d.

Generalizing the concept of deleting and contracting an edge to a parallel pair chain.

Deleting a parallel pair chain means deleting the internal vertices in it. Contracting a

chain means deleting the internal vertices in the parallel pair chain and then identifying its

endvertices. Compare to Property 1 in Theorem 3.2, we can obtain a similarity theorem.

Theorem 3.4. Let G be a signed planar graph whose every edges have the same sign. Let

R be a planar graph from L(G). If d is a parallel pair chain of R, then

Q[R] =
(−A−4 − A4)md − (1− A4)md

−A2 − A−2
Q[H] + (1− A4)mdδQ[K], (3)

where H and K are obtained from R by deleting and contracting the chain d respectively;

δ = −A2 − A−2 if e is a loop of G, and δ = 1 otherwise.
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Proof : Suppose each edge is positive in R, firstly. Let e1, e
∗
1, e2, e

∗
2, · · · , emd

, e∗md
be

2md edges of parallel pair chain d, where ei, e
∗
i are two multiple edges in chain d. Then

Q[R] = BQ[R− e1] + AQ[R/e1]

= B{BQ[R− e1 − e∗1] + AQ[R− e1/e
∗
1]}+ AY Q[R/e1/e

∗
1]

= B2Q[R− e1 − e∗1] + (BA+ AY )Q[R/e1/e
∗
1]

= B2{BQ[R− e1 − e∗1 − e2] + AQ[R− e1 − e∗1/e2]}+ (BA+ AY )Q[R/e1/e
∗
1]

= B2{BXQ[R− e1 − e∗1 − e2/e
∗
2] + AY Q[R− e1 − e∗1/e2/e

∗
2]}

+(BA+ AY )Q[R/e1/e
∗
1]

= B2{(BX + AY )Q[R− e1 − e∗1 − e2/e
∗
2]}+ (BA+ AY )Q[R/e1/e

∗
1]

= · · ·
= B2(XB + AY )md−1Q[H] + (BA+ AY )Q[R/e1/e

∗
1]. (4)

Let p = XB + AY , q = BA+ AY .

(i) If edge e is neither isthmus nor loop of G, then Q[R/e1/e
∗
1/ · · · /emd

/e∗md
] = Q[K].

Therefore, from (4), we have

Q[R] = B2pmd−1Q[H] + qQ[R/e1/e
∗
1]

= B2pmd−1Q[H] + q{B2(pmd−2Q[H] + qQ[R/e1/e
∗
1/e2/e

∗
2]}

= · · ·
= B2(pmd−1 + pmd−2q + pmd−3q2 + · · ·+ qmd−1) + qmdQ[K]

= B2p
md − qmd

p− q
Q[H] + (1− A4)mdQ[K]

=
(−A−4 − A4)md − (1− A4)md

−A2 − A−2
Q[H] + (1− A4)mdQ[K].

(ii) If edge e is a loop of G, then

Q[R/e1/e
∗
1/ · · · /emd−1/e

∗
md−1] = Y 2Q[K].
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So, from (4), we have

Q[R] = B2pmd−1Q[H] + qQ[R/e1/e
∗
1]

= B2pmd−1Q[H] + q{B2(pmd−2Q[H] + qQ[R/e1/e
∗
1/e2/e

∗
2]}

= · · ·
= B2(pmd−1 + pmd−2q + pmd−3q2 + · · ·+ pqmd−2) + qmd−1Y 2Q[K]

= B2p
md − qmd

p− q
Q[H] + (1− A4)mdδQ[K]

=
(−A−4 − A4)md − (1− A4)md

−A2 − A−2
Q[H] + (1− A4)mdδQ[K],

where δ = −A2 − A−2.

(iii) If edge e is a isthmus of G, then we have

Q[R] = pQ[G/e1/e
∗
1] = p2Q[G/e1/e

∗
1/e2/e

∗
2] = · · · = pmdG[K]

=
pmd − qmd

−A2 − A−2
(−A2 − A−2)Q[K] + qmdQ[K]

=
pmd − qmd

−A2 − A−2
Q[H] + qmdQ[K]

=
(−A−4 − A4)md − (1− A4)md

−A2 − A−2
Q[H] + (1− A4)mdQ[K].

�

Theorem 3.4 gives a recursion formula to calculate the Kauffman bracket polynomial of

R. In the following, we will simplify the formula by chain polynomial. First, we introduce

the definition of chain polynomial, which is proposed by Read and Whitehead for the

purpose of studying the chromatic polynomial for homeomorphism class of graphs.

Definition 3.5. [36] The chain polynomial Ch[G] of a graph G is defined as

Ch[G] =
∑
(Y,U)

F [Y ]wν(U),

where Y is a spanning subgraph of G, U = Y − E(G); F[Y] is the flow polynomial, and

ν(U) the number of chain in U .

Proposition 3.6. [36] If graph G consists of two graphs G1 and G2 which have at most

one vertex in common, then Ch[G] = Ch[G1]Ch[G2].

The following proposition is obvious.
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Proposition 3.7. [36] Let a be an edge of G, and let G − a and G/a be the graph

obtained from G by deleting and contracting the edge a respectively. Then if a is a loop,

Ch[G] = (a− w)Ch[G− a], and otherwise, Ch[G] = (a− 1)Ch[G− a] + Ch[G/a].

The following theorem gives a relation of Kauffman bracket polynomial for a cycle-

crossover polyhedral link L(P ) and chain polynomial of the polyhedron P . Applying

Theorem 3.4 to each parallel pair chain of R, we have

Theorem 3.8. Let P be a convex polyhedron. Let R be a planar graph from L(P ). In

Ch[P ], if we replace w by −A−4−1−A4, and replace d by (
A−4 + A4

A4 − 1
)md for every parallel

pair chain d, then we have

Q[R] =
(1− A4)m

(−A2 − A−2)q−p+1
Ch[P ], (5)

where m denotes the sum of the length of cycle-crossover in R, and p the number of

vertices of P , q the number of edges of P .

Proof : Suppose that i ∈ E(R) is a parallel pair chain of R, by (3), we have

Q[R] = (1− A4)mi

{
(A

−4+A4

A4−1
)mi − 1

−A2 − A−2
Q[H] + δQ[K]

}
.

Let α =
A−4 + A4

A4 − 1
. Then

Q[R] = (1− A4)mi

{
αmi − 1

−A2 − A−2
Q[H] + δQ[K]

}
.

Applying (3) successively with each cycle-crossover in turn, we obtain

Q[R] = (1− A4)

e(P )∑
i=1

mi
∑

D⊂E(P )

{∏
d∈D

(
αmi − 1

−A2 − A−2

)}
δLQ[RD],

where RD is the graph from R by deleting the parallel pair chains in D and contracting

those in S = E(P )−D, and L is the number of times that a loop has been contracted.

Q[R] = (1− A4)

e(P )∑
i=1

mi
∑

D⊂E(P )

{∏
d∈D

(αmi − 1)

}
(−A2 − A−2)−|D|+k〈S〉−1δ|S|−p+k〈S〉

=
(1− A4)

e(P )∑
i=1

mi

(−A2 − A−2)q−p+1

∑
D⊂E(P )

{∏
d∈D

(αmi − 1)

}
((−A2 − A−2)δ)|S|−p+k〈S〉,
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where k〈S〉 denotes the number of connected components of induced subgraph of S, and

|S| the size of S.

Since ∏
d∈D

(αmi − 1) =
∑
U⊂D

(−1)|D|−|U |αν(U),

where ν(U) =
∑
d∈D

mi. So we have

Q[R] =
(1− A4)

e(P )∑
i=1

mi

(−A2 − A−2)q−p+1

∑
D⊂E(P )

{∑
U⊂D

(−1)|D|−|U |αν(U)

}
((−A2 − A−2)δ)|S|−p+k〈S〉.

Let Y = E(P )− U , then the coefficient of αmi is

(1− A4)

e(P )∑
i=1

mi

(−A2 − A−2)q−p+1

∑
S⊂Y

(−1)|Y |−|S|((−A2 − A−2)δ)|S|−p+k〈S〉

=
(1− A4)

e(P )∑
i=1

mi

(−A2 − A−2)q−p+1
F (Y, (−A2 − A−2)δ).

Finally, we get

Q[R] =
(1− A4)

e(P )∑
i=1

mi

(−A2 − A−2)q−p+1

∑
S⊂Y

F (Y, (−A2 − A−2)δ)αν(U)

=
(1− A4)

e(P )∑
i=1

mi

(−A2 − A−2)q−p+1
Ch[P ]

=
(1− A4)m

(−A2 − A−2)q−p+1
Ch[P ].

�

Theorem 3.8 implies that it is easier to compute by (5) than by Kauffman bracket skein

formula. For instance, for cycle-crossover cubic link (see Fig. 8), the computable complex

of using Kauffman bracket skein formula is 296. However, the computable complex of

using formula (4) at most is 212. This indicates that our result can more simplify the

process of the calculation.
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4 Jones polynomials of cycle-crossover

polyhedral links

To distinguish two knots or links, Vaughan Jones introduced Jones polynomial in 1984.

It is an invariant of an oriented knot or link which assigns to each oriented knot or link

a laurent polynomial in the variable t
1
2 with integer coefficients.

Theorem 4.1. [38] The Jones polynomial of an oriented link L, denoted variously by

VL(z), is defined by the following axioms:

1. if L is the trivial knot then VL(z) = 1.

2. t−1VL+ − tVL− = (t
1
2 − t−

1
2 )VL0, where L+, L− and L0 are three oriented link

diagrams that are identical except in one small region where they differ by the crossing

changes or smoothing shown in the fig. 11.

+L -L 0L

Fig. 11. Three oriented diagrams that are almost identical.

Jones polynomial can also be calculated by writhe and Kauffman bracket polynomial.

Theorem 4.2. [39] The Jones polynomial of an oriented link L is expressed as

Vt(L) = XL(A)|t−1/4 ,

where XL(A) = (−A3)−w(L)〈L〉, w(L) and 〈L〉 denote the writhe and Kauffman bracket

polynomial of L, respectively.

According to Theorem 4.2, if the writhe of L(P ) can be calculated, then its Jones

polynomial can be easily obtained.

In the following, we will characterize the realizable qualities (require some essential

conditions for their synthesis by DNA molecule) of L(P ). Firstly, we introduce a concep-

tion of hopf operation.
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)(a )(b )(c

Fig. 10. (a) Hopf operation. (b) Parallel orientation. (c) Antiparallel orientation.

Given an edge e, define a hopf operation to be a change that replaces the edge e with

an opened hopf link obtained by hopf link minus two arcs, as shown in Fig. 10(a). If we

apply hopf operations to every edge of a graph G, then a corresponding link L(G) can be

obtained. There is a one-to-one correspondence between G and L(G) via hopf operations.

Under biological viewpoint, two strands of DNA polyhedron have parallel or antiparal-

lel orientation [37]. Accordingly, for all oriented L(P ), there are only two kinds of oriented

L(P ), global parallel or antiparallel, have biological meanings. The right figure in Fig.

10(a) is a local of L(P ). If all locals of L(P ) are not parallel or antiparallel (see Fig. 10(b)

and (c)), then we call it local parallel or antiparallel. If every local of L(P ) are parallel or

antiparallel , then we call it global parallel or antiparallel. Thus, this brings on an issue

which L(P ) can have global parallel or antiparallel orientation.

Theorem 4.3. (1) If G is an arbitrary graph, then L(G) has global antiparallel orienta-

tion.

(2) If G is a bipartite graph, then L(G) has global parallel orientation.

Proof : Let G∗ be a graph by replacing every crossing of L(G) with a vertex. Let

F1(G
∗), F2(G

∗), · · · , Ff(G)(G
∗) be f(G) faces in G∗, which homologous to f(G) faces in

G.

(1) Let L(G) be a cycle-crossover link obtained by applying hopf operation to every

edge of G. Assign a clockwise or anticlockwise orientation to boundary of Fi(G
∗), then

G∗ can product antiparallel orientation. Hence L(G) has global antiparallel orientation.

(2) SinceG is bipartite, the length of every face ofG denoted by l(Fi) is even, where i =

1, 2, · · · , f(G). Assign an orientation to each edge of G∗, such that those edges in Fi(G
∗)

have l(Fi)/2 clockwise edges and l(Fi)/2 anticlockwise edges. And these orientations are

alternating. Then L(P ) has global parallel orientation. �
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If a L(P ) has m parallel (resp. antiparallel) orientation and n antiparallel (resp.

antiparallel) orientation, how we modify the L(P ) such that it has global parallel or

antiparallel orientation.

Corollary 4.4. If a L(P ) has n locals, there exist n−1 locals with parallel (resp. antipar-

allel) orientation and a local with antiparallel (resp. parallel) orientation, then L
′(P ) with

global parallel (resp. antiparallel) orientation can be obtained from L(P ) by increasing odd

cycles, as shown in Fig. 12.

Hopf operations

Fig. 12. An antiparallel orientation becomes a parallel orientation after adding a cycle.

Accordingly, we need only calculate Jones polynomials of the two significative cases.

For a cycle-crossover polyhedral link L(P ) with global parallel orientation, if it is

right-handed, then w(L) = 2
e(P )∑
i=1

mi. Other w(L) = −2
e(P )∑
i=1

mi. Now we suppose the links

are all left-handed.

(1) If the orientation of L(P ) is global parallel, then

w(L) = −2
e(P )∑
i=1

mi.

So

XL(A) =
(−A3)

2
e(P )∑
i=1

mi

(1− A4)

e(P )∑
i=1

mi

(−A−2 − A2)q−p+1
Ch[P ]

=
(A6 − A10)

e(P )∑
i=1

mi

(−A−2 − A2)q−p+1
Ch[P ].

Therefore

Vt(L) =
(A6 − A10)

e(P )∑
i=1

mi

(−A−2 − A2)q−p+1
Ch[P ]

∣∣∣
A=t−1/4

.
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(2) If the orientation of L(P ) is global antiparallel, then

w(L) = 2

e(P )∑
i=1

mi.

So

XL(A) =
(−A3)

−2
e(P )∑
i=1

mi

(1− A4)

e(P )∑
i=1

mi

(−A−2 − A2)q−p+1
Ch[P ]

=
(A−6 − A−2)

e(P )∑
i=1

mi

(−A−2 − A2)q−p+1
Ch[P ].

Therefore

Vt(L) =
(A−6 − A−2)

e(P )∑
i=1

mi

(−A−2 − A2)q−p+1
Ch[P ]

∣∣∣
t−1/4

.

5 An example

In order to obtain the Kauffman bracket polynomials of cycle-crossover tetrahedral link,

it suffices to calculate the chain polynomial of the tetrahedron in Fig. 7. Firstly, we label

the edges a, b, c, d, e, f . Then the chain polynomial of the tetrahedron can be obtained by

Proposition 3.7.

Ch[P ] = abcdef − w(abc+ aef + bdf + cde+ ad+ be+ cf)

+w(w + 1)(a+ b+ c+ d+ f)− w(w + 1)(w + 2).

Now the Kauffman bracket polynomial can be obtained by Theorem 3.8.

Let α =
A−4 + A4

A4 − 1
, w = −A−4 − 1− A4. Then

〈L(P )〉 =
(1− A4)ma+mb+mc+m+me+mf

(−A2 − A−2)3
{αma+mb+mc+md+me+mf − w(αma+mb+mc

+αma+me+mf + αmb+md+mf + αmc+md+me + αma+md + αmb+me + αmc+mf )

+w(w + 1)(αma + αmb + αmc + αmd + αme + αmf )− w(w + 1)(w + 2)}.
=

(1− A4)21

(−A2 − A−2)3
{α21 − w(α12 + 2α11 + α9 + α8 + 2α6) + w(w + 1)(3α4 + α5

+2α2)− w(w + 1)(w + 2)}
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= A−204 − 3A−200 + 27A−196 − 73A−192 + 351A−188 − 861A−184 + 2933A−180

−6567A−176 + 17747A−172 − 36463A−168 + 83006A−164 − 157128A−160

+312233A−156 − 545777A−152 + 967428A−148 − 1561783A−144 + 2499751A−140

−3718271A−136 + 5399195A−132 − 7359660A−128 + 9679490A−124

−11988919A−120 + 14191162A−116 − 15805331A−112 + 16688244A−108

−16529323A−104 + 15409821A−100 − 13411804A−96 + 10899369A−92

−8205147A−88 + 5704980A−84 − 3629849A−80 + 2100470A−76 − 1092946A−72

+506670A−68 − 206343A−64 + 72893A−60 − 21920A−56 + 5497A−52

−1110A−48 + 171A−44 − 18A−40 + A−36.

According to (1), we have

Vt(L) = t−51 − 3t−50 + 27t−49 − 73t−48 + 351t−47 − 861t−46 + 2933t−45 − 6567t−44

+ 17747t−43 − 36463t−42 + 83006t−41 − 157128t−40 + 312233t−39 − 545777t−38

+ 967428t−37 − 1561783t−36 + 2499751t−35 − 3718271t−34 + 5399195t−33

− 7359660t−32 + 9679490t−31 − 11988919t−30 + 14191162t−29 − 15805331t−28

+ 16688244t−27 − 16529323t−26 + 15409821t−25 − 13411804t−24 + 10899369t−23

− 8205147t−22 + 5704980t−21 − 3629849t−20 + 2100470t−19 − 1092946t−18

+ 506670t−17 − 206343t−16 + 72893t−15 − 21920t−14 + 5497t−13 − 1110t−12

+ 171t−11 − 18t−10 + t−9 .
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