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Abstract

The model of polyhedral links has been applied to explain DNA and pro-

tein cages from mathematics. Recently, a type of polyhedral links has been

constructed by the means of branched alternating closed braids and double

lines. In this paper, as a special type of the links, pyramidal links L(P ) are

fabricated on an pyramid P by 3-cross-curves, n-cross-curve and double-lines

covering, where n is the maximum degree of P . We compute the genus of links

L(P ) as

g(L(P )) =

⎧⎨⎩n− 2, if n is divisible by 3,

n− 1, otherwise.

This result shows that the genus of L(P ) only depends on n, and the complexity

of the L(P ) increases with the increase of n.

1 Introduction

Large and flexible macromolecules, such as DNA and polymethylene polyethy-

lene, can form intricate knotted and interlocked topologies which include some more

interesting interlocked 3-dimension structures. In recent decades, the DNA tetrahe-

dron [1, 2, 3], DNA cube [4, 5, 6], DNA octahedron [7, 8, 9], DNA dodecahedron
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[3, 10], DNA icosahedron [11, 12], DNA buckyball [3], and bacteriophage HK97 cap-

sid have been synthesized and discovered. These interesting DNA polyhedra present

tremendous potential in a number of areas, including drug encapsulation and re-

lease, regulation of the folding and activity of encaged proteins, as host molecules for

nanomaterials and as building blocks for 3D-networks for catalysis and biomolecule

crystallization [3]. Thus, these fancy polyhedral structures excited our intensively

exploring interesting.

The first topologically linked protein which forms a 72-catenane was discovered in

the bacteriophage HK97 capsid in 2000 [13]. From the discover, it can be seen that

proteins can form topologically linked architectures. Inspired by this more topologi-

cally complex polyhedral catenane, Qiu and co-workers fabricated a family of polyhe-

dral links by the method of the ‘three-cross-curve and double-line covering’ [14, 15].

Immediately, the model is generalized, and another type of polyhedral links has been

constructed by the means of branched alternating closed braids and double lines [16].

Considering these advances in creating polyhedral links [15, 16, 17, 18, 19, 20] and

its dual analysis [21, 22], knot theory as a better tool can be used to characterize

topologies of these exotic molecular structures.

In knot theory, knot invariants are quantities defined for each knot which is the

same for equivalent knots. Thus, they can be used as molecular descriptors to de-

scribe the various configurations of large molecules that have non-planar graphs. So

far, standard knot invariants include genus, unknotting number, different knot poly-

nomials (Alexander, Conway, Jones, HOMFLYPT, Kauffman...), etc. And genus, a

topological invariant of a surface, is always used to describe and classify graphs and

knots. Apart from its mathematical relevance, genus has a great influence on biology

and chemistry. The principle of genus has been lent to guide the molecular design

of organic compounds, as well as classify RNA structural motifs [23]. Studies on the

genus of knots or links have been brought on more and more attention [24, 25, 26].

It is a splendid molecular descriptor, and can also be used to describe the topological

configurations of large molecules. In addition, molecules with genus might constitute

interesting targets for a topology-aided chemical design [27, 28, 29].

In this paper, inspired by the bacteriophage HK97 capsid, we extend the method of

‘branched alternating closed braids and double lines covering’ to pyramids, and finally
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get some pyramidal links. The resulting structures have not been synthesized yet and

might constitute interesting targets for a topology-aided molecular design. Expect for

the symmetry analysis, we also investigate the genus and number of components of

these links, which provide a new way to detect their complexity. Such mathematical

consideration may provide a new guiding principle to topology-aided molecular design

in a given surface, and rational evidence for the synthesis in the laboratory.

2 Preliminaries

To provide necessary background, we begin our account with some basic concepts,

terminology and denotation.

A knot K ⊂ R3 is a subset of points homeomorphic to a circle. A link L of n

components is a finite disjoint union of knots: L = K1 ∪ · · · ∪Kn.

A Seifert surface of a knot or link L is a surface S whose boundary is a given

knot or link. The surface S is compact, connected, orientable. Seifert, in the 1934’s,

gave an algorithm which produces such a surface S for a given link diagram L [30].

The algorithm eliminates each knot or link crossing by connecting each of the strands

coming into the crossing to the adjacent strand leaving the crossing, as shown in Fig.

1. The resulting strands no longer cross but form instead a set of nonintersecting

circles called Seifert circles. The Seifert circles of trefoil knot is shown in Fig. 2.

Fig. 1. Eliminate a crossing according to orientation of strands.

Definition 2.1. [32] The genus of an oriented link L is the minimum genus of any

connected orientable surface that spans L. The genus of an unoriented link is the

minimum taken over all possible choices of orientation. The genus of a link L denoted

by g(L).

Throughout this paper, we use D to denote an oriented diagram representing a
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Seifert circles

Fig. 2. Seifert circles of the trefoil knot.

given oriented link L, and s(D) the number of Seifert circles of D. The maximal

number of Seifert circles of an unoriented diagram L is denoted by s̄(L).

Let P = (V ;E) be a polyhedron with vertex set V and edge set E. We use n(P )

to denote the number of vertices of P , f(P ) the number of faces. �(P ) denotes the

maximum degree of P .

3 Construction of pyramidal links

According to Ref. [16], we introduced a type of branched alternating closed braids

polyhedral links, which is fabricated by the means of branched alternating closed

braids and double lines. In [16], Ŝi is denoted by a branched alternating closed braid,

which has arbitrary number of strings and crossing number. Here, let T̂1 denote a

branched alternating closed braid with the number of string 2 and crossing number

n. Let T̂2 denote a branched alternating closed braid with the number of string 2

and crossing number 3. That is, T̂1 and T̂2 are 3-crossing curve and n-crossing curve,

respectively, as shown in Fig. 3.

)( a )( b

Fig. 3. (a) T̂1: 3-crossing curves. (b) T̂2: n-crossing curve.
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As a special case of branched alternating closed braids polyhedral links, pyramidal

links are constructed by n-crossing curve, 3-crossing curves and double-lines covering.

The construction method is

(1) Use an n-crossing curve to cover vertex of a cone of P .

(2) Use n 3-crossing curves to cover others n vertices of P .

For example, a 4-pyramidal link is constructed by a 4-crossing curve, four 3-

crossing curves and double lines covering on 4-pyramid, as illustrated in Fig. 4 (a).

A 9-pyramidal link is constructed by a 9-crossing curve, nine 3-crossing curves and

double lines covering on 9-pyramid, as illustrated in Fig. 4 (b).

Fig. 4. (a) Construction of 4-pyramidal link. (b) Construction of 9-pyramidal link.

In terms of linked molecular framework, symmetry plays an important role as a

guiding principle for the design of novel molecules. Therefore, here we will discuss

the symmetry of the polyhedra P and its corresponding links L(P ). Compare to the

polyhedron P , the symmetry of L(P ) loses its mirror symmetry in our construction.

For instance, the tetrahedron and n-pyramid (n ≥ 4) have Td and Dnd symmetry,

respectively. However, the tetrahedral links and n-pyramidal links have T and Dn

symmetry, respectively.
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4 Genus of pyramidal links

Gabai, in 1986, pointed out that if Seifert’s algorithm is applied to an alternating

diagram, a Seifert surface of minimal genus can be yield. Therefore, Theorem 4.1 and

4.2 provide a computing method of genus of an oriented alternating link.

Theorem 4.1. [31] Every Seifert surface obtained by applying Seifert’s algorithm to

alternating diagrams is of minimal genus.

Theorem 4.2. [32] The genus of a projection surface F constructed from a connected

diagram D satisfies 2g(F ) = [1− s(D) + c(D)] + [1− μ(D)], where s(D) denotes the

number of Seifert circles, c(D) the number of crossing number, μ(D) the number of

component of diagram D.

Given a link L with n-components, there are 2n cases based on the orientations of

n closed curves involved. Then it has 2n oriented link diagrams D1, D2, · · · , D2n . By

Theorem 4.2, for all oriented link diagrams, it has genus g(D1), g(D2), · · · , g(D2n).

According to Definition 2.1 and Theorem 4.2, in order to make genus as small as

possible, we must pick the maximum number of Seifert circles from D1, D2, · · · , D2n .

Hence, g(L) only depends on the maximum number of Seifert circles.

In D1, D2, · · · , D2n , there exist some oriented diagrams whose numbers of Seifert

circles are the same, then we can expurgate those oriented diagrams. Proposition 4.3

gives a method of expurgating.

Given an oriented link diagram D, we can form its reverse −D by reversing the

orientations on all of its components. Their numbers of Seifert circles are equal. That

is s(D) = s(−D). From this, we have the following proposition immediately.

Proposition 4.3. Let L∪M be an oriented link diagram with components L1, . . . , Lp,

M1, . . . ,Mq. Then s(−L ∪M) = s(L ∪ −M).

Given an n-pyramidal link L(P ), its number of components is related to the�(P ).

Theorem 4.4. Let P be an n-pyramid.

(i) L(P ) is a 4-component link, if n is divisible by 3.

(ii) L(P ) is a 2-component link, otherwise.
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Proof: Let n-crossing curve properly embedded in a 3-ball B3. Then ∂(B3) meets it

transversely in exactly 2n points. We label the points from 1, 2, · · · , 2n.
(i) If n is divisible by 3, then lines of labeled {1, 4, 7, · · · , 2n−2}, {2, 5, 8, · · · , 2n−

1}, {3, 6, 9, · · · , 2n} consist of three components of L(P ). The unlabeled line is the

fourth component.

(ii) If n is not divisible by 3, and each crossing of D(P ) is regarded as a vertex, then

the labeled line is an Euler circuit, which is a component of L(P ). The un-labeled

line is another component. Therefore, the case has two components. �

In the following part, we will discuss the number of Seifert circles of each oriented

link diagram.

Let A be a local region in an n-pyramidal link diagram surrounded by a circle, as

illustrated in Fig. 5. Thus A has 4 components and 16 possible choices of orientation.

Let Ai denotes the i
th possible choices, where i = 1, 2, · · · , 24. Therefore, the number

of Seifert circles of an oriented n-pyramidal link diagram are obtained by applying

Seifert’s algorithm to the link diagram for every Ai. Let Di(P ) denote an oriented n-

pyramidal link diagram whose orientation is determined by Ai, s(Di(P )) the number

of Seifert circles of Di(P ).

Assume that A1, A2, A3 and A4 are such oriented diagrams, as shown in Fig. 6.

Fig. 5. A region A in an n-pyramidal link diagram.

Theorem 4.5. If L(P ) is a 4-component link, then Di(P ) has only four differ-

ent numbers of Seifert circles, and the four situations are uniquely determined by

A1, A2, A3, A4, where i = 1, 2, · · · , 16.

Proof: Given A an orientation, and suppose that the resulting A is A1. Reversing

the orientation of some components of A will result in different number of Seifert
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1
A

2
A 3

A 4
A

Fig. 6. Four possible orientations of A.

circles (may not change the number). So the reversing has C(4, 1) +C(4, 2) = 10, as

shown in Fig. 7.

Fig. 7. The numbers of reversing of A1.

In Fig. 7, by Proposition 4.3, s(D4(P )) = s(D9(P )), we can delete A4 or A9. Here

we assume that delete A9. Similarly, s(D8(P )) = s(D10(P )), s(D7(P )) = s(D11(P )).

So, A10 and A11 are deleted. Therefore, the number of Ai is reduced. So we have only

A1, A2, · · · , A8. From above, 16 choices of orientation are reduced to 8. We need to

reduce more choices.

For every Ai, it has two neighbors which are denoted by Al
i and Ar

i , respectively.

Let Ti = {Al
i, Ai, A

r
i}. If i = 1, then Al = −A7, A

r = A8. So, T1 = {−A7, A1, A8}.
If i = 7, then T7 = {−A8, A7,−A1}. If i = 8, then T8 = {−A7, A8, A1}. Therefore,

s(D1(P )) = s(D7(P )) = s(D8(P )). From this, we can divide A1, A7 and A8 into a
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class K1. Similarly, s(D2(P )) = s(D5(P )) = s(D6(P )), then A2, A5, A6 are divided

into a class K2. In addition, T3 = {A3, A3, A3}, T4 = {A4, A4, A4}. Hence we can

divide Ai into four classes: K1 = {A1, A7, A8}, K2 = {A2, A5, A6}, K3 = {A3} and

K4 = {A4}. So we need only consider A1, A2, A3, A4. Therefore, 8 choices are reduced

to 4.

Subsequently, we will discuss that L(Pn) do produce different number of Seifert

circles for Ai, where i = 1, 2, 3, 4.

Let D(Pn) = D(Pn−3) ⊕Wi, where Wi denotes a set of curve in sectorial region

shown in Fig. 8. D(Pn−3) can be obtained by identifying a, a′, b, b′ and c, c′ respec-

tively after deleting Wi. Applied Seifert’s algorithm to Wi, as illustrated in Fig. 9,

we have

a�

b�

c�

Fig. 8. D(Pn−3) can be obtained by identifying a, a′, b, b′ and c, c′ respectively after

deleting Wi.

2
W

3
W 4

W
1

W

Fig. 9. Some Seifert curves are obtained by applying Seifert’s algorithm to Wi,

respectively.

(i) if i = 1, then s(D(Pn)) = s(D(Pn−3)) + 4.

(ii) if i = 2, then s(D(Pn)) = s(D(Pn−3)) + 2.

(iii) if i = 3, then s(D(Pn)) = s(D(Pn−3)) + 6.
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(iv) if i = 4, then s(D(Pn)) = s(D(Pn−3)).

Therefore, we obtain s(Di(P )) �= s(Dj(P )), where i, j = 1, 2, 3, 4, i �= j. From

this, Di(P ) has only four different numbers of Seifert circles, which are uniquely

determined by A1, A2, A3, A4, where i = 1, 2, · · · , 16. �

Theorem 4.5 reduced the possible choice of orientation from 16 to 4. Then we can

find the maximum number of Seifert circles from the 4 possible choices. The following

theorem indicates that the maximum number of Seifert circles only depends on the

maximum degree of P .

Theorem 4.6. Let Pn be an n-pyramid. Then s̄(L(Pn)) = 2n+ 2.

Proof: If L(Pn) is a 2-component link and each crossing of D(P ) is regarded as a

vertex, then the labeled line is an Euler circuit. Thus the orientation of every two

neighboring labeled lines is different. This means that s(L(Pn)) = 4 or n(Pn)+f(Pn).

Therefore, s̄(L(Pn)) = 2n(Pn) = 2n+ 2.

If L(Pn) is a 4-component link, then in i = 4, the recursive formula will produce

the maximum number of Seifert circles. From this, we have

s(D(Pn)) = s(D(Pn−3)) + 6

= · · ·
= s(D(P0)) + 2n.

However, D(P0) is an alternating closed braid with the number of string 2 and crossing

number n. Thus D(P0) is a knot or link, and the numbers of Seifert circles are equal

to 2 by applying Seifert’s algorithm to D(P0). Therefore, we have

s̄(D(Pn)) = 2n+ 2.

�

Up to now, the maximal number of Seifert circles of L(P ) has been obtained. By

Theorem 4.2, we can obtain the genus of L(P ).

Theorem 4.7. Let P be an n-pyramid, then

(i) g(L(P )) is n− 2, if n is divisible by 3.

(ii) g(L(P )) is n− 1, otherwise.
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Proof: According to Theorem 4.2,

(i) If n is divisible by 3, then

2g(L(P )) = 2− s̄(L(P )) + c(L(P ))− μ(L(P ))

= 2− 2(n+ 1) + 4n− 4

= 2n− 4.

That is

g(L(P )) = n− 2.

(ii) If n is not divisible by 3, then

2g(L(P )) = 2− s̄(L(P )) + c(L(P ))− μ(L(P ))

= 2− 2(n+ 1) + 4n− 2

= 2n− 2.

(1)

That is

g(L(P )) = n− 1.

�

Here, we give some examples for the genus of the family of n-pyramidal links in

the following table.

Table 1

n whether n divisible by 3 or not genus

Tetrahedral link 3 Yes 1

4-prism link 4 No 3

5-prism link 5 No 4

6-prism link 6 Yes 4

7-prism link 7 No 6

8-prism link 8 No 7

9-prism link 9 Yes 7

According to the above table, if |�(P1)| = 3k − 1, |�(P2)| = 3k, k ≥ 2, then

g(L(P1)) = g(L(P2)). For examples, the genus of the 5-prism link and 6-prism link

are the same, the genus of the 8-prism link and 9-prism link are also the same.
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5 Discussion and conclusion

We have constructed a type of n-pyramidal links by the method of ‘n-crossing

curve, n-crossing curves and double lines covering’. Although the structures of these

pyramidal links have not been synthesized, they might constitute interesting targets

for a topology-aided molecular design.

The genus of pyramidal link is first given on the basis of what surface they embed

into. Research on the genus has provided a new way to detect the complexity of these

links. As a result, the pyramidal links with greater genus are more complex. For

instance, the 4-pyramidal link is more complex than the 3-pyramidal link. But the

genus of the 5-pyramidal link and the 6-pyramidal link are equal. In terms of genus

we can not judge which link is more complex. Thus, the number of components

of a link is another index of judging the complexity of those pyramidal links with

the same genus: the greater number of components is, the more complex link is.

Accordingly, the 6-pyramidal link is more complex than the 5-pyramidal link. Due

to our discussion, the complexity of pyramidal links L(P ) increases with the increase

of n.

The consideration of the correspondence between links and their surfaces is also

of chemical importance. The 3-pyramidal protein catenane or the (3k+1)-pyramidal

protein catenane can be designed in a surface with genus one or 3k, respectively,

where k = 1, 2, · · · . For a surface with genus 3k + 1, the (3k + 2)-pyramidal protein

catenane and the (3k + 3)-pyramidal protein catenane can be designed, where k =

1, 2, · · · . As a general observation, there are at most two pyramidal catenanes can be

designed for a given surface, which provides a new guiding principle to topology-aided

molecular design in a given surface and a rational evidence for the synthesis in the

laboratory. For examples, aside from 3-pyramidal protein catenane, every pyramidal

protein catenanes can not be synthesized in a surface with genus one. The 5-pyramidal

protein catenane and the 6-pyramidal protein catenane can be synthesized in a given

surface with genus 4.
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