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ABSTRACT

The standard approach in chemical and photochemical kinetics is to proceed
from the kinetic scheme to the corresponding system of first-order differential
equations, and then to integrate it. When the species of interest decay via unimolecular
or pseudo-unimolecular steps, the evolution equations can be directly written in integral
form by application of the convolution method (CM). The CM as presently developed is
not applicable when the species of interest decay by one or more bimolecular processes.
In this work the CM is extended by developing a completely general integral
formulation. This approach allows obtaining approximate solutions to any desired
degree of accuracy. Several examples of application are presented, including Henri-

Michaelis-Menten enzyme kinetics.
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1. INTRODUCTION

The standard approach in formal chemical and photochemical kinetics is to
proceed from the kinetic scheme to the corresponding system of first-order differential
equations, and then to integrate this system, analytically or numerically, in order to
obtain the concentrations of selected species as a function of time, which is the main
goal [1,2]. Analytical integration is of course much preferable, but when there are
bimolecular elementary steps it is seldom possible without recourse to simplifications
such as the quasi-steady-state and pre-equilibrium approximations.

When the species of interest decay solely via unimolecular or pseudo-
unimolecular steps, it is nevertheless possible to sidestep the system of differential
equations. In fact, the evolution equations can be directly written in integral form by
application of the convolution method (CM) [3-6]. The equations are in general coupled,
but the explicit solutions can be obtained in most cases by repeated substitution or by
use of Laplace transforms. This very useful approach (see [7-10] for specific
applications) will only be briefly recalled here.

The CM as presently developed is unfortunately not applicable if at least one of
the species of interest decays by one or more bimolecular processes [6]. It is the purpose
of this work to extend the CM by developing a completely general integral formulation of

chemical and photochemical kinetics.

2. THEORY

The central quantity in the CM is the survival probability of a given species X; (i =

1, 2,..) after delta (instantaneous) production [3-6]:
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X,5(t) =exp(—k,1) (€8]
where for simplicity X; stands also for the concentration of species Xi. The survival
probability function is assumed to be the same, whatever the time at which production
takes place. This means in particular that the decay of species X; is not dependent on the
concentration of other species, hence it must be unimolecular (or pseudo-unimolecular
at most). The response to other types of stimulii, be they reactants or other production
modes (e.g. light absorption that generates an excited state) is written as

X,()= P ®X,,(1)= P ®exp(-k,1) @
where ® stands for the convolution between two functions, f® g= _L’f(u)g(t—u)du.

This results from an assumption of linearity [3-6].

We now generalize Eq. (1), and in particular to cases where X; decays by
bimolecular processes. If X; is generated at time t), then the respective survival
probability is in general

‘
X, (t]1,)=exp [— jk,.(u) duj (3)
fy
where k;i(t) is an appropriate time-dependent rate coefficient, whose form will be
detailed in Sect. 3. This time dependence may arise from a concentration dependence, if

the respective disappearance step is bimolecular, with k,(#) = k,.X (¢), but also from the

temperature dependence of a unimolecular rate constant, if the reaction is not
isothermal. In both cases the delta response is neither independent of the production
time nor of the subsequent system’s evolution (unlike the cases previously considered in
the so-called transient kinetics [3,4] where the same time-dependent rate coefficient is

valid for impulses occurring at different times). The time evolution of a species is linked
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to the rest of the system not only by the production, but also by the disappearance rate.

Instead of Eq. (2), the response to a general (non-delta) production is now given by
X.(1)= j P(W)X,(t|v)dv 4)
0

This is the main result of the present work, and represents a generalization of the CM.
An assumption of linearity is still implicit, which is consistent with the usual differential
equation formalism. Indeed, differentiation of Eq. (4) with respect to time gives

dax;
dt

= P~k (D X,(1) (5)

This result demonstrates the strict equivalence of the differential and integral kinetic
formalisms.

In the CM, the long-time limit of X;, Xi., is given by [4]
X, =1limP.® X (1) = P() J'Xi(,.(u)du (6)
0

And assumes a simple form if Xjs(t) is given by Eq. (2).

The more general result in integral kinetics is now
X,, = B(eo) [X[5(u|1,) cu )
fo

where X (u|t,) stands for the limiting form of X ;(u |7,) when to is very large. Eq. (7) is

valid only when Pj(t) attains a constant value for t—oo.
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3. APPLICATIONS

3.1 Irreversible reactions

3.1.1 Elementary bimolecular reaction

The simplest possible nontrivial case is the elementary bimolecular reaction

X, +X, 5 X,

Scheme 1

whose analytical solution is

X107X20 X
20
Xy eXp[k(Xlo *Xzo)t]szo

Xz(t) =

An identical equation exists for Xi.

If X2 is generated at time to, then its survival probability reads

[

X,5(tt,) = exp[—k ].Xl(u)duj

On the other hand, the production term of X is
Pz(t) = Xzo 5(’)

and therefore, using Eq. (4), the time evolution of X is simply
X, (1) =X,, exp[—k].X,(u)du]
0
An analogous equation exists for Xi,
X (=X, exp[—k ]Xz(u)du]
0

and insertion of Eq. (12) into Eq. (11) gives

(8)
)

(10)
(11)

(12)
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X, (=X, exp{leo /J.exp[kuj-Xz(v)dvjdu} (13)

which is an integral equation in Xz only. This equation can be solved by the repeated
insertion of the lLh.s. into the r.h.s., starting from the zero-order approximation,
X{"(#) = X,,. The first-order approximation is
Dy — X]o —k Xt
XO(t) = Xyyexp| -1 (1-¢ ") (14)
XZO
and is accurate only for short times. A similar equation applies to Xi. The second-order

approximation follows from substitution of Eq. (14) into Eq. (13),

' Xio
| [ X [ Xio —kxu
X;z)(t):Xmexpl:ka(;[exp[e H [Ez[/\/:])]Et(Xf:)e ke deu} (15)

It is a good approximation for all times if X10/X20 < 0.8 or if X10/X20 > 1.3. Of course, this
approximate equation offers no advantage whatsoever over the exact solution, Eq. (8).
A slightly different approach uses the relation between X1 and Xz (as is done for
the integration of the rate equation),
X, —-X,(0)=X,,—X,() (16)
and allows to directly obtain the exact solution, Eq. (8). In fact, substitution of Eq. (16)

into Eq. (11) gives
| X

X, () =X, explifk(Xm - Xzo)t]exp[k IXz(u)du] = X—Zoexp[fk(Xm - Xzo)t:IX1(t) (17)
0 10

and using again Eq. (16), Eq. (17) becomes

X(0=32

eXp‘:ik(XIU7X20)t:|[Xw*qu+Xz(f)] (18)

10
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which is an algebraic equation that yields Eq. (8). In this way the integral approach leads
to the exact solution of a non-linear kinetic problem without solving any differential
equation.

3.1.2 Consecutive reactions with one bimolecular step

Another example of application is the following scheme:

X, X,

X, +X,—5> X,

Scheme 2

where X10 and X3 are nonzero. This scheme has a known solution in terms of incomplete
gamma functions [11]. Only when X30 >> X10 (pseudo-unimolecular conditions) is the

solution elementary. The system of differential equations is:

% = _k]X] (19)
dx
dtl =k X, — kX, X, (20)
d;; - kXX, (21)
dx
th =k, X, X, (22)

The integral approach to Scheme 2 is now outlined.
If X2 is generated at time to, then its survival probability reads
X,,(t|1,) = exp[— jkng(wdu] (23)
On the other hand, the production term for Xz is

B (1) = kX, (1) (24)



-610-

and therefore the time evolution of X3 is
X,(0) = [P)X,5 (¢ |u) = Ilel(u)exp{ 13 XS(v)dvjdu (25)
0 0 u

As a check, it is confirmed that differentiation of this equation with respect to

time yields the customary rate equation form,

dx,
dt

=k X, ~k X, jk,Xlexp[— [k, X3(v)dvjdu =k X, —k, X, X, (26)
0

as it should.

The formal solution for X>, Eq. (25), is a function of the concentrations of X; and
X3, and further steps are needed to obtain the final result. In this case, the time evolution
of Xi is simply

X,(1)= X, exp(—kt) (27)

whereas the time evolution of X3 obeys
X3(t)—X30exp[:fk2X2(u)duj (28)
0
Insertion of Egs. (27) and (28) in Eq. (25) yields
X, () =kX, ].exp{—klu -k, Xy, ]exp[—k2 ]Xz(w) dwjdv }du (29)
0 u 0

which is an integral equation for X only. As in the previous example, this equation can
be solved by the repeated insertion of the Lh.s. into the r.h.s, starting from the zero-

order approximation which is X{”(#) = X, = 0. The lower order approximations will be

accurate only for short times. The first-order approximation is

kX,
X(l)(t) — 1“4 10 e—klz _ e—kz)(mt (30)
’ kszo - kl ( )
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which is the exact result when X3o >> X10. The second-order approximation, which is

better than X{"(¢), is obtained as

o ! ! kX, (1-e™ 1—e ™%
X7 (1) =kX, Jexp —ku—k,X,, Iexp - - v |du (31)
0 kszo _kl kl ksz

u

A different approach is again to directly relate X3 and Xa:
X0 =X, + X,(0)+ X, () - X\, = X3+ X, () - (1 767}(")){10 (32)

and then to insert this equation together with Eq. (27) into Eq. (25) to yield

X, (1) =k X, | exp(klu —ky (X — Xm)(tfu)Jr%(e’/“' —e M) =k, [X, () Jdu (33)

0 1
which is equivalent but simpler than Eq. (29). The corresponding first-order

approximation is in this case

t
XP(0) =k X,, j exp{—klu —ky (Xo0 = X0 ) (t—u) + %(w —eh )}du (34)
0

1

With a software like Mathematica higher order approximations can be easily obtained

numerically.

3.3 Reversible reactions
3.3.1 Elementary equilibrium with one bimolecular step

The simplest possible case is now the reaction

k
)(1?)(2+X3

Scheme 3
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with X20 = X30 = 0, whose solution, given in implicit form in [12], can be rewritten as

XX, [1 —exp {—(2/\{“' - lj kltD
20

X,(t) = % (35)
X +(X,— XZm)exp{—[Z”’ - 1]@}
XZ’:O
where Xz is the equilibrium concentration of Xz,
X, =—2u (36)

: I+ 1+ e Xy
kl

Application of the integral formalism gives

X,\(H)= ’.[[Xm&(u) +k, X, (u)Xs(u)]exp[—k] (t— u)] du = [Xm +k, ’.[XZ (u)Xs(u)ek‘”du] et (37)

0

X,(f)= t[k,X,(u)exp[—]-kz X,(v) dvjdu (38)

t 1
X,(0)= J'le](u)exp[— IkZXz(v) dvjdu (39)
0 u
Using X, — X,(r) = X,(r) = X,(¢), an integral equation for X1 is obtained,
X,(0) = (Xm +l, [[X, - X )] e"‘"duj et (40)
0

The first-order approximation is

X(1) = X,e ™ (41)

This is the irreversible reaction result. The second-order approximation is

t
XP(t) = X,p| 1+k, X, (1 —e )2 ek‘"du}e"“ =X, [1 + Zk;CXlO [sinh(k,7) - klt]]e’k" (42)
0

1
and is valid for k2X10 << k1. With a software like Mathematica calculation of analytical

higher order approximations using Eq. (40) is immediate. In Fig. 1 two approximations
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for X1(¢t) are displayed along with the exact solution. The following results are observed:
(i) The higher the approximation, the better the general agreement. (ii) For a given
approximation, the agreement is good for short times, but deteriorates with time
stabilizing at a constant difference for long times. (iii) The more important the
reversibility, the worse the general agreement, and the earlier the time at which a given
approximation starts to diverge significantly from the exact solution.
3.3.2 Enzyme Kinetics

The simplest description of enzyme action is the so-called irreversible Henri-

Michaelis-Menten (HMM) mechanism:

E+ST2ES—te s E+ P

Scheme 4

where E is the enzyme, S the substrate, ES the enzyme-substrate complex, and P is the
product. In this scheme, reversibility of the second step is neglected, and also the
necessary existence of a second complex EP is not accounted for explicitly. No analytical
solution is known for the HMM Kkinetics, that is, the system of kinetic differential
equations has not been solved to yield expressions for the concentrations of all species
in closed form, i.e., in terms of known functions. Interestingly, the more general

reversible HMM scheme,

E+Se= :_ ES <—>i““. E+P
d ‘b

Scheme 5
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Fig. 1 First-order (---) and fourth-order (- -) approximations, along with the exact result (—), for X10=1,
ki=1 and k.=2 (a), k2=1 (b), k2=0.2 (c).
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admits a simple analytical solution for the particular case ka =k, [13].
Recently, an exact one-dimensional formulation of the irreversible HMM kinetics was
developed [14], the whole problem being condensed in a second-order non-linear

autonomous differential equation,

d’o do \do
O—+| 1+t +o+— |—+e0o=0 (43)
dr” dr ) dr

where e = [E]/Kw, s = [S]/Km, ¢ = [ES]/Kn , p = [P]/Kmn, €0 = [E]o/Km, So = [S]o/Km, and o =
s+c = so-p are dimensionless concentrations, T = ket t is a dimensionless time, @ is the
enzyme efficiency, ® = kcat/(Kcat+ka), and K is the Michaelis constant, Km = (ka+kcat) /Ka.

The exact solution of HMM Kkinetics was then obtained as a set of Maclaurin series [14],

2

€, €, T
S(T):SO—%T+§(1—®+€0+So)a+..., (44)
c(r) =207 S0 (11 ¢ 4 )Lz+ (45)

o @ R TR
()—@i—@(n + )13+ (46)
p(r)= e e, +5, Tk

From the same evolution equation, a number of approximate solutions, some
known, some new, were derived in a systematic way. For instance, for eg <<1+sq it was

obtained that after the short transient phase, and up to near completion [14],

P
W{(s,e e

s(t)=w (sO ele ) —-e, W,
0

(47)

p(r)=5,—-W (so ey“e’“") (48)

where W is the Lambert function.
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The evolution equation obtained is also well suited for the numerical
computation of the concentrations of all species as a function of time for any given
combination of parameters.

Application of the integral formalism to the irreversible HMM kinetics gives

E(t)= I[an(u) +(k, + km,)C(u)]exp[— i[an(v)dv} du (49)

0

() = [[Sy5(u)+k,Cw)] exp[ [ kuE(v)dv] du (50)
0 u
Where E, S and C are the enzyme, substrate and enzyme-substrate complex
concentrations, respectively. The following mass conservation relations are obeyed,
E,=E(t)+C(r) (51)

S, =8+ C()+P(1) (52)

Using Eq. (51), Egs. (49) and (50) become, after simplification,

E(t)=E, exp(— ’J‘kuS(v)va +(k,+k.,) [.[[E0 - E(u)] exp [— i[kaS(v)va du (53)

S() =S5, exp[— ]knE(v)dvj +k, ].[EO - E(u)]exp(— i[k“E(v)va du (54)

Insertion of Eq. (54) in Eq. (53) gives an exact integral equation in E only,

E(t) = Eyexp(E)+(k, +k,,)x IJ‘[E0 —E(z)]exp(E)dz (55)

0

where
E= —].ku {SU exp(—]kaE(w)dw] +k, ][Eo - E(v)]exp[—]kﬂE(w)dw]dv:ldu .

This equation is in a sense the integral counterpart of Eq. (43).

With the initial approximation S©(t) = Sy Eq. (53) reduces to
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E(t)= Eyexp(=k,Syt) +(k, +k,,) ][EO - E(u)]exp| kS, (t—u) |du  (56)

0
whose solution, obtained by the application of Laplace transforms, is the first-order

approximation for E(t),

K, +5S, exp[—kﬂ (K, + So)t]

ER(O=E, K, +S,
m 0

(57)

This approximation is better than that obtained from Eq. (55) by setting E=Ej in the

r.h.s., and which is analogous to Eq. (14), as reversibility is neglected at this level,

W p Sy kB
E (t)_Eoexp[—Eo(pe )} (58)
Substitution of Eq. (57) into Eq. (54) gives a first-order approximation for S(t) that is
still valid only for short times. However, a different route for the calculation of an
approximate S(t) that yields a simpler and more accurate expression is to use Egs. (51)

and (57) to get

1- exp[—kﬂ (K, + So)t]
K, +S,

CV()=E,S, (59)

and then to note that

60
K, +5S, (60)

m

PO(1)=k C(1)®1:kmtEOS(J t_l—exp[—ka (Km+S0)l:|
k, (K, +S,)

Hence, using Eq. (52),

S(l)(t) — SU _ kcmEOSo {— EnSO (kd /kn tSﬂ)
K, +S, (K, +S,)

(1-exp[—k, (K, +S,)t])  (61)

or, in reduced variables,

5, (1—D
O L s 1 [l ‘e"p(‘ o TH (62)
1+s, (1+s,) )
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Fig. 2 Substrate reduced concentration in HMM kinetics: Approximate analytical solutions Eq. (47) (----),
Eq. (62) (——), and exact numerical integration (—) for ®=0.9, ep= 10, and so=20 (a); ®=0.9, eo= 10, and
50=50 (b); and ®=0.1, eo= 0.1, and so=1 (c). Note the early crossing of the two approximate solutions in
case (c).
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This is a simple formula that represents quite well the exact solution (obtained
numerically) for short times, and also for intermediate times provided So > Eo, see Fig. 2.
It describes both the initial transient phase, with a duration of approximately
1/(ka(Km+So)), and the subsequent steady-state with a linear time evolution.

For So > > K Eq. (61) further simplifies to

SU) =S, = Ey [ Kt +1-exp(—k,S,1) ] (63)

Note that the differential equation formalism under the same approximation also allows
obtaining Eq. (61), but only Egs. (59) [15-17] and (60) [17] seem to have been
previously derived. Indeed, Eq. (52) immediately yields S(t), Eq. (61), if E(t) and C(t) are
(approximately) known. This was nevertheless not done, probably as a result of the
notion that making the initial assumption S(t)=S¢ would render meaningless a
subsequent bootstrap recalculation of S(t). Indeed, the method as applied to the system
of differential equations does not converge for higher approximations. On the other
hand, convergence of the iterative solution of the system of Egs. (53) and (54) is
expected, but convergence is slow and does not lead in this case to simple analytical
functions.

Higher order calculations of E(t) can be made numerically using Egs. (53) and
(54), but are increasingly demanding in terms of computer time. In Fig. 3 are shown the

first and second-order approximations, E"(f)and E*(r), and also an improved

approximation E, (f)obtained inserting Eq. (61) in Eq. (53). It is seen that this

imp
approximation remains valid for to longer times than the other two, as Eq. (61) is also

closer to the exact solution for S(t) and convergence is thus significantly improved.
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1.0

0.8}

0.6

concentration

Fig. 3 Enzyme reduced concentration in HMM Kkinetics: First-order e(Y)(t) (), second-order e®)(t) (--),
and improved emp(t)(~—) approximations, along with the exact result e(t) (—) for ® = eg =0 = 1.

4. CONCLUSIONS

The standard approach in formal Kinetics is to proceed from the kinetic scheme
to the corresponding system of first-order differential equations, and then to integrate
this system in order to obtain the concentrations of selected species as a function of
time. In the present work a completely general integral formulation of chemical and
photochemical kinetics was developed. This approach does not require the writing and
integration of the system of differential equations. The integral formulation, as shown
with several examples, leads to complicated integral equations but for the simplest case.
Nevertheless it allows obtaining approximate solutions to any desired degree of
accuracy. Application of the integral approach to the Henri-Michaelis-Menten enzyme
kinetics led to a general characteristic integral equation, along with a simple yet

accurate particular analytical solution for the substrate concentration.
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