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ABSTRACT: Starting from different partitions of a 160-compounds dataset into training and test
sets, we developed discriminant functions to classify drugs into different categories of human
intestinal absorption rate. For each partition of the dataset, models that included up to ten Dragon
descriptors were built, and the performance of each discriminant function in the classification of the
training and test sets was assessed. The classification ability of the model on both the training and
test sets of each partition was assessed and explored graphically through divergence diagrams.
Results suggest that external validation tends to underestimate the predictive capability of QSAR
models and that the more reliable results from external validation are obtained with even partitions
of small and medium size datasets.

Introduction

The motivation behind any modeling effort is to infer a predictive model from a
limited sample, in order to apply it later in the prediction of a property or behavior in a
wider population of objects or individuals. A critical question that the modeler shall answer
is: what population is the training sample of the model representative of? There are two
critical processes that should be taken into account to answer this issue: assessing the

applicability domain of the model', and avoiding overﬁttingz. Estimating the applicability
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domain of the model is equivalent to define which cases or individuals (external to those in
the training sample) can be reliably predicted by the model. Avoiding overfitting means to
assure that parsimony principle has been obeyed and that excessive fitting of the sample
data has not occurred at the expense of generalizability, that is, the predictive capability on
the general population on which the model is supposed to be applied. Validation procedures
are the tools of choice to evaluate if overfitting has occurred and to assess the model general
predictive capability.

The two most used validation procedures are external validation and internal cross-
validation (e.g. leave-one-out and leave-group-out cross validation). External validation
(holding out a fraction of the dataset as an independent test set) is generally considered the
most important step to measure the robustness and predictive capability of a QSAR model”.
However, it is also been pointed out that external validation is only reliable when using
large hold-out samples and that reserving a fraction of the dataset for external validation
may be a waste of useful information in the context of QSAR modeling, where often only
small or medium-sized datasets are available®. Internal cross-validation is usually
indicated as a good, trustworthy alternative to assess model predictive capability4’5.
Nevertheless, several systematic studies demonstrate that cross-validated r (i.e. qz) tends to

be an overoptimistic measure of the general predictive ability of the model®®

. According to
those reports, a high g is a necessary but not sufficient condition for a model to have high
predictive power and external validation might be mandatory, or else new definitions of q°
should be applied.

In this short-communication we study different partitions of a dataset of 160
compounds used to derive classificatory models of human intestinal absorption rate
(%HIA), finding new evidence of the inability of small hold-out samples to reliably assess
the predictive power of a QSAR model. According to our findings, external validation
might tend to underestimate the general predictive capability of a model when using scarce
test sets. We also propose the use of ‘divergence diagrams’ for ease, visual evaluation of the

risk of overfitting in a QSAR modeling campaign.
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Methods

Dataset. As a part of our ongoing research to model physicochemical properties related to

drug oral bioavailability*'’

, we have designed a 160-compounds dataset gathered from
previous reported models of drug intestinal absorption'''®. This study, however, is not
focused in the development of reliable QSAR models to predict %HIA: the purpose of this
communication is to study if external validation is indeed a trustworthy validation tool to
assess the generalizability of a model and how shall a medium size dataset be partitioned
into training and test sets in order to reduce the chances of overfitting.

We considered four categories of %HIA: category one: %HIA < 20%; category two:
20% < %HIA < 50%; category three: 50% < %HIA < 80% and; category four: %HIA >
80%, and we tried to obtain a balanced distribution of the 160 compounds among these
categories. The 160 selected compounds are distributed as follows: category one, 46
compounds; category two, 26 compounds; category three, 41 compounds; category four, 47
compounds. This is not an entirely even distribution among the four categories (mainly due
to limited experimental data on low permeability compounds) but is not either highly biased
towards very permeable compounds, as has been observed in several previous modeling
efforts of %HIA'". The %HIA experimental values are checked in Hazardous Substances
Data Bank (HSDB) and Pubchem®*?’; we have not included in the dataset compounds that
according to different sources belong to different of the four categories considered here.
The list of compounds that compose the dataset and their correspondent %HIA values can
be found in Table 1. Three different partitions of the dataset were considered in order to
define the optimal partition to get a reliable external validation: 120:40, 80:80 and 40:120.
In the three cases, the compounds that compose the dataset were sorted by category and by
alphabetical order and split into training and test sets through systematic random sampling:
for the 120:40 partition, one each four alphabetically sorted compounds was extracted to the
test set; for the 80:80 partition, one each two compounds was extracted to the test set; for
the 40:120 partition, three each four compounds were extracted to the test set. None
periodic pattern exists between the name of the compounds used in this study and their
chemical structure or pharmacological activity. Average intermolecular Tanimoto
similarities (based in atom pairs) between the training and test sets were calculated for each
of the three considered partitions. PowerMV software (developed and freely provided by
the National Institute of Statistical Sciences) was used for intermolecular distances

. 2
calculations®®.
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Descriptor calculation and discriminant functions modeling

Two descriptor sets calculated through Dragon software®’ were considered. The first
descriptor set (set 1) was composed of information indices, topological charge indices,
atom-centered fragments and functional group counts; the second set (set 2) was composed
of constitutional descriptors, topological descriptors, information indices and topological
charge indices (Dragon’s descriptor classification and nomenclature is kept in this report).
These descriptors are 0D-2D and thus no conformational optimization or conformational
analysis is required.

The General Discriminant Analysis Modeling module of Statistica 7.0°® was applied to
obtain four-categories discriminant functions. Stepwise forward was applied as variable
selection technique. The best models obtained through this methodology including between
1 and 10 descriptors were considered; the procedure was stopped when no descriptor with
an associated p-value below 0.05 could be incorporated into the model. Descriptors with

constant value along all the compounds of the training sets were excluded from the analysis.

Table 1. Name of the compounds that compose the dataset; in the right column the
correspondent %HIA value of each compound is presented.

Category 1 Streptomycin 1 Cycloserine 73 Atropine 98
Acamprosate 11  Streptosozin 0 Dipyridamole 58 Benzydamine 87
Acarbose 2 Succinylsulfathiazole 5 Eflornithine 55 Betaxolol 90
Adefovir 12 Ticarcillin 5 Enalapril maleate 66 Bupropion 87
Amygdalin 5 Tobramycin 0 Ethambutol 80 Caffeine 100
Anphotericin b 5 Vancomycin 0 Etodolac 70 Chloramphenico 90
1
Arbekacin 0 Category 2 Famciclovir 70 Clofibrate 87
Azlocillin 0 AAFC 32 Fenoterol 60 Codeine 95
Aztreonam 1 Amiloride 50 Furosemide 61 Diclofenac 100

Cefodizime 0 Azithromycin 36  Guanabenz 80  Disulfiram 97




Ceftriaxone

Cefuroxime

Cidofovir

Cromolyn
Doxorubicin
Edetic acid

Foscarnet

Ganciclovir
Gentamycin
Imipenem

Tohexol

Iothalamate

Totroxic acid

Kanamycin

K-strophanthoside

Lactulose
Lucifer yellow
Mannitol
Meropenem

Mezlocillin

16

Benazepril

Bromocriptine

Cefpodoximeproxety
1

Chlorothiazide
Cymarin
Dihydroergotamine

Famotidine

Flucloxacillin
Fosfomycin
Fosmidomycin

Guanoxan

Lincomycin

Lisinopril

Lovastatin

Metaproterenol

Methyldopa
Nadolol
Pafenolol
Pravastatin

Rimiterol
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37

28

50

23.

47
35

38

40
31
30
50

217.

25

30.

44

41
31
29
34

48

Hydrochlothiazid
e

Isocarboxazid

Ivermectin

Metformin

Metolazone
Mianserin
Mibefradil

Moxisylyte

Oxycodone
Oxytetracycline
Pimozide

Propylthiouracil

Pyrbuterol

Quetiapine

Ramipril

Ranitidine

Recainam
Reproterol
Terbutaline

Tolrestat

65

70

60

53

63

70

69

70

60

58

75

60

73

60

52.

71

60

62

66

Felbamate

Fluconazole

Hydrocortisone

Ibuprofen

Indomethacin
Ketoprofen
Ketorolac

Labetalol

Lamivudine
Lansoprazol
Minoxidil

Moricizine

Moxonidine

Naproxen

Nitrendipine

Nordiazepam

Oxyfedrine
Propanolol
Rivastigmine

Saccharin

96.

91

100

100

92

90

95

87

85

98

88

88

99

88

99

85

99

100

88
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Mitoxanthrone 5 Sulpiride 44 Urapidil 78 Sotalol 95
Moexiprildiacid 5 Trandolapril 50  Valsartan 55 Sultopride 89
Nedocromil 3 Zonavir 28 Ziprasidone 60 Tenidap 89
Neomycin 1 Category 3 Category 4 Timolol 95
89.  Tolbutamide 85
Netilmycin 0 Almotriptan 75 Acebutolol 8
2. 85 Trapidil 96
Olsalazine 3 Anagrelide 70 Acetaminophen
L. 90  Trimethoprim 97
Ouabain 4 Atenolol 51 Almitrine
93.  Warfarin 98
Pamidronic acid 5 Benserazide 70 Alprenolol 8
Pentamidine 0 Benzbromarone 73 Aminopyrine 100  4zalcitabine 85
Phthalylsulfathiazol Amoxicillin 93.
e 5 Bromhexine 70 8
0.  Captopril 68  Antipyrine 100
Raffinose 3
Risedronic acid 1 Cefatrizine 76 Aspirin 100
Results

Table 2 presents the descriptors included into the models derived from both
descriptors’ sets (set 1 and 2) for the three partitions of the dataset considered (120:40, 80:80,
40:120). Descriptors are presented in the same order as they have been included in the models
through the stepwise procedure. Although a maximum of ten steps was allowed in the
Stepwise Forward procedure, it can be noted that for set one the models were truncated at 8
descriptors for partitions 120:40 and 80:80 and at 6 descriptors for partition 40:120 (non
descriptor from the descriptors pool with p-value below 0.05 could be further added into the
model after those steps). For set 2, the models were truncated at 6 descriptors for partition

40:120, 7 descriptors for partition 120:40 and 10 descriptors for partition 80:80.
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Table 2. Details on the descriptors added into the discriminant functions derived from both
sets of descriptors. The symbol given by Dragon for each descriptor is kept; between
parentheses we present the descriptor definition from Dragon. The p-value associated to each
descriptor in the final model is showed.

Descriptors’ set 1

Descriptors’ set 2

Partitio p- p-
Descriptor Descriptor
n value value
nHAcc (number of acceptor atoms of H-
( P 0.0000 nO (number of Oxygen atoms) 0.0000
bonds)
H-052 (H attached to CO sp3 with 1X
( P 0.0000 nH (number of Hydrogen atoms) 0.0000
attached to next C)
0-057 (phenol/enol/carboxyl OH) 0.0000 nN (number of Nitrogen atoms) 0.0000
CIC5  (complementary  information
. T(0..0) (sum of topological ( o02
content — neighborhood symmetry of 5-  0.0019 :
120:40 distances between Oxygen atoms)
order)
BIC3 (bond information content -
& ¢ 0.0205 BICO 0.0007
neighborhood symmetry of 3-order)
C-002 (count of CH,R;) 0.0017 MSD (mean square distance index) 0.0046
BICO (bond information content - 0.0299 D/Drl2 (distance/detour ring index (208
neighborhood symmetry of 0-order) ' of order 12)
nNO2 (number of nitro groups) 0.0470
nHAce 0.0000 nO 0.0000
IAC (total information index of atomic
( 0.0159 nH 0.0000
composition)
JGI5 (mean topological charge
C-002 0.0029 ( potos & 0.0250
index of order 5)
nCOOH (number of aliphatic carboxylic
A ¢ P Y 00009 1N 0.0057
acids)
8080 11047 (M attached to C1 sp3/ COsp2) ~ 0.0014 T(0..0) 0.0006
BIC1 (bond information content - (088
N-070 (number of Ar-N-Al) 0.0074 . .
neighborhood symmetry of 1-order)
. T(S..Cl) (sum of topological
H-055 (H attached to CO sp3 with 4X . 0.0148
0.0079 distances between Sulfur and Chloro ™~
attached to next C)
atoms)
T(O..C1 sum of topological
nSO3H (number of sulfonic acids) 0.0297 ( )« polog 0.0045
distances between Oxygen and
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Chloro atoms)

PHI (Kier flexibility index) 0.0183
D/Drl12 0.0490
nHAcc 0.0000 Ms (mean electrotopological state) 0.0000
IAC 0.0005 MW (molecular weight) 0.0000

GGI5 (topological charge index of
N-073 (Ar2NH, A3N, Ar2NAL R.N.R)  0.0046 (topolog & 0.0002

order 5)
40:120 . )
JGI6 (mean topological charge index of
( polog g 0.0003 nX (number of halogen atoms) 0.0000
order 6)
H-055 0.0049 CENT (centralization) 0.0008

JGI2 (mean topological charge
nCrHR (number of ring tertiary C sp3) 0.0396 . ( polog 8¢ 0.0368
index of order 2)

Cn refers to a Carbon atom attached to n heteroatoms and presenting the indicated hybridization; R represents
any group linked through Carbon; X represents any electronegative atoms (O, N, S, P, Se, halogens); Al and Ar
represent aliphatic and aromatic groups, in that order.

Figures 1 and 2 present a comparison of the performance of the discriminant functions derived
through the Stepwise Forward procedure in the classification of the training and test sets of
the three considered partitions, for descriptors sets 1 and 2, respectively. The performance is
assessed as the global percentage of good classifications. For the generation of the models we
have considered that the a priori probability for any compound to belong to a given category
was 25%. Although this is not true for the dataset employed in this study (we know
beforehand that the number of compounds in each category is not the same for all categories),
we prefer to adopt this hypothesis thinking of the general application of the models to the
general population (nothing indicates that in the general population the number of high
permeability compounds exceeds the number of low permeability ones). Adopting different a
priori probabilities according to the known distribution of %HIA in the dataset would have
allowed us to obtain better performances on the dataset classification, but would have not
been adequate in a real application in which the true distribution of the modeled property in
the general population is not known for sure. Note that, since four classes of compounds are
considered in the discriminant analysis with even a priori probabilities across all the four

categories, random classification would have resulted in about 25% of good classifications.
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Fig. 1. Comparison of the performance of the models derived from set 1, for the three considered
partitions and both the correspondent training and test sets. The percentage of good classifications in
the training set is showed with a continuous line while the percentage in the test set is showed with a
dashed line (for each of the three partitions).
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Fig. 2. Comparison of the performance of the models derived from set 2, for the three considered
partitions and both the correspondent training and test sets.
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Discussion

It can be seen in Figures 1 and 2 that the divergence between the percentages of
correct classifications in the training and test sets are accentuated in the case of partition
120:40 and 40:120 of the dataset. In the case of an ideal model of general application (a model
for which the ability to characterize the modeled property is identical in the sample that in the
general population to which the model is thought to be applied) a perfect superposition
between the curves correspondent to the training and test set (each pair of continuous and
dashed lines) should be expected. There are three possible explanations for divergence
between the pair of curves correspondent to the training and test sets for any given partition:
a) the difference between the curves can be due to overfitting; b) the difference could be
revealing a tendence of the external validation procedure to underestimate the actual
performance of the models or; ¢) some of the compounds of the test set could be outside the
applicability domain of the models, which is defined by the correspondent training set.

For both descriptors’ sets and all the three partitions the pair of curves representing the
performance on the training and test set converges when a small number of descriptors are
included in the model. The divergence between the curves of training and test set is less
pronounced in the case of the 80:80 partition (when half the dataset is randomly assigned to
the training set and the other half to the test set). The point in which each pair of curves starts
diverging corresponds to the possible —but yet uncertain- beginning of the overfitting (e.g., in
Figure 2 the risk of overfitting clearly seems to appear when more than 4 descriptors are
included in the model for the 120:40 partition).

Let us consider, however, the case of the 120:40 partition. In the worst case (when 8
and 7 descriptors are included in the discriminant functions derived from set 1 and 2, in that
order) the ratios between the number of cases (compounds) and the number of predictors are
15.0 and 17.1 for the models derived from sets 1 and 2, which seems to indicate a low chance
of overfitting (as Peduzzi et al. have long ago demonstrated, a model tends to be biased
towards the true value of the modeled property in the sample when the number of events per

independent variable is below 10%%

). In models with less descriptors, the cases to predictors
ratio in this partition is quite higher than 10 and yet the curves for both the training and test
sets are quite divergent (particularly for set 1 - Fig 1), with the proportion of good
classifications on the training set being always above the one on the test set. Consistently with

our results, Hawkins et al. have shown that for scarce (10 and 20-compounds) test sets the
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external validation tends to underestimate the actual performance of the models, while an
external test set of 50 compounds gives quite reliable results’. When the number of
compounds in the training set is wide above those in the test set (particularly if the test set is
small) it is highly probable to find elements of the training set which are absent in the test set
but that could (or could be not) be present in the general population. This explains why the
explanatory power of the models on the training set compounds correlate well with the results
of the external validation in the case of the 80:80 partition (specially for the second
descriptors set): the number of compounds in the test set is quite high for this partition (above
the minimum of 50 cases suggested by Hawkins) and the even partition of the dataset into
training and test sets reduces the chances of observing high frequent features in the training
set that are not reflected with a similar frequency in the test set. How can we explain the
results on the 40:120 partition, then? In this case, overfitting is quite probable (since the
events to predictors ratio is quite low because of the small number of compounds in the
training set) which explains why the performance of the models on the 40-compounds training
set is better than in the cases of the 80/80 and 120/40 partitions. The small number of
compounds of this partition prevents us from finding multiple-predictor models of general
applicability.

Similarity analysis through computation of the average Tanimoto distances
(comparing all the possible pairs of compounds between the training and test sets of each
partition) showed us that the average similarity between the training and test sets of each
partition is quite similar (0.33 for the 120:40 partition; and 0.32 for both the 80:80 and the
40:120 partitions); this, along with the fact that partitions were generated randomly prevent us
from thinking that the results could be explained through some bias in the generated training
sets towards some specific chemical families of compounds or towards specific structural
features. For the test set of the 120:40 partition, the number of neighbors with Tanimoto
similarities above 0.7 is 67; for the test set of the 80:80 partition, 44; for the 40:120 partition,
21. This suggest that the lower divergence between the performance of the models on the
training and test sets classification in the case of the 80:80 partition could only be explained
by an applicability domain issue when comparing the 80:80 to the 40:120 partitions, but not
when comparing the 80:80 to the 120:40 partition.
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Conclusion

Our results seem to corroborate that external validation is a conservative approach to
appraise the general predictive ability of a model, with some tendency to underestimate the
true performance of the model on the general population, especially when unbalanced
partitions of the datasets into training and test sets are considered for small and medium size
datasets. This is to say, we can have certainty that the performance of a model in the general
population will be equal or better than that observed in the external validation procedure.
Since it has been already demonstrated by Golbraikh et al. that internal cross-validation tends
to overestimate the true performance of the model, we may conclude that the true performance
of the model may always be somewhere between the internal and external validation results.
Therefore, external validation with an adequate test set (above 50 compounds, according to

Hawkins) should be always used when possible to assess the worst possible situation.

It is important to underline that the ‘general population’ for any given QSAR model is
given by the region of the chemical space defined by the training set, i.e. all the chemical
compounds that belong to the applicability domain of the model. Therefore, results of the
external validation and predictions on compounds independent from those in the dataset will

be more reliable if proper assessment of the applicability domain has been performed.

The ‘divergence graphs’ presented in Figures 1 and 2 may be an useful tool to
determine from which step of a stepwise process significant risk (but not certainty) of

overfitting arises.

This study should be expanded in the future by considering other datasets and
properties and including a more careful assessment of the applicability domain for each

generated model.
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