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Abstract

A critical examination of different least squares orthogonal methods (OR1-OR4) and of the
ordinary least squares (LS) method, which is normally used in QSAR and QSPR studies,
and in many scientific and chemistry-related fields, reveals that not always the orthogonal
regression methods perform better than LS in the aforementioned fields. Nonetheless the
OR methods, whose use in statistics and economics are considered superior in most cases
to LS, relying on the minimization of the sum or quadratic orthogonal distances offer an
interesting alternative method for obtaining a graphical ‘symmetric’ representation, which
is not rendered by the LS method.

Introduction

A critical analysis of plot methods [1-4, and references therein] in QSAR/QSPR and
chemistry-related studies, has brought us to center the attention into some improper uses of
plots resulting from the ordinary least squares (LS) regressions and to stress the importance
of a no well-known characteristics of orthogonal least squares regression (OR) and of the
corresponding plots [5-7]. Plot methods in QSAR/QSPR and in many other scientific and
chemistry-related studies vehicle essential information in a compact and easy way, and
should no more be considered an optional by practitioners of these fields, even if papers
without plots but burdened of Tables with observed/calculated data continue to be published.
Plots methods can illustrate and detect violation of assumptions; that is, values should show
random fluctuations around the main diagonal of the observed vs. calculated plot, while the

corresponding residual plots (residual vs. calculated values) should show random fluctuation
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around a value of zero. Furthermore, it is well-known that to base a model on statistical
parameters only can be quite misleading. Orthogonal regressions avoid the pitfall of
unsymmetrical observed vs. calculated plots and unsymmetrical residual plots, nevertheless
statisticians have proposed different types of orthogonal regressions, based on different
assumptions [5-9].

In this paper we will center our attention on some more recent and intriguing results on
orthogonal regressions which, even if they are well-known to the statisticians [10, 11],
biologists [12], bioinformatics [13], economists [14] and to the physicists [15], are practically
ignored by the chemistry community, and especially by computational chemists and
QSAR/QSPR practitioners.

Orthogonal regression analysis is required by ISO 16140. The ISO 16140 (2003) standard
describes the technical protocol for the validation of alternative methods within the
framework of the microbiology of food and animal feeding stuffs [16].

In the present paper we will review the different orthogonal least squares methods, with
special attention to the seminal and widely cited paper of Dissanaike and Wang [11] on the
subject and compare their validity with the ordinary least squares procedure, as this is a topic
that the computational chemistry and the analytical chemistry community, should, at least,

not overlook.

Method

Le us assume that the two variables y and x are linearly related, that is,
yte=atbx+e)tu €8

Here, a is the intercept, b is the slope, u is the equation error with zero mean, ¢, is the
measurement error for y and &, is the measurement errors for x, both with zero mean. The
usual way to estimate a and b in chemistry-related studies is to use the LS method, which
minimizes the vertical distance between the observations and the fitted line. In this method,
with the assumptions o 2= 0, azgy =0, and Cow(u, x) = 0, for the slope and the intercept we
have: b=o0,,/ 0 2 and a = <y> - b<x>, where <y> and <x> are the sample means of y and x
respectively [8-10]. Here ¢ ? is the variance of the corresponding subscript, when subscripts

are different (i.e., xy, o  is their covariance). In the following lines are displayed four
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orthogonal regression methods proposed until now. The figures the reader will found along

the text are obtained by the distinct proposed procedures and will be explained with more

detail in the simulation section.
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Fig. 1. LS method: calculated vs. observed values with their residuals (left), observed vs. calculated

values with their residuals (right).

Classical Orthogonal Regression (OR1)

ORI has recently been suggested [5, and reviewed in 7] to solve some problems inherent

to the LS method. This method considers a least squares criteria which minimizes the

(orthogonal) distance between the observations and the fitted line. OR1 assumes no errors

whatsoever, i.e., 0 % = 0, 52,,,,. =0, 0%, =0, and its slope is,
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As already told, the intercept is calculated by the same way for all models: a = <y> - b<x>.

OR1 method presents a special characteristic: the obtained fitting line defines the first

Principal Component of the data [7], i.e., the direction in space for which orthogonal

projection of the data points gives the maximal data variance. The other fitting line arising

from the alternative sign in equation (2) defines the second Principal Component.
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Fig. 2. OR1 method: calculated vs. observed values with their residuals (left), observed vs. calculated

values with their residuals (right).

Ref. 11 (and references therein) describes three more orthogonal methods (OR2-OR4). Each

one of them is based on different assumptions. Let us first review these three orthogonal

methods (the detailed calculations are in the appendix section of ref. 11).
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Orthogonal regression method 2 (OR2)

OR?2 is a classical Orthogonal Regression with measurement errors in variables and no
equation error term. The assumptions are o ZQ,, lo2u=% 6% =0, Cov(u, x) = 0; with these

assumptions the slope is given by :
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Fig. 3. OR2 method: calculated vs. observed values with their residuals (left), observed vs. calculated

values with their residuals (right).
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Orthogonal regression method 3 (OR3)
OR3 constitutes a classical Orthogonal Regression with the effect of the equation error
term, but no measurement error in the variables. Assumptions are o Zey =0 ZCX =0, CoW(u, x) =

0, buto 2,4 # 0, here the slope now is,

2 2 2 2 2 2 ) 2
b 6,—G,—0, ir\/(cy -0; —Gu) +4o,
OR3 —
20)},

“

. . 2 . . 2 . .
In practice, since o °, is unknown, we use ORI to estimate o , as the quadratic average of its

residuals, and then run OR3 and OR4 procedures.
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Fig. 4. OR3 method: calculated vs. observed values with their residuals (left), observed vs. calculated

values with their residuals (right).
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Orthogonal regression method 4 (OR4)
OR4 is the adjusted Classical Orthogonal Regression with measurement errors in the
variables and equation errors. Now the statistical assumptions are o Zey lo Z&V =M\, and o 21, #0.

The slope here is,
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2s
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providing a general expression from which the other slope formulas presented above can be

deduced.
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Fig. 5. OR4 method: calculated vs. observed values with their residuals (left), observed vs. calculated

values with their residuals (right).
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Regarding the LS method, the knowledge of a new numerical variable value (x or y) leads to
the immediate computation of the fitted one (ys; or xg, respectively) directly via the use of
the regression equation and maintaining fixed the original value entered into the equation (x
or y). On the other side, for OR1-4 methods, it must be noted that the knowledge of a new
experimental point (Xew,Vnew) leads to the corresponding fitted values (xst,yrc) by projecting
the (XnewsVnew) point to the obtained regression line. This means that in these cases both, the x
and y new values, are susceptible to be changed simultaneously to the pair of values (x7.yi).
In particular, for OR1 the projection must be orthogonal to the regression line [7] giving the

result:

x +b —ab
— Znew OR]ymw OR1 and y/,] — b()R[-xﬁ/ +a (6)

1+bOR12

X

Simulations

We simulate now an ideal quantitative structure-property or structure-activity relationship
and test the five different models LS, OR1, OR2, OR3, and OR4. Here x is a descriptor (a
connectivity y index) and y is a property or activity (P), where the choice of the data for
simulation purposes has no effect on the quality of the simulation. Data are given in Table 1
and are taken from ref. 7. Actually a dependent variable y (=P) is generated based on a given
x (=y) according to pre-assigned slope values under the four different given assumptions. The
distinct resulting regression equations are shown in Table 2. In figures 1-5 are shown the
respective plots for the five methods LS and OR1-4.

In the LS method the graph of residuals versus calculated values gives a null correlation.
The line fitting (again by LS) these points also presents a null slope. This is due to the
inherent mathematical relations among the residuals and the fitted line in the graph which is
another LS line (as in the other graphs). Due to a theorem [3,6], valid for LS and in general
for Multiple Linear Regressions, if a new regression LS line is obtained for the experimental
versus calculated points (see Figure 1 top-right) it has to be obtained the y=x equation (the
bisector of the first and third quadrants). This goes accompanied by the additional rule being
that for the calculated-LS versus experimental values (reversed graph, Figure 1 top-left) the
bidimensinoal LS line has to have a slope coinciding exactly with the data determination

coefficient, i.e., with the R? value.
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Table 1. Experimental data used for simulations and taken

from reference 7. R>=0.8614 among the data.

X Yexp
0.86 0.22
1.57 0.82
2.53 1.22
4.32 1.24
6.13 3.96
7.42 2.49
9.19 4.38
10.47 2.9
12.65 3.4
13.25 6.46
15.43 7.85
15.96 4.8
16.25 6.53
18.24 6.42
18.53 6.43

20.07 10.35
21.97 10.15
25.56 14.41

Table 2. Equations obtained with each method.

Method Equation
LS Yeae-Ls = 0.4760 x — 0.6050
ORI Veaeort = 0.4905 x — 0.7825
OR2 Y cac.orz = 0.5129 x — 1.0563
OR3 Y caeors = 0.4760 x — 0.6040
OR4 Y cacore = 0.4414 x — 0.1813

It is well known that the LS equation (the first one in Table 2) is not ‘reversible’, i.e., the
regression of x values over y ones has to be re-calculated (whereas there is a theorem
allowing to compute it in a fast way). On the other side, the ORIl method is clearly
symmetrical in the sense that both variables (x and y) are treated in the same terms (even
more, the attached errors are equal for both variables: zero). This situation ensures that for
this method the “regression” of x over y will give the equation arising from the isolation of
the variable x of the second equation in Table 2: xcac.or1 = 2.0386 y + 1.5951.

In any case, for OR methods the user should be aware of data variable units: the ideal
situation is the one for which the accounted magnitude and the units of x and y variables are
the same. This allows the treatment of symmetrical or quasi-symmetrical cases, especially for
the OR1 method.
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In the figures, the differences found in leftmost and rightmost graphs are not due to a
mathematical artifact. These differences are inherent to the least squares criteria considered

by each method.

Conclusions

The given simulations of the five least squares methods, LS, OR1 — ORA4, let us notice that
the LS method is not such a bad model in some situations. In other situations specific OR
models are advantageous if it is known that errors are present in several variables of model
parameters, especially for the so-called ‘independent’ variables. A rather similar result was
achieved by Dissanaike and Wang [11].

It should be noticed that with data, as in the analysis of atmospheric data [15], that does
not lend itself to calling one variable independent and the other dependent the ordinary least
squares approach, however, could be highly problematic. Furthermore, errors often exist for
both measurements, and in both cases the use an orthogonal regression method to derive the

slope estimator should be the preferred solution.
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