
CaGe – a Virtual Environment for Studying

Some Special Classes of Plane Graphs – an

Update

Gunnar Brinkmann∗

Applied Mathematics

and Computer Science

Krijgslaan 281 - S9

Ghent University

B 9000 Ghent, Belgium

Olaf Delgado Friedrichs†

ANU Supercomputer Facility

Australian National University

Canberra ACT 0200, Australia

Sebastian Lisken ‡

Teichstr. 32

D 33615 Bielefeld

Adriaan Peeters§

Applied Mathematics

and Computer Science

Krijgslaan 281 - S9

Ghent University

B 9000 Ghent, Belgium

Nicolas Van Cleemput¶

Applied Mathematics

and Computer Science

Krijgslaan 281 - S9

Ghent University

B 9000 Ghent, Belgium

(Received July 18, 2009)

Abstract

CaGe is an environment for generating and visualizing certain specialized classes of plane

graphs. In this article we describe the classes of graphs you can generate with CaGe and

the options offered by the user interface.

∗Gunnar.Brinkmann@ugent.be
†olaf.delgado@googlemail.com
‡lisken@mathematik.uni-bielefeld.de
§apeeters@lashout.net
¶Nicolas.VanCleemput@ugent.be

MATCH

Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 63 (2009) 533-552

 ISSN 0340 - 6253

Administrator
Rectangle

Administrator
Typewriter
2010

Figure 1: Two cubic graphs that are isomorphic as graphs but not as plane graphs.

Introduction

Most of the graph classes that can be generated by CaGe contain plane graphs that are

also relevant in chemistry. The word plane is used here in the mathematical sense which

means that the graph is equipped with a cyclic order of the edges around a vertex that

defines a combinatorial embedding without crossing edges in the plane – or equivalently

on the surface of a sphere. So benzenoids are plane graphs as had to be expected, but

fullerenes are also plane graphs, though the molecules are not geometrically flat.

In case of graphs that are not 3-connected the concept of isomorphic plane graphs

and isomorphic graphs differ. While isomorphism between graphs only requires a bijection

between the vertex sets that respects the edges, isomorphism of plane graphs also requires

that the cyclic order of the edges around the vertices is respected. Either all orders must

be identical or all orders must be exactly reversed. Figure 1 gives an example of two

graphs that are isomorphic as graphs but not as plane graphs. Whitney’s theorem implies

that for 3-connected graphs these concepts agree. When embedded in 3-space, there is

not necessarily a recognizable order around the vertices. So if two nonisomorphic plane

graphs are displayed that are not 3-connected, they can be isomorphic as graphs and it

is possible that the drawings cannot be distinguished.

A first version of CaGe was described in [1] and since then CaGe was used by various

researchers for much varying purposes, see [2],[3],[4] for example applications. The first

version of CaGe was based on Tcl/Tk, but due to several problems with the speed and

the development of Tcl/Tk, we decided that instead of repeatedly updating CaGe, we

should better develop and support a new version based on Java. This Java based version

was first released in 2001 and continuously updated.

The version described here is a descendant of that version. The changes applied to

-534-

Startup
window

coarse selection

fine selection

of class to be generated

of class to be generated

choice window
output/display

window for navigation
in the set of generated structures

Figure 2: The navigation inside CaGe.

that initial java version are described on [5]. Compared to the version described in [1] it

offers various new features and generators for more classes of graphs. Furthermore it is

more portable now and runs under unix/GNU-Linux and Mac OSX.

How to use CaGe

The principal structure of CaGe is shown in Figure 2. First one chooses the class of

structures to be generated. This is done in 2 steps – first a coarse choice and then a

refinement step. The window in Figure 3 shows the possible first, coarse choices of the

class of graphs to be generated. Clicking the button with the class of ones choice, a new

window appears where one can refine the class and give some parameters. Figure 4 shows

the window for triangulations. The possible classes that can be chosen will be explained

in the next part.

In some cases a certain class of graphs can be generated in more than one way. The

windows reflect the possibilities of the underlying generators and sometimes two genera-

tors that have different possible options allow to combine options in a way that as a result

the same classes are generated by both.

Having chosen the refinements one clicks next and the window for the output options

appears (see Figure 5). Choosing the appropriate options and clicking next again, the

generation starts and in case the options for 2-dimensional and/or 3-dimensional display

-535-

Figure 3: The starting window of

CaGe.

Figure 4: The window showing the re-

fined classes of triangulations that can

be chosen to be generated.

are chosen the display windows (see Figure 7 and Figure 8) appear. Furthermore the

navigation window (see Figure 6) appears that allows to choose which graph is displayed.

One can move forward (“advance”) by a single graph or by a larger step. The default

step size is 10. One can also let the stream of generated graphs flow by until one stops

the flow. Moving to a previous graph is only possible for graphs that one has previously

stopped at; graphs that have been skipped are lost.

Classes of graphs

The following classes of graphs can be generated:

3-regular plane graphs

∙ Fullerenes
Fullerenes are 3-regular plane graphs with all faces of size 5 or 6. The default is to

generate all fullerenes with a given number of vertices that has to be chosen. The

generation can be restricted in the following ways:

– IPR fullerenes – that is fullerenes where no two pentagons share an edge.

-536-

Figure 5: The window where the form

of the output is chosen.

Figure 6: The window with the options

that allow navigation in the set of gen-

erated structures.

– Fullerenes with a given symmetry group. This option is implemented as a

filter, so in case of groups that do not occur very often (or not at all . . .), the

generation will be very inefficient.

The user can also choose to output (for display or further tests) the duals of the

fullerenes (that is: triangulations with vertices of degree 5 and 6) instead of the

fullerenes. Because the number of vertices of the fullerene is given, in the dual the

number of faces is fixed.

The algorithm implemented in this generator is described in [6].

∙ 3-regular plane graphs with given face sizes
For this generator one can specify which face sizes are allowed in the graph. So in fact

fullerenes are a special case of this class. The reason to offer Fullerenes separately is

to provide special options that are not implemented in this more general generator.

The default is to give a set of allowed face sizes and the number of vertices. Then all

plane graphs will be generated that have only faces with a size in the set of allowed

faces.

Lower and upper bounds for the numbers of faces of a given size can be supplied as

an option. E.g. a lower bound of 1 forces a face of this size to be present in every

graph generated.

Furthermore the connectivity of the graphs can be chosen. The default is to generate

-537-

only 3-connected graphs.

In this part two different generators are used. The algorithm implemented in the

program CGF is actually capable of handling/generating the more general class of

graphs on arbitrary oriented surfaces of given genus. It is described in Thomas

Harmuth’s PhD thesis [7]. A preliminary version with the same basic ideas but

differences in detail (and restricted to the plane) is described in [8]. This algorithm

is optimized for relatively few allowed face sizes and is only applied for these cases

and cases where additional options are chosen. In cases where a lot of face sizes are

allowed (and no additional options used) the generator plantri ad described in [9] is

used.

∙ Bipartite 3-regular plane graphs

The user has to choose the number of vertices and a lower bound for the cyclic

connectivity.

The main generator used in this part is called plantri. Plantri is in fact a program

containing various different generators with different construction and isomorphismn

rejection routines. The algorithms implemented in plantri are described in [10]. For

cyclically 1- or 2-connected graphs CGF is used by allowing all possible even face

sizes. Note that cubic graphs are cyclically 1- resp. 2-connected if and only if they

are 1- resp. 2-connected. Using CGF for these purposes is not very efficient, because

CGF is designed for relatively few face sizes and writing a plantri-like generator also

for this part will be future work.

∙ General 3-regular plane graphs

This generator is mainly designed to generate cubic 3-connected plane graphs with-

out strong restrictions on the face sizes as fast as possible. The same classes could

be generated with the generator that accepts lists of allowed faces – one would just

have to allow every face except maybe 3- and 4-gons – but this generator is much

faster for the cases that can be chosen in this window and offers different options to

restrict the connectivity.

-538-

One has to choose the number of vertices, the minimum face size (at least 3 – no

double edge allowed) and a lower bound for the cyclic connectivity. Note that for

1 ≤ 𝑐 ≤ 3 a cubic graph is c-connected if and only if it is cyclically c-connected.

As an option one can choose that the given cyclic connectivity is not interpreted as

a lower bound but as the exact value of the cyclic-connectivity number.

In this part plantri is also used.

4-regular plane graphs

∙ 4-regular plane graphs with given face sizes

Just like for the case of 3-regular plane graphs with given face sizes one can specify

which face sizes may occur in the generated graphs.

The algorithm used in this part is called quad restrict and is described in [11]. It is

based on plantri and uses an additional branch and bound criterion, similar to [9].

It generates only 3-connected graphs and is designed for the case of relatively many

face sizes allowed. It does not allow extra options.

For the future we hope to be able to reimplement the generator for 4-regular graphs

described in [8]. This would allow a more efficient generation in the case of few face

sizes and also more options for the structure of the graphs.

∙ General 4-regular plane graphs

In this section one of the generators in plantri is used to generate all 4-regular plane

graphs with a given number of vertices.

Furthermore one of the following three options must be chosen:

– 3-connected

– 4-edge-connected

– 3-connected and cyclically 6-edge connected

-539-

Planar Polycyclic Hydrocarbons

In this section planar polycyclic hydrocarbons can be generated – or to be precise: graphs

in which all vertices are of degree 2 or 3 and all faces except for one distinguished outer

face are pentagons or hexagons. All vertices of degree 2 must be in the outer face. In

the chemical context the vertices of degree 2 are carbon atoms bonded with an additional

hydrogen atom making the total degree 3.

∙ Planar polycyclic hydrocarbons by formula

For this generator one must choose the chemical formula (e.g. 𝐶31𝐻17) and the

number 𝑝 of pentagons as input (with 0 ≤ 𝑝 ≤ 5). Results from [12] about maxi-

mum and minimum values for the number of carbon atoms for a given number of

hydrogens and pentagons are already used at this level to detect cases where no

structures exist.

Options allow the restriction to IPR structures and structures that are strictly peri-

condensed. Furthermore an upper bound on the number of 3-valent vertices between

two successive 2-valent vertices in the boundary can be given. This can restrict the

local curvature of the boundary and interpreting the structures as realized in the

plane with – more or less – equal bond lengths and equal angles around a vertex it

can avoid overlaps of faces not too far apart in the boundary.

The structures can be output with or without hydrogens (vertices with degree 1)

attached to the carbon atoms (vertices) of degree 2.

The algorithm implemented in this generator has not been published so far, but of

course it has been tested against several other programs for similar tasks and data

published in the literature.

∙ Planar polycyclic hydrocarbons by boundary formula

The boundary structure of a planar polycyclic hydrocarbon can be described by the

cyclic sequence of its boundary degrees. The boundary structure of azulene would

e.g. be described by the cyclic sequence “222322223”. This generator generates

-540-

all planar polycyclic hydrocarbons for a given cyclic sequence of twos and threes

that correspond to 0 ≤ 𝑝 ≤ 5 pentagons. If 𝑑 stands for the number of vertices

of degree two in the boundary and 𝑡 for the number of vertices of degree 3 then

we have 𝑝 = 6 − (𝑑 − 𝑡), so the number of pentagons is uniquely determined by

the boundary. The restriction 𝑝 < 6 is essential because for 𝑝 ≥ 6 the number of

structures can be infinite (see e.g. nanotubes).

An option for the generator is to allow only structures with isolated pentagons and

again one can choose to output structures with or without hydrogens attached.

The algorithm implemented in this generator is described in [13].

∙ Planar polycyclic hydrocarbons by number of hexagons

This generator is specialized on the efficient generation of planar polycyclic hydro-

carbons with a given number of hexagons and no pentagons. The possible numbers

of vertices (C-atoms) that can occur for a given number of hexagons in a benzenoid

was already determined in [14]. In [12] this was generalized to the larger class of

fusenes – that is the case where the structure can not necessarily be embedded in

the hexagonal lattice without overlap.

As options one can restrict the generation to benzenoids, catacondensed fusenes,

and Kekulean fusenes (fusenes with a perfect matching).

The algorithm implemented in this generator is described in [15] with an addition

for the generation of only Kekulean fusenes described in [16].

Nanotubes and Nanocones

A nanotube is a fullerene that has two caps containing 6 pentagons each and a tube

body consisting of hexagons only. Normally one does not speak of a nanotube unless

the number of vertices in the tube body is extremely large compared to the number of

vertices in the caps. If one wants to study the influence of the caps, one just looks at one

“half” of the structure – that is one of the caps containing 6 pentagons together with a

very long tube of hexagons. In fact this tube is considered to be infinitely long. In CaGe

“nanotubes” are such one-sided/single-capped, infinite structures, or equivalently: plane

-541-

cubic graphs with 6 pentagons and all the rest hexagons. If realized with (almost) equal

bond lengths the 6 pentagons of a nanotube cap force the remainder that contains only

hexagons to be bent so much that it has a constant diameter – it is in fact a tube. In

case of an infinite 3-regular graph with 1 ≤ 𝑝 ≤ 5 pentagons (and the rest hexagons) the

curvature is not enough to form a tube – the part containing only hexagons becomes a

cone.

The generators in this part produce finite graphs that describe the nanotubes and

nanocones in a unique way.

∙ Nanotubes

Nanotubes are classified according to some unified structure of a cycle with the

6 pentagons in its interior [17]. This interior can be described as a planar poly-

cyclic hydrocarbon with all bounded faces pentagons and hexagons and boundary

structure (23)𝑘(32)𝑙. This structure automatically implies that there are exactly 6

pentagons. Let us call such structures patches.

The parameters 𝑘, 𝑙 are used to classify the type of the nanotube. In case a patch

has only hexagons neighbouring the boundary, these hexagons can be removed with

the result a smaller patch with the same boundary structure. If there is at least one

pentagon in the boundary, the patch is called a cap.

This generator takes the parameters 𝑘, 𝑙 as input and generates caps representing

isomorphism classes of nanotubes with these parameters. For each isomorphism

class exactly one cap representating it is generated.

Note that a cap represents a unique nanotube (extending it to a nanotube can only

be done in one way), but several caps that are not isomorphic as plane graphs can

represent the same nanotube. In order to generate only representations of pairwise

non-isomorphic nanotubes, only a subset of all caps for given parameters 𝑘, 𝑙 are

generated – one for each nanotube.

Options are:

– generate only caps representing IPR nanotubes

-542-

– add a given number of hexagon rings to the generated caps

∙ Nanocones

Similar to nanotubes also nanocones can be classified by a certain boundary struc-

ture (see [18]). If 1 ≤ 𝑝 ≤ 5 is the number of pentagons and we set 𝑠 = 6−𝑝 then for

𝑝 ∈ {1, 5} one can always find a closed cycle so that the inner part has a boundary

structure of ((23)𝑘2)𝑠 for some 𝑘. For 𝑝 ∈ {2, 3, 4} the boundary structure is either

((23)𝑘2)𝑠 or ((23)𝑘2)𝑠−1(23)𝑘−12. The patches with all maximal 23-subsequences of

the boundary of the same length are called symmetric and the others are called

nonsymmetric. Patches with one of these boundary structures and a pentagon in

the boundary are called nanocone-caps. If a patch has the given boundary structure

but no pentagon in the boundary, then all faces adjacent to the boundary can be

removed with the result a patch of the same type (symmetric or unsymmetric) and

the same parameter 𝑠 but the new parameter 𝑘′ with 𝑘′ = 𝑘 − 1.

In this part one first chooses whether one wants a symmetric or a nonsymmetric

boundary. Then one chooses the number 𝑝 of pentagons in the cone and the length

of the longest side – which is the parameter 𝑘 in the description of the boundary

above.

The generator generates exactly one representative for every isomorphism class of

nanocones with the given parameters.

Options are:

– generate only caps representing IPR nanocones

– add a given number of hexagon rings to the generated caps

The algorithm implemented in this generator is described in [19].

Triangulations

This section is for graphs that may be more interesting from a mathematical than a

chemical point of view (except for their duals). The two main classes are triangulations of

the plane – that is plane graphs where every face is a triangle – and triangulations of the

-543-

disk – that is plane graphs with one marked face (that is to be considered the unbounded

outer face) where all bounded faces are triangles.

∙ Triangulations of the plane

A triangulation of the plane is a plane graph where all faces are 3-gons. Triangu-

lations are duals of cubic plane graphs and in fact some of the generators for cubic

graphs are generators for triangulations where afterwards the dual is taken. Simi-

larly, here some generators are generators for cubic graphs with afterwards the dual

taken. The reason to have the graph and the dual in separate parts is just for easier

usage. Note also that in case of graphs that are not 3-connected, the dual may be

a multigraph and multigraphs are not supported by CaGe. So some of the options

that can be used for the graph are not present for the dual.

This section contains three subsections:

– General triangulations

The main parameter is the number of vertices.

The options are

∗ One can restrict the minimal degree. The default is 3 which allows all

simple triangulations.

∗ One can give a lower bound for the connectivity. The default is 3 which

allows all simple triangulations.

∗ One can choose that only graphs are output where the connectivity number

is equal to the lower bound.

– Triangulations with given vertex degrees

This is the dual case to 3-regular plane graphs with given face sizes.

One must give the number of vertices and a list of allowed vertex degrees.

As an option one can give upper and lower limits for the number of vertices

with each given degree.

-544-

– Eulerian triangulations

Eulerian triangulations are triangulations where all vertex degrees are even –

or equivalently: triangulations that have a Eulerian cycle

The main parameter is the number of vertices. Due to the Euler formula the

smallest degree in a Eulerian triangulation is always 4.

The options are

∗ One can give a lower bound for the connectivity. The default is 3 which

allows all simple triangulations.

∗ One can choose that only graphs are output where the connectivity number

is equal to the lower bound. While in case the chosen lower bound is 4

this is automatically the case, in case of 3 it forces non-facial triangles in

the output graph.

∙ Triangulations of the disk

In cases where the disk – the outer face – has 3 edges in the boundary, the graph is

isomorphic to a triangulation of the plane. But as the disk is considered to have a

special status, a fixed triangulation of the plane occurs as often as a triangulation

of the disk as there are orbits of the automorphism group on the triangles. In

case of 2-dimensional drawings, the outer face is displayed as the outer face in the

drawing (see details of the output routines later). The option to compute and

display 3-dimensional embeddings is not disabled for these structures, but one must

take into account that the outer face plays no special role in these embeddings, so

triangulations of the disk that are isomorphic as graphs or even as plane graphs can

no longer be distinguished.

The main parameter that has to be chosen is the number of vertices. The options

are

– One can fix the number of vertices on the boundary of the disk.

– One can forbid, allow or even require chords – that is edges between vertices

on the boundary that are not part of the boundary.

-545-

– One can allow or forbid 2-valent vertices on the boundary. Note that in the

interior no 2-valent vertices can occur because they would require double edges

in order to form a triangulation.

The algorithms implemented for these generators are described in [10].

Quadrangulations

Quadrangulations are plane graphs where the boundary of every face is a 4-cycle. Quad-

rangulations are duals of 4-regular graphs and the generators used here are the same as

in the part for 4-regular graphs. There are two main sections:

∙ General quadrangulations:

The main invariant one has to give is the number of vertices. Furthermore one of

the following 4 classes has to be chosen:

– quadrangulations with minimum degree 2 (for at least 4 vertices these are all

simple quadrangulations)

– quadrangulations with minimum degree 3

– 3-connected quadrangulations

– 3-connected quadrangulations without 4-cycles that are not the boundary of a

face

∙ Quadrangulations with given vertex degrees:

In this part one can choose the number of vertices and the set of allowed vertex

degrees. The generator is the same as in the part “4-regular plane graphs with given

face sizes” – only that the dual graphs are displayed (which are also 3-connected).

This means that also for this part a reimplementation of [8] would be important to

speed up the generation in cases where only few vertex degrees are allowed.

-546-

General plane graphs

In this section one can generate and display plane graphs without too many restrictions.

The main invariant is again the number of vertices.

The options are

∙ a lower bound between 1 and 5 for the minimum degree.

∙ a lower bound between 1 and 3 for the connectivity of the graph.

∙ lower and upper bounds for the number of edges.

∙ an upper bound on the face size.

In case of 3-connected graphs one can choose to output the duals of the graphs de-

scribed by these parameters. In this case the parameters change their meaning – the

number of vertices becomes the number of faces, the minimum degree becomes the mini-

mum face size and the maximum face size becomes an upper bound on the vertex degree.

The meaning of the limits for the number of edges doesn’t change.

The algorithm implemented for this generator is based on the triangulation generator

and is described in [10].

External Generator

In the section external generator it is possible to read graphs from a file or a generator for

plane graphs that is not contained in CaGe. The output has to be in a format understood

by CaGe though. For details on the format see [5].

Output options

After having chosen the class of graphs to be generated and clicking on next, the window

shown in Fig 5 appears and one has to choose what to do with the generated graphs.

Though several options in the generators allow to restrict the classes of graphs that

are generated, the user may have requirements that are even more special and only a

superclass of the class of interest can be found. One may e.g. be interested in fullerenes

that do not only obey the IPR rule, but where each pair of pentagons is separated by

-547-

at least 2 hexagons. For this purpose the pre-filter option is included. If the option is

switched on, one can type in the name of a program that is used to filter the output. The

graphs generated are piped into this filter program and the graphs written by the filter

are used as input for further processing as e.g. display. The program must read and write

a format described on [5]. CaGe then behaves as if only those graphs written by the filter

program were generated.

Output options allow to draw the graphs in 2 and 3 dimensions. The algorithms used

to draw the graphs are described in [20].

The following options are offered for the output:

3D: The graphs are embedded and drawn in 3 dimensions. The embedding routine

is designed for interactive use of CaGe, so speed was the highest priority. The

embeddings are designed to have – as far as possible – equal bond lengths and

equal angles around the vertices. For fullerene-like structures this normally gives

an embedding on a topological ball, but for other structures – e.g. triangulations

with vertices of high degree – these restrictions may lead to highly entangled 3-

dimensional representations. In the future, specialized embedders for these classes

will have to be developed. Though designed mostly for speed, in case of chemically

reasonable structures, like e.g. fullerenes, the 3-dimensional embeddings turned out

to be good enough as starting points for molecular dynamics programs. The 3D

embeddings can be visualized with Rasmol (see [21]), Jmol (see [22], Figure 8) and

can be written to a file or a pipe. The information written to a file or pipe contains

the adjacency information of the graph and the 3-dimensional coordinates of the

vertices.

One can also compute an unfolding of the structures in order to build 3D mod-

els (see Figures 9,10). In order to get an unfolding of a structure, the button in

the navigation window shown in Figure 6 must be clicked while the structure is

displayed.

2D: The graphs can also be embedded and drawn in 2 dimensions. In case of fullerenes

and other polyhedra, the drawing is in the form of a Schlegel diagram. The result

can be viewed with a 2D viewer included in CaGe (see figure 7), in which case

-548-

the user can choose the outer face by clicking on the face and export the drawing

as Postscript. Furthermore the embedding can be written to a file or piped into

another program. The information written contains the adjacency information of

the graph and the 2-dimensional coordinates of the vertices.

Adjacency information: The adjacency information of the generated graphs can also

be sent to a file or a pipe without embedding the graph in two or 3 dimensions first.

Figure 7: A 2-dimensional drawing of a

planar polycyclic hydrocarbon.

Figure 8: A 3-dimensional embedding

of a partial nanotube.

Figure 9: An unfolding of a fullerene

with 140 vertices

Figure 10: A model of the smallest IPR

fullerene (206 atoms) without a spiral

starting at a pentagon. The model is

built from an unfolding.

-549-

Future work

In the future more classes of graphs will be added, but the most important work at the

moment is to improve the way some graphs are drawn. The embedders in CaGe were orig-

inally developed for Fullerene-like structures and forcing embeddings with approximately

equal bond lengths and bond angles. In some cases that differ a lot from Fullerenes (with

e.g. low connectivity or vertices with high degree) this does not lead to good 2D or

3D drawings. Improving the drawing routines will have the highest priority for the near

future.

Acknowledgements

A lot of people contributed to CaGe that are not mentioned in the list of authors of this

article. We especially want to thank Thomas Harmuth, Alexander Lust, Brendan McKay,

and Ulrike von Nathusius for their contributions, help and advice.

References

[1] G. Brinkmann, O. Delgado Friedrichs, A. Dress, T. Harmuth, CaGe – a virtual

environment for studying some special classes of large molecules, MATCH Commun.

Math. Comput. Chem. 36 (1997) 233–237.

[2] S. Schein, T. Friedrich. A geometric constraint, the head-to-tail exclusion rule, may

be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices,

Proc. Natl. Acad. Sci. USA 105 (2008) 19142–19147.

[3] H. Zettergren, G. Sanchez, S. Diaz-Tendero, M. Alcami, F. Martin, Theoretical

study of the stability of multiply charged c-70 fullerenes, J. Chem. Phys. 127 (2007)

104308.

[4] P. W. Fowler, P. Hansen, D. Stevanović, A note on the smallest eigenvalue of

fullerenes, MATCH Commun. Math. Comput. Chem. 48 (2003) 37–48.

[5] Homepages of CaGe: http://www.mathematik.uni-bielefeld.de/˜CaGe/

http://caagt.ugent.be/CaGe/.

-550-

[6] G. Brinkmann, A. W. M. Dress, A constructive enumeration of fullerenes, J. Algo-

rithms 23 (1997) 345–358.

[7] T. Harmuth, The Construction of Cubic Maps on Orientable Surfaces. PhD thesis,

Universität Bielefeld (2000).

[8] G. Brinkmann, O. Heidemeier, T. Harmuth, The construction of cubic and quartic

planar maps with prescribed face degrees, Discr. Appl. Math. 128 (2003) 541–554.

[9] G. Brinkmann, B. D. McKay, U. von Nathusius, Backtrack search and look-ahead for

the construction of planar cubic graphs with restricted face sizes, MATCH Commun.

Math. Comput. Chem. 48 (2003) 163–177.

[10] G. Brinkmann, B. D. McKay, Fast generation of planar graphs, MATCH

Commun. Math. Comput. Chem. 58 (2007) 323–357; see http://cs.anu.edu.au-

/˜bdm/index.html.

[11] S. Funke, Erzeugung dreizusammenhängender Quadrangulierungen mit einge-

schränkten Knotengraden, Master’s thesis, Universität Bielefeld (2004).

[12] J. Bornhöft, G. Brinkmann, J. Greinus, Pentagon-hexagon-patches with short bound-

aries, Eur. J. Combin. 24 (2003) 517–529.

[13] G. Brinkmann, B. Coppens, An efficient algorithm for the generation of planar

polycyclic hydrocarbons with a given boundary, MATCH Commun. Math. Comput.

Chem. 62 (2009) 209–220.

[14] F. Harary, H. Harborth, Extremal animals, J. Comb. Inf. Syst. Sci. 1 (1976) 1–8.

[15] G. Brinkmann, G. Caporossi, P. Hansen, A constructive enumeration of fusenes and

benzenoids, J. Algorithms 45 (2002) 155–166.

[16] G. Brinkmann, C. Grothaus, I. Gutman, Fusenes and benzenoids with perfect match-

ings, J. Math. Chem. 42 (2007) 909–924.

[17] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon

Nanotubes, Academic Press, 1996.

-551-

[18] D.J. Klein, Topo-combinatoric categorization of quasi-local graphitic defects, Phys.

Chem. Chem. Phys. 4 (2002) 2099–2110.

[19] G. Brinkmann, N. Van Cleemput, Classification and generation of nanocones,

manuscript.

[20] O. Delgado Friedrichs, Fast embeddings for planar molecular graphs, in: P. Hansen,

P. Fowler, M. Zheng (Eds.), Discrete Mathematical Chemistry , Am. Math. Soc.,

Providence (2000), pp. 85–95.

[21] Homepage of rasmol and openrasmol:. http://rasmol.org/.

[22] Jmol: an open-source java viewer for chemical structures in 3d; http://jmol.source-

forge.net/.

-552-

