
Comparisons of RNA Secondary
Structures Based on LZ Complexity

Yusen Zhang∗, Wei Chen

School of Mathematics and Statistics, Shandong University at Weihai

Weihai 264209, China

(November 11, 2008)

Abstract. We propose a relatively simple and effective method to compare
RNA secondary structures. We transform an RNA secondary structure into linear
sequences not only differentiating paired bases from free bases but also considering
the stacks and loops of the RNA secondary structure. Then we use two suitable
distance measures based on the relative information between the linear sequences
using Lempel-Ziv complexity, the pair-distance matrix thus obtained can be used
to construct phylogenetic trees. The proposed approach does not require sequence
alignment. The algorithm has been successfully constructed phylogenies for two
data sets.

1 Introduction

RNA is a chain molecule, mathematically a string over a four letter alphabet. It

is built from nucleotides containing the bases A(denine), C(ytosine), G(uanine), and

U(racil). By folding back onto itself, an RNA molecule forms structure, stabilized

by the forces of hydrogen bonds between certain pairs of bases (A-U, C-G, G-U),

and dense stacking of neighboring base pairs. The investigation of RNA secondary

structures is a challenging task in molecular biology. RNA molecules are integral

components of the cellular machinery for protein synthesis and transport, transcrip-

tional regulation, chromosome replication, RNA processing and modification, and

other fundamental biological functions [12–14]. Due to the special role of RNA in
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biological system, RNA has recently become the center of much attention because

of its functions as well as catalytic properties, leading to a substantially increased

interest in identifying new RNAs and obtaining their structural information.

There are many algorithms for computing the similarity of RNA molecules [1–5].

Previously, almost all such comparisons are based on the alignment, in which a dis-

tance function or a score function is used to represent insertion, deletion, and sub-

stitution of letters in the compared structures. Such approaches, which have been

hitherto widely used, are computer intensive. For a few years, several tree comparison

algorithms have been developed [6, 7]. Nevertheless, these methods do not take into

account the pseudo-knots. Recently, some researchers presented different graphical

representations for RNA secondary structures, and used the invariants of matrices

constructed from the graphs to characterize and compare RNAs [8–11]. The advan-

tage of graphical representations is that they allow visual inspection of data, helping

in recognizing major differences among RNA secondary structures. However, in liter-

atures, almost all the schemes merely regarded the free base (denoted as A,U,G, C)

and paired base (denoted as A′, U ′, G′, C ′) as different characters, then the RNA sec-

ondary structure is converted into a special sequence and the comparison of RNA

secondary structures is reduced to compare the corresponding strings of the letters

(A,U,G, C,A′, U ′, G′, C ′) or other letters. It might lead to neglecting the difference of

their roles in determining RNA stability and by this way identical RNA primary se-

quences with different secondary structures will have identical special sequences that

cannot characterize the corresponding RNA secondary structures effectively (Fig. 1).

Fig. 1: Four simulated RNA secondary structures.
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Complexity is one of the most basic properties of a symbolic sequence. In respect

that DNA sequences can be treated as finite-length symbol strings over a four-letter

alphabet (A, C, T, G), DNA sequence complexity is much attractive to many re-

searchers. Kolmogorov complexity, the first formal theoretical description of sequence

complexity, was proposed by Kolmogorov from the view of algorithm information the-

ory [15]. Li et al. [16] first introduced Kolmogorov complexity to DNA sequence anal-

ysis and proposed a DNA sequence distance matrix based on it. Because Kolmogorov

complexity is not computable, Chen et al. [17] made use of data compression gain to

approximate Kolmogorov complexity. However, the generalization of the approximate

method is greatly limited because the data compression gain varies evidently with the

object to be compressed and the algorithm that a certain compressor uses [18]. In

contrary, LZ complexity, another significant complexity measure proposed by Lempel

and Ziv [19], is easily computable and is also a universal depiction of sequence com-

plexity. Otu et al. [20] have used the Lempel-Ziv algorithm to successfully construct

phylogenetic trees from DNA sequences, which verifies the efficiency of Lempel-Ziv

algorithm in analyzing the similarity of linear biological sequences. Motivated by this

work, some authors develop a method to compare RNA secondary structures and

analyze their similarities [21, 22]. The key idea is that to transform the RNA sec-

ondary structures into a linear characteristic sequences (It is called shadow sequences

in [22]), these linear sequences are decomposed according to the rule of Lempel-Ziv

algorithm to evaluate the LZ complexity. But we find that sometimes these character-

istic sequences transformed from RNA secondary structures cannot characterize the

corresponding RNA secondary structures uniquely. That will result in quit different

RNA secondary structures with identical RNA sequence having identical character-

istic sequences. For example, the different RNA secondary structures with identical

sequences shown in Fig. 1a and Fig. 1b will have identical characteristic sequences

according to the method in [22] and RNA secondary structures shown in Fig. 1c and

Fig. 1d will have identical shadow sequences according to the method in [21].

In this paper we propose a novel method for the similarity analysis of RNA sec-

ondary structures, where pseudoknots are really taken into account. In our approach,

each secondary structure is transformed into a linear sequence by a novel idea. We
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not only differentiate paired bases from free bases but also consider the stacks and

loops. So the linear sequence contains all the information corresponding RNA sec-

ondary structure. Furthermore, standard and famous Lempel-Ziv algorithm [15] is

employed for the similarity analysis. Of course, we have tested the validity of our

method by analyzing two sets of real data. The results obtained by our method are

reasonable and are generally in agreement with the previous studies.

2 Methods and algorithms

2.1 Characteristic sequence of RNA secondary structures

Because of the complexity of RNA secondary structures, many efficient opera-

tions used for the analysis of DNA sequences cannot be applied to the analysis of RNA

secondary structures. In order to facilitate the analysis of RNA secondary structures,

we proposed a coding algorithm to transform a complex secondary structure into a

linear sequence, containing the information on primary sequence and paired bases.

The coding algorithm is designed in this section.

The secondary structure of an RNA molecule is the collection of free bases and

stacks that consist of series of consecutive base pairs. So an RNA sequence, reading

from 5′-terminal to the 3′-terminal, can be represented by R = R[1]R[2]...R[n], where

R[i] represents the ith nucleotide of R. We use R[i...i + p] denotes the consecutive

bases R[i], R[i + 1], ... and R[i + p], then we can use R[i...i + p] and R[j...j − p]

express the two strands of the stack that consists of consecutive bases R[i], R[i+1], ...

and R[i + p] with their corresponding pairing partner R[j], R[j − 1], ... and R[j − p],

respectively. The stacks are labeled alphabetically from 5’-terminal to 3’- terminal:

The first stack is called stack a, and the second stack is called stack b, ... etc.

For example, the RNA sequence shown in Fig. 1 is

R = AAAAAACCCUUUUUUCCCAAAAAACCCUUUUUU .

R[1...6] and R[33...28], R[10...15] and R[24...19] construct two stacks in Fig 1b.

For a given RNA secondary structure R, we construct its characteristic sequence

L(R) by the following rules:

(1) If R[i] is a free base, R[i] appended to L(R).
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(2) If R[i] is a paired base, R[i]· appended to L(R), where · denote the bond

between R[i] and its pairing partner.

(3) If R[i...i + p] is one strand of stack with label X, (X ∈ {a, b, c, ...}), then

XR[i] · R[i + 1] · ...R[i + p] · X appended to L(R).

For example, the four characteristic sequences of the RNA secondary structure

(Fig. 1) are

L(Ra) = aA · A · A · abA · A · A · bCCCbU · U · U · bcU · U · U · cCCCcA · A · A ·
cdA · A · A · dCCCdU · U · U · dcU · U · U · c (Fig. 1a)

L(Rb) = aA ·A ·A ·A ·A ·A · aCCCbU ·U ·U ·U ·U ·U · bCCCbA ·A ·A ·A ·A ·
A · bCCCaU · U · U · U · U · U · a (Fig. 1b)

L(Rc) = aA · A · A · aAAACCCbU · U · U · baU · U · U · aCCCAAAbA · A · A · b
(Fig. 1c)

L(Rd) = aA · A · A · aAAACCCaU · U · U · abU · U · U · bCCCAAAbA · A · A · b
(Fig. 1d)

One can observe that it is easy to restore the RNA sequence and its secondary

structure from the characteristic sequence. That means there exists a one-to-one cor-

respondence between the RNA secondary structure and the characteristic sequence.

Therefore, the characteristic sequence we proposed is the representative of the RNA

secondary structure. The characteristic sequence contains all the information that

the RNA secondary structure contains, or vice versa.

2.2 Sequence LZ complexity

Let S, Q and R be sequences defined over an alphabet A, �(S) be the length of

S, S(i) denote the ith element of S and S(i, j) define the substring of S composed

of the elements of S between positions i and j (inclusive). An extension R = SQ of

S is reproducible from S (denoted S → R) if there exists an integer p ≤ �(S) such

that Q(k) = R(p + k − 1) for k = 1, ..., �(Q). For example AACGT → AACGT CGT

CG with p = 3 and AACGT → AACGT AC with p = 2. Another way of looking

at this is to say that R can be obtained from S by copying elements from the p-th

location in S to the end of S. Since each copy extends the length of the new sequence

beyond �(S), the number of elements copied can be greater than �(S)− p + 1. Thus,
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this is a simple copying procedure of S starting from position p, which can carry over

to the added part, Q. A sequence S is producible from its prefix S(1, j) (denoted

S(1, j)⇒ S), if S(1, j) →S(1, �(S) − 1). For example AACGT ⇒ AACGTAC and

AACGT ⇒ AACGTACC both with pointers p = 2. Note that production allows for

an extra different symbol at the end of the copying process which is not permitted in

reproduction. Therefore, an extension which is reproducible is always producible but

the reverse may not always be true.

Any sequence S can be built using a production process where at its i-th step

S(1, hi−1) ⇒ S(1, hi) [note that ε = S(1, 0) ⇒ S(1, 1)]. An m-step production process

of S results in a parsing of S in which H(S) = S(1, h1) · S(h1 + 1, h2), ..., S(hm−1 +

1, hm) is called the history of S and Hi(S) = S(hi−1+1, hi) is called the i-th component

of H(S). For example for S = AACGTACC, A· A· C · G· T · A· C · C, A · AC · G ·
T · A · C · C and A · AC · G · T · ACC are three different (production) histories of

S. If S(1, hi) is not reproducible from S(1, hi−1) , then Hi(S) is called exhaustive. In

other words, for Hi(S) to be exhaustive the i-th step in the production process must

be a production only, meaning that the copying process cannot be continued and

the component should be stopped with a single letter innovation. A history is called

exhaustive if each of its components (except maybe the last one) is exhaustive. For

example the third history given in the preceding paragraph is an exhaustive history

of S = AACGTACC. Moreover, every sequence S has a unique exhaustive history

(Lempel and Ziv, 1976).

Let c(S) be the number of components in the exhaustive history of S. It is the

least possible number of steps needed to generate S according to the whole Lempel-

Ziv algorithm, so c(S) becomes an important complexity indicator. For example,

c(L(Ra)) = 20, c(L(Rb)) = 13, c(L(Rc)) = 18, c(L(Rd)) = 17.

2.3 Proposed distance and pair-wise distance matrix

Lempel et al have proposed that, for any given sequences Q and S, c(QS) ≤ c(Q) +

c(S) always holds. This formula shows that the steps required to extend Q to QS

are always less than the steps required to build S from φ. Recently, Otu et al [20]

concluded that the more similar the sequence S is to sequence Q, the smaller c(QS)−
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c(Q) is. That is c(QS) − c(Q) depends on how much S is similar to Q. Based

on this hypothesis, Otu et al have defined five distance measures and used them

to successfully construct phylogenetic trees from DNA sequences, which verifies the

efficiency of Lempel- Ziv algorithm in analyzing the similarity of linear biological

sequences. In order to eliminate the effect of the length on the distance measure

d(S, Q), we use following relative distance measures in our applications.

d1(S, Q) =
max{c(SQ) − c(S), c(QS) − c(Q)}

max{c(S), c(Q)} (1)

d2(S, Q) =
c(SQ) − c(S) + c(QS) − c(Q)

max{c(QS), c(SQ)} (2)

The first formula corresponds to d∗(S, Q) in [20]. The second one is slightly

different from d∗
1(S, Q). We choose to use these formulas mainly because the results

are more precise when short RNA primary sequences are compared and analyzed.

Generally, given n RNA secondary structures R1, R2, ..., Rn, we can obtain their

linear characteristic sequences by the above-mentioned rule, which are L(R1), L(R2),

..., L(Rn). They are linear sequences defined over alphabet {A,C, G, U} and {a, b, c,

d, ...} and carry the information on RNA secondary structures. Then, by using

Lempel-Ziv algorithm, the distance between any pair of structures may be rapidly

computed. By arranging them into a matrix, a pairwise distance matrix is ob-

tained, denoted by RD. RD = (d(Ri, Rj)) contains the information on the simi-

larity/dissimilarity between any pair of RNA secondary structures.

3 Comparing RNA secondary structures

Phylogenetic relationships among different organisms are of fundamental importance

in biology, and one of the prime objectives of DNA sequence analysis is phylogeny

reconstruction for understanding evolutionary history of organisms. The goal of our

study is to compare RNA secondary structures and analyze their similarity. The

utility of our approach in similarity analysis is illustrated by the examination of the

similarities/dissimilarities of two sets of the secondary structures.
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Fig. 2: Secondary structure at the 3’-terminus of RNA 3 of alfalfa mosaic virus (AlMV-3),

citrus leaf rugose virus (CiLRV-3 ), tobacco streak virus(TSV-3), citrus variegation virus

(CVV-3 ), apple mosaic virus (APMV-3), prune dwarf ilarvirus (PDV-3), elm mottle virus

(EMV-3) and asparagus virus II (AVII).

The set I consists of the RNA secondary structures at the 3’-terminus belonging to

nine different viruses, which is used to indicate the validation of their method by many
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authors [8–11]. In Fig. 1, these secondary structures are listed, which were reported

by Reusken and Bol [23]. 5S Ribosomal RNA is the smallest RNA component of

the ribosomes. Since the nucleotide sequences of 5S rRNA are relatively conserved

throughout evolution and are useful for establishing the evolutionary relationship

of organisms, the set II consists of the 5S rRNA sequences from 15 representative

protozoa species.

Given a set of RNA secondary structures, our method requires the following main

operations for the similarity analysis:

1. The non-linear complex RNA secondary structures are transformed into linear

characteristic sequences.

2. These linear sequences are decomposed according to the rule of Lempel-Ziv

algorithm to evaluate the LZ complexity.

3. The similarity degree between any two structures is measured by the distance

formulas d1(S, Q), d2(S, Q) and d3(S,Q).

4. After computing the pair distances, we arrange all the values into a matrix for

clear and systematical display. This pair-wise distance matrix is listed in the form

of Table. It contains the information on the similarity of this set of RNA secondary

structures.

We have used our method to analyze the similarity of set I and set II, respectively.

The pair-wise distance matrix based on distance measure d1(S, Q) for nine RNA

secondary structures of set I is list in Table 1.

We find that the smaller entries (d1 < 0.5) are associated with AVII and CVV-3

[d1 = 0.4074], AVII and LRMV-3 [d1 = 0.4194], AVII and EMV-3 [d1 = 0.4444],

CVV-3 and LRMV-3 [d1 = 0.4516] and CVV-3 and EMV-3 [d1 = 0.4815]. All these

secondary structures, AVII, CVV-3, LRMV-3 and EMV-3, have three base-paired

regions and three loop regions. We also can observe that AIMV-3, PDV-3 and APMV-

3 (d1(AIMV − 3, PDV − 3) = 0.5652, d1(PDV − 3, APMV − 3) = 0.4400 and

d1(AIMV − 3, APMV − 3) = 0.5600) are similar to each other. But these three

secondary structures have two base-paired regions and two loop regions that are

different from the four mentioned secondary structures in topology. Especially notable

is that their second hairpins is almost the same.
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Table 1: The upper triangular part of the pair-wise distance matrix based on distance measure d1(S, Q) for nine

RNA secondary structures of set I

Species AIMV-3 CiLRV-3 TSV-3 CVV-3 APMV-3 LRMV-3 PDV-3 EMV-3 AVII

AIMV-3 0 0.6296 0.6818 0.6296 0.5600 0.7419 0.5652 0.7500 0.6667

CiLRV-3 0 0.5185 0.5926 0.6296 0.5484 0.5926 0.5926 0.5556

TSV-3 0 0.5556 0.6400 0.6452 0.5217 0.7083 0.6667

CVV-3 0 0.5926 0.4516 0.5926 0.4815 0.4074

APMV-3 0 0.7742 0.4400 0.7600 0.6296

LRMV-3 0 0.7097 0.5161 0.4194

PDV-3 0 0.7500 0.7407

EMV-3 0 0.4444

AVII 0

In Table 2, we present the pair-wise distance matrix based on distance measure

d2(S, Q) for nine RNA secondary structures of set I.

Comparing Table 1, 2, we can find that there exists an overall qualitative agree-

ment among similarities although there is small difference.

Table 2: The upper triangular part of the pair-wise distance matrix based on distance measure d2(S, Q) for nine

RNA secondary structures of set I

Species AIMV-3 CiLRV-3 TSV-3 CVV-3 APMV-3 LRMV-3 PDV-3 EMV-3 AVII

AIMV-3 0 0.7179 0.7297 0.7436 0.6944 0.8222 0.6571 0.8250 0.7805

CiLRV-3 0 0.6750 0.7209 0.7619 0.6818 0.7179 0.7442 0.6905

TSV-3 0 0.7073 0.7317 0.7660 0.6857 0.8293 0.7805

CVV-3 0 0.7209 0.6136 0.7317 0.6410 0.5263

APMV-3 0 0.8163 0.5833 0.8605 0.7674

LRMV-3 0 0.8043 0.6667 0.5682

PDV-3 0 0.8293 0.7907

EMV-3 0 0.5833

AVII 0

To further check our result, we use such matrix to construct the hierarchical

clustering of these secondary structures because the quality of a clustering analy-

sis may verify whether our method of abstracting information from RNA molecules

is efficient. We construct a relationship tree for the nine RNA secondary structure

sequences using the NEIGHBOR method in Phylip 3.66 package. The pairwise evolu-
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tionary distance matrix, was formed using distance measure d1(S,Q)(d2(S,Q)), was

fed into the Neighbor-Joining algorithm provided in PHYLIP to construct a phy-

logeny, respectively. The phylogenies were drawn using TreeView 1.6.6 and shown in

Fig. 3 and Fig. 4.

Comparing Fig. 3 and Fig. 4, we can find that the trees obtained by the pro-

posed distance measures d1(S, Q) and d2(S, Q) resulted in almost identical topologies.

The topology of the tree, except for the positions of the CiLRV-3 and TSV-3, is in

agreement for all the part.

Fig. 3: Neighbor-joining tree for the data in set I. It is obtained by the pair-wise distance

matrix based on distance measure d1(S,Q) and drawn by Treeview program.

It is not difficult to see that the similarity obtained by our method is coincident

with that implicated in the tree.

The relationship of nine 3’-terminal structures of viruses is shown reasonably: All

the nine molecules are clustered into two group: AIMV-3, PDV-3 and APMV-3 are

clustered into one group closely. AVII, CVV-3, LRMV-3, EMV-3, CiLRV-3 and TSV-

3 are clustered into another group. AVII, CVV-3, LRMV-3 and EMV-3 are grouped

closely. But they are less closely with CiLRV-3 and TSV-3, which is consistent with

the fact that the former and latter have some different loop and stem regions.
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Fig. 4: Neighbor-joining tree for the data in set I. It is obtained by the pair-wise distance

matrix based on distance measure d2(S,Q) and drawn by Treeview program.

In order to verify the generality of our method, we apply it to the set II. The

15 complex RNA secondary structures of set II are from [23] [24]. These 5S rRNA

are: Crithidia fasciculata, Bresslaua vorax, Paramecium tetraurelia, Tetrahymena

thermophila, Euplotes woodruffi, Acanthamoeba castellanii, Scenedesmus obliquus,

Chlamydomonas sp., Chlorella sp., Spinach (a representative of vascular plants), As-

pergillus nidulans (a representative of fungi), Euglena gracilis, Chilomonas parame-

cium, Physarum polycephalum and Animals (a representative of multicellular ani-

mals).

After computing the pair distances by using d1(S, Q), we obtain the pair-wise

distance matrix. When it was fed into the Neighbor-Joining algorithm provided in

PHYLIP, we constructed a phylogenic tree of these protozoa (Fig. 5).

We omit the corresponding results for the distance measure d2(S, Q) as they are

identical to the ones presented here.

The tree shows that unicellular green flagellate Chlamydomonas and Unicellular

green algae Chlorella, Scenedesmus and plants belong to the same branch in the tree,

Chlorella and Scenedesmus are closely related to each other as expected. Chlamy-

domonas is closer to the sequences of green algae and plants than to other protozoa

and animals.
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Fig. 5: Neighbor-joining tree for the data in set II. It is obtained by the pair-wise distance

matrix based on distance measure d1(S, Q)(d2(S, Q)) and drawn by Treeview program.

Bresslaua, Paramecium, tetraurelia and Euplotes are grouped closely, which is

consistent with the fact that they belong to Ciliophora; Physarum, Acanthamoeba,

Crithidia and Euglena are intimately related to one another, which is consistent

with the fact that they belong to Sarcomastigophora; Euglena has been classified

either as related to plants (by botanists) or to animals (by zoologists) [23]. We

also suggest that it is much closer to animals than to plants. This has been also

suggested by other biochemical data. The topology of the tree, except for the positions

of the Chilomonas, is generally in agreement with the classification by taxonomic

criteria [23].

4 Conclusions

The famous Lempel-Ziv algorithm can efficiently extract the information on re-

peated patterns encoded in DNA sequence and be used to analyze the similarity of

DNA sequence. In order to numerically characterize RNA secondary structure using

these techniques, it is necessary to transform an RNA secondary structure into linear
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sequence. Unlike most existing methods, we transform an RNA secondary structure

into linear sequences not only differentiating paired bases from free bases but also

considering the stacks and loops of the RNA secondary structure. So the linear se-

quence contains all the information that contained in the RNA primary sequence

and RNA secondary structure. Then comparison of two RNA secondary structures

is now transformed into a comparison of linear sequences of the corresponding RNA

secondary structures. When these linear sequences are obtained, we can use the

Lempel-Ziv algorithm to analyze the RNA secondary structure and build the phylo-

genetic tree. The proposed method does not require gene identification nor any prior

biology knowledge such as an accurate alignment score matrix. To show the utility

of the method, we use it to examine the similarities and construct the corresponding

phylogenic tree for two data sets, which is consistent with results reported in other

literature.

Acknowledgements

The authors would like to thank Hasan H. Otu for providing their algorithms.

This work is supported by Shandong Natural Science Foundation (Y2006A14).

References

[1] V. Bafna, S. Muthukrishnan, R. Ravi, Comparing similarity between RNA

strings, 6th Annual Symposium on Combinatorial Pattern Matching 937 (1995)

1–16.

[2] F. Corpet, B. Michot, RNAlign program: alignment of RNA sequences using

both primary and secondary structures, Comput. Appl. Biosci. 10 (1994) 389–

399.

[3] B. Shapiro, An algorithm for comparing multiple RNA secondary structures,

Comput. Appl. Biosci. 4 (1988) 387–393.

[4] S. Y. Le, J. Owens, R. Nussinov, J. H. Chen, B. Shapiro, J. V. Maizel, RNA

secondary structures: comparison and determination of frequently recurring sub-

structures by consensus, Comput. Appl. Biosci. 5 (1989) 205–210.

-526-



[5] S. Y. Le, R. Nussinov, J. V. Maizel, Tree graphs of RNA secondary structures

and their comparisons, Comput. Biomed. Res. 22 (1989) 461–473.

[6] B. Shapiro, K. Zhang, Comparing multiple RNA secondary structures using tree

comparisons, Comput. Appl. Biosci. 6 (1990) 309–318.

[7] S. Dulucq, L. Tichit, RNA secondary structure comparison: exact analysis of the

Zhang-Shasha tree edit algorithm, Theor. Comput. Sci. 306 (2003) 471–484.

[8] B. Liao, T. Wang, A 3D graphical representation of RNA secondary structure,

J. Biomol. Struc. Dynamics 21 (2004) 827–832.

[9] Y. Yao, B. Liao, T. Wang, A 2D graphical representation of RNA secondary

structures and the analysis of similarity/dissimilarity based on it, J. Mol. Struct.

(Theochem) 755 (2005) 131–136.

[10] Y. S. Zhang, On 3D graphical representation of RNA secondary structure,

MATCH Commun. Math. Comput. Chem. 57 (2007) 157–168.

[11] Y. S. Zhang, On 2D graphical representation of RNA secondary structure,

MATCH Commun. Math. Comput. Chem. 57 (2007) 697–710.

[12] S. R. Eddy, Non-coding RNA genes and the modern RNA world, Nature Rev.

Genet. 2 (2001) 919–929.

[13] G. Storz, An expanding universe of noncoding RNAs, Science 296 (2002) 1260–

1263.

[14] T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide,

Springer-Verlag, New York, 2002.

[15] M. Li, P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applica-

tions , Springer-Verlag, New York, 1997.

[16] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, H. Zhang , An information-

based sequence distance and its application to whole mitochondrial genome phy-

logeny, Bioinformatics 17 (2001) 149–154.

[17] X. Chen, S. Kwong, M. Li, A compression algorithm for DNA sequences and its

applications in genome comparison, Genome Informatics 10 (1999) 51–61.

[18] H. Sato, T. Yoshioka, A. Konagaya, T. Toyoda, DNA data compression in the

post genome era, Genome Informatics 12 (2001) 512–514.

-527-



[19] J. Ziv, A. Lempel, Compression of individual sequences by variable rate coding,

Inform. Theory, IEEE IPrans. 24 (1978) 530–536.

[20] H. H. Otu, K. Sayood, A new sequence distance measure for phylogenetic tree

construction, Bioinformatics 19 (2003) 2122–2130.

[21] N. Liu, T. Wang, A method for rapid similarity analysis of RNA secondary

structures, BMC Bioinformatics 7 (2006) 493–503.

[22] C. Li, A. Wang, L. Xing, Similarity of RNA secondary structures, J. Comput.

Chem. 28 (2007) 508–512.

[23] T. Kumazaki, H. Hori, S. Osawa, Phylogeny of protozoa deduced from 5S rRNA

sequences, J. Mol. Evol. 19 (1983) 411–419.

[24] M. Szymanski, Z. Miroslawa, V. A. Barciszewska, E. J. Barciszewski, 5S riboso-

mal RNA database, Nucleic. Acids. Res. 30 (2002) 176–178.

[25] J. Felsenstein, PHYLIP-Phylogeny inference package (version 3.2), Cladistics 5

(1989) 164–166.

[26] R. D. M. Page, Tree View: An application to display phylogenetic trees on

personal computers, Comput. Appl. Biosci. 12 (1996) 357–358.

[27] C. B. Reusken, J.F. Bol, Structural elements of the 3’-terminal coat protein

binding site in alfalfa mosaic virus RNAs, Nucleic Acids. Res. 24 (1996) 2660–

2665.

[28] N. D. Levine, J. O. Corliss, F. E. G. Cox, G. Deroux, J. Grain, B. M. Honigberg,

G. F. Leedale, A. R. Loeblich III, J. Lom, D. H. Lynn, E. G. Merinfeld, F.

C. Page, G. Poljansky, V. Sprague, J. Vavra, F. G. Wallace, A newly revised

classification of the protozoa, J. Protozool 27 (1980) 37–58.

-528-


