MATCH Communications in Mathematical and in Computer Chemistry

On Comparing Variable Zagreb Indices for Unicyclic Graphs

Meng Zhang, Bolian Liu*

School of Mathematical Science, South China Normal University, Guangzhou, 510631, P. R. China

(Received March 23, 2009)

Abstract

Recently, the first and second Zagreb indices are generalized into the variable Zagreb indices which are defined by ${}^{\lambda}M_1(G) = \sum_{u \in V} (d(u))^{2\lambda}$ and ${}^{\lambda}M_2(G) = \sum_{uv \in E} (d(u)d(v))^{\lambda}$, where λ is any real number. In this paper, we prove that ${}^{\lambda}M_1(G)/n \ge {}^{\lambda}M_2(G)/m$ for all unicyclic graphs and all $\lambda \in (-\infty, 0]$. And we also show that the relationship of numerical value between ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ is indefinite in the distinct unicyclic graphs for each $\lambda \in (1, +\infty)$. With the conclusion in [4], we finish discussing the relationship of ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ in unicyclic graphs for $\lambda \in R$.

1 Introduction

The first and second Zagreb indices are among the oldest and the most famous topological indices, which are defined as:

$$M_1(G) = \sum_{u \in V} (d(u))^2$$
 and $M_2(G) = \sum_{u \in F} d(u)d(v)$

where V is the set of vertices, E is the set of edges and d(u) is degree of vertex u. |V| = n, |E| = m.

Recently, the system AutoGraphiX proposed the following conjecture:

Conjecture 1.1 For all simple connected graph G,

$$M_1(G)/n \le M_2(G)/m$$

and the bound is tight for complete graphs.

^{*}Corresponding author who is supported by NNSF of China (No.10771080) and SRFDP of China (No.20070574006). E-mail address:liubl@scnu.edu.cn

But, in paper [5], this conjecture is proved not true, while it is proved true for chemical graphs([5]), trees([3]) and unicyclic graphs([1]). The generalization of this claim to the variable Zagreb indices has been analyzed. The variable first and second Zagreb indices are defined as: ${}^{\lambda}M_1(G) = \sum_{u \in V} (d(u))^{2\lambda}$ and ${}^{\lambda}M_2(G) = \sum_{uv \in E} (d(u)d(v))^{\lambda}$ where λ is any real number, with the following theorems from paper [2–4].

Theorem 1.2 For all chemical graphs G and all $\lambda \in [0, 1]$, it holds that ${}^{\lambda}M_1(G)/n \leq {}^{\lambda}M_2(G)/m$.

Theorem 1.3 For all trees G and all $\lambda \in [0, 1]$, it holds that ${}^{\lambda}M_1(G)/n \leq {}^{\lambda}M_2(G)/m$.

Theorem 1.4 Let $\lambda \in R \setminus [0, 1]$ and G be any unbalanced bipartite graph. Then, ${}^{\lambda}M_1(G)/n > 0$ $\lambda M_2(G)/m.$

Theorem 1.5 For all graphs G and all $\lambda \in [0, 1/2]$, it holds that ${}^{\lambda}M_1(G)/n \leq {}^{\lambda}M_2(G)/m$.

Theorem 1.6 Let $\lambda \in (\sqrt{2}/2, 1)$. Then, there is a graph G such that ${}^{\lambda}M_1(G)/n > {}^{\lambda}M_2(G)/m$.

Theorem 1.7 For all unicyclic graphs G and all $\lambda \in [0, 1]$, it holds that ${}^{\lambda}M_1(G)/n \leq {}^{\lambda}M_2(G)/m$.

It is known to all that the variable Zagreb indices are often used in the study of unicyclic molecules. In this paper, we show that the relationship of numerical value between ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ for $\lambda \in \mathbb{R} \setminus [0, 1]$. With the conclusion in [4], we finish discussing the relationship of the variable first and second Zagreb indices in unicyclic graphs for $\lambda \in R$.

2 **Comparing Variable Zagreb Indices for Unicyclic Graphs for** $\lambda \leq 0$

Theorem 2.1 Let G be a connected unicyclic graph with n vertices and m edges. Then

$${}^{\lambda}M_1(G)/n \ge {}^{\lambda}M_2(G)/m, \lambda \in (-\infty, 0]$$

Moreover, if $\lambda \in (-\infty, 0)$, then ${}^{\lambda}M_1(G)/n = {}^{\lambda}M_2(G)/m$ holds if and only if G is a cycle.

Proof. If G is a cycle, it is easy to see that ${}^{\lambda}M_1(G)/n = {}^{\lambda}M_2(G)/m, \lambda \in (-\infty, 0]$. So we may assume that G is not a cycle in the following proof.

Since G is a connected unicyclic graph, we have n = m. Moreover, by the definition of ${}^{\lambda}M_1(G)$ and ${}^{\lambda}M_2(G)$, it is obvious that ${}^{0}M_1(G) = \sum_{u \in V} (d(u))^{2 \cdot 0} = n = m = {}^{0}M_2(G) = 0$ $\sum_{uv \in E} (d(u)d(v))^0$. So we only need to prove ${}^{\lambda}M_1(G) > {}^{\lambda}M_2(G), \lambda \in (-\infty, 0)$. We prove this conclusion by induction on n.

If n = 4, since G is not a cycle, G is a connected unicyclic graph that has a triangle and a pendant vertex. Then we have

$${}^{\lambda}M_{1}(G) = 2^{2\lambda} + 2^{2\lambda} + 3^{2\lambda} + 1^{2\lambda} = 4^{\lambda} + 4^{\lambda} + 9^{\lambda} + 1,$$

$${}^{\lambda}M_{2}(G) = (2 \times 2)^{\lambda} + (2 \times 3)^{\lambda} + (3 \times 2)^{\lambda} + (3 \times 1)^{\lambda} = 4^{\lambda} + 6^{\lambda} + 6^{\lambda} + 3^{\lambda}.$$

Then

$${}^{\lambda}M_{1}(G) - {}^{\lambda}M_{2}(G) = 4^{\lambda} + 4^{\lambda} + 9^{\lambda} + 1 - 4^{\lambda} - 6^{\lambda} - 6^{\lambda} - 3^{\lambda}$$

> 1 + 9^{\lambda} - 4^{\lambda} - 3^{\lambda}.

Suppose $f_1(\lambda) = 1 + 9^{\lambda} - 4^{\lambda} - 3^{\lambda}, \lambda \in (-\infty, 0)$. Then

$$f'_{1}(\lambda) = 9^{\lambda} \ln 9 - 4^{\lambda} \ln 4 - 3^{\lambda} \ln 3$$

= 2 \cdot 9^{\lambda} \ln 3 - 4^{\lambda} \ln 4 - 3^{\lambda} \ln 3
= (9^{\lambda} - 3^{\lambda}) \ln 3 + (9^{\lambda} \ln 3 - 4^{\lambda} \ln 4)
< 0.

Note that $f_1(\lambda)$ is decreasing on $(-\infty, 0)$ in λ . We have $f_1(\lambda) > f_1(0) = 1 + 9^0 - 4^0 - 3^0$. Therefore, ${}^{\lambda}M_1(G) - {}^{\lambda}M_2(G) > 0, \lambda \in (-\infty, 0)$.

Suppose that it holds for all connected unicyclic graphs with vertices less than *n*. Since *G* is not a cycle, there exists a pendant vertex *v* and its unique neighbor vertex *u*. Denote by $N_G(u)$ the set of the neighbor vertices of *u*. Let $N_G(u) = \{v, v_1, v_2, \dots, v_k\}, (k \ge 1)$ and $N_G[u] = N_G(u) \cup \{u\}$, where $v_i \in V(G), (1 \le i \le k)$. Let $V(G) = N_G[u] \cup \{x_1, x_2, \dots, x_{n-k-2}\}$.

Case 1 When k = 1.

Then $N_G(u) = \{v, v_1\}$. Denote $N_G(v_1) = \{u, u_1, \dots, u_p\}, (p \ge 1)$, where $u_i \in V(G), (1 \le i \le p)$.

Subcase 1.1 When p = 1.

Let G' = G - v. Then G' is a connected unicyclic graph with n - 1 vertices. Since u is a pendant vertex in G', G' is not a cycle. By the induction hypothesis, we have ${}^{\lambda}M_1(G') >$ ${}^{\lambda}M_2(G'), \lambda \in (-\infty, 0)$. Now we compare ${}^{\lambda}M_1(G)$ and ${}^{\lambda}M_2(G)$.

$${}^{\lambda}M_{1}(G) = {}^{\lambda}M_{1}(G') + 2^{2\lambda} - 1 + 1 = {}^{\lambda}M_{1}(G') + 4^{\lambda},$$
$${}^{\lambda}M_{2}(G) = {}^{\lambda}M_{2}(G') + 4^{\lambda} - 2^{\lambda} + 2^{\lambda} = {}^{\lambda}M_{2}(G') + 4^{\lambda}$$

Then

$${}^{\lambda}M_1(G)-{}^{\lambda}M_2(G)={}^{\lambda}M_1(G')+4{}^{\lambda}-{}^{\lambda}M_2(G')-4{}^{\lambda}>0.$$

Subcase 1.2 When $p \ge 2$.

Suppose $V(G) = \{v\} \cup N_G[v_1] \cup \{y_1, y_2, \dots, y_{n-k-3}\}$, where $y_i \in V(G)$, $(1 \le i \le n-k-3)$. Let G'' = G - v - u. Then G'' is a connected unicyclic graph with n - 2 vertices. If G'' is a cycle, ${}^{\lambda}M_1(G'') = {}^{\lambda}M_2(G'')$. If G'' is not a cycle, by the induction hypothesis, ${}^{\lambda}M_1(G'') > {}^{\lambda}M_2(G'')$. Now we compare ${}^{\lambda}M_1(G)$ and ${}^{\lambda}M_2(G)$.

$${}^{\lambda}M_1(G) = {}^{\lambda}M_1(G'') + (p+1)^{2\lambda} - p^{2\lambda} + 2^{2\lambda} + 1,$$

$${}^{\lambda}M_2(G) = {}^{\lambda}M_2(G'') + [2(p+1)]^{\lambda} + 2^{\lambda} - [p^{\lambda} - (p+1)^{\lambda}] \sum_{i=1}^p (d_G(u_i))^{\lambda}.$$

Then

$${}^{\lambda}M_{1}(G) - {}^{\lambda}M_{2}(G) = {}^{\lambda}M_{1}(G'') - {}^{\lambda}M_{2}(G'') + (p+1)^{2\lambda} - p^{2\lambda} + 2^{2\lambda} + 1 - [2(p+1)]^{\lambda} - 2^{\lambda} + [p^{\lambda} - (p+1)^{\lambda}] \sum_{i=1}^{p} (d_{G}(u_{i}))^{\lambda}$$

> $(p+1)^{2\lambda} - p^{2\lambda} + 2^{2\lambda} + 1 - [2(p+1)]^{\lambda} - 2^{\lambda}.$
Suppose $g_{1}(x) = (x+1)^{2\lambda} - x^{2\lambda} + 2^{2\lambda} + 1 - [2(x+1)]^{\lambda} - 2^{\lambda}, (x \ge 2).$ Then

$$\begin{split} g_1'(x) &= 2\lambda(x+1)^{2\lambda-1} - 2\lambda x^{2\lambda-1} - 2\lambda [2(x+1)]^{\lambda-1} \\ &= 2\lambda \{(x+1)^{2\lambda-1} - x^{2\lambda-1} - [2(x+1)]^{\lambda-1} \} \\ &> 0. \end{split}$$

Note that $g_1(x)$ is increasing in $x \ge 2$. We have $g_1(x) \ge g_1(2) = 1 + 9^{\lambda} - 2^{\lambda} - 6^{\lambda}$. Suppose $f_2(\lambda) = 1 + 9^{\lambda} - 2^{\lambda} - 6^{\lambda}, \lambda \in (-\infty, 0)$. Then

$$f_{2}'(\lambda) = 9^{\lambda} \ln 9 - 2^{\lambda} \ln 2 - 6^{\lambda} \ln 6$$

= $2 \cdot 9^{\lambda} \ln 3 - 2^{\lambda} \ln 2 - 6^{\lambda} \ln 2 - 6^{\lambda} \ln 3$
= $(9^{\lambda} - 6^{\lambda}) \ln 3 + (9^{\lambda} \ln 3 - \frac{2^{\lambda} + 6^{\lambda}}{2} \ln 4)$
< $(9^{\lambda} - 6^{\lambda}) \ln 3 + \frac{(9^{\lambda} - 2^{\lambda}) + (9^{\lambda} - 6^{\lambda})}{2} \ln 4.$
< 0.

Note that $f_2(\lambda)$ is decreasing on $(-\infty, 0)$ in λ . We have $f_2(\lambda) > f_2(0) = 1 + 9^0 - 2^0 - 6^0 = 0$. It can be seen that $g_1(x) \ge g_1(2) = 1 + 9^{\lambda} - 2^{\lambda} - 6^{\lambda} = f_2(\lambda) > f_2(0) = 0$. Then we know that ${}^{\lambda}M_1(G) - {}^{\lambda}M_2(G) > 0, \lambda \in (-\infty, 0)$.

Therefore, ${}^{\lambda}M_1(G) - {}^{\lambda}M_2(G) > 0, \lambda \in (-\infty, 0)$ when k = 1.

Case 2 When $k \ge 2$.

Since G' = G - v, G' is a connected unicyclic graph with n - 1 vertices. If G' is a cycle, ${}^{\lambda}M_1(G') = {}^{\lambda}M_2(G')$. If G' is not a cycle, by the induction hypothesis, ${}^{\lambda}M_1(G') > {}^{\lambda}M_2(G')$. Now we compare ${}^{\lambda}M_1(G)$ and ${}^{\lambda}M_2(G)$.

$${}^{\lambda}M_{1}(G) = {}^{\lambda}M_{1}(G') + (k+1)^{2\lambda} - k^{2\lambda} + 1,$$

$${}^{\lambda}M_{2}(G) = {}^{\lambda}M_{2}(G') - [k^{\lambda} - (k+1)^{\lambda}] \sum_{i=1}^{k} (d_{G}(v_{i}))^{\lambda} + (k+1)^{\lambda}.$$

Then

$${}^{\lambda}M_{1}(G) - {}^{\lambda}M_{2}(G) = {}^{\lambda}M_{1}(G') - {}^{\lambda}M_{2}(G') + (k+1)^{2\lambda} - k^{2\lambda} + 1 - (k+1)^{\lambda} + [k^{\lambda} - (k+1)^{\lambda}] \sum_{i=1}^{k} (d_{G}(v_{i}))^{\lambda} > (k+1)^{2\lambda} - k^{2\lambda} + 1 - (k+1)^{\lambda}.$$

Suppose $g_2(x) = (x+1)^{2\lambda} - x^{2\lambda} + 1 - (x+1)^{\lambda}, (x \ge 2)$. Then

$$g'_{2}(x) = 2\lambda(x+1)^{2\lambda-1} - 2\lambda x^{2\lambda-1} - \lambda(x+1)^{\lambda-1}$$

= $\lambda [2(x+1)^{2\lambda-1} - 2x^{2\lambda-1} - (x+1)^{\lambda-1}]$
> 0.

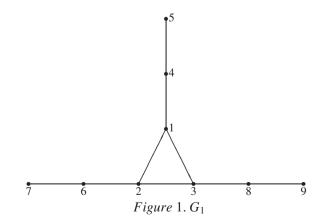
Note that $g_2(x)$ is increasing in $x \ge 2$. We have $g_2(x) \ge g_2(2) = 1 + 9^{\lambda} - 4^{\lambda} - 3^{\lambda} = f_1(\lambda)$. From the foregoing proof, it has been know that $f_1(\lambda) > 0$. It can be seen that $g_2(x) \ge g_2(2) =$ $1+9^{\lambda}-4^{\lambda}-3^{\lambda}=f_1(\lambda)>0$. Therefore, we have ${}^{\lambda}M_1(G)-{}^{\lambda}M_2(G)>0, \lambda\in(-\infty,0)$ when $k\geq 2$.

This completes the proof of theorem.

3 **Comparing Variable Zagreb Indices for Unicyclic Graphs for** $\lambda > 1$

Now we discuss the changing situation of the Zagreb indices when $\lambda > 1$.

Case 1



Since $G = G_1$ (see Fig.1),

$${}^{\lambda}M_{2}(G_{1}) - {}^{\lambda}M_{1}(G_{1}) = 3(6^{\lambda} + 2^{\lambda} - 4^{\lambda} - 1).$$

Suppose $h_1(\lambda) = 3(6^{\lambda} + 2^{\lambda} - 4^{\lambda} - 1), (\lambda > 1)$. Then

$$h'_1(\lambda) = 3(6^{\lambda} \ln 6 + 2^{\lambda} \ln 2 - 4^{\lambda} \ln 4) > 0.$$

Note that $h_1(\lambda)$ is increasing in $\lambda > 1$. We have $h_1(\lambda) > h(1) = 6 > 0$. Therefore $\forall \lambda_1 > 1$, $\lambda_1 M_2(G_1) - \lambda_1 M_1(G_1) > 0$.

Case 2

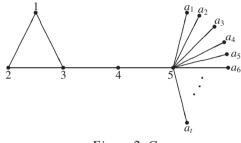


Figure 2. G_2

Since $G = G_2$ (see Fig.2),

$${}^{\lambda}M_2(G_2) - {}^{\lambda}M_1(G_2) = 6^{\lambda} + 6^{\lambda} + 6^{\lambda} + [2(t+1)]^{\lambda} + t(t+1)^{\lambda} - 4^{\lambda} - 4^{\lambda} - 9^{\lambda} - (t+1)^{2\lambda} - t.$$

Suppose $h_2(t) = 6^{\lambda} + 6^{\lambda} + 6^{\lambda} + [2(t+1)]^{\lambda} + t(t+1)^{\lambda} - 4^{\lambda} - 9^{\lambda} - (t+1)^{2\lambda} - t, (t \ge 1, \lambda > 1).$ Then

$$\begin{aligned} h_2'(t) &= 2\lambda [2(t+1)]^{\lambda-1} + (t+1)^{\lambda} + \lambda t (t+1)^{\lambda-1} - 2\lambda (t+1)^{2\lambda-1} - 1 \\ &= 2^{\lambda} \lambda (t+1)^{\lambda-1} + (t+1)^{\lambda} + \lambda t (t+1)^{\lambda-1} - 2\lambda (t+1)^{2\lambda-1} - 1. \end{aligned}$$

Moreover,

$$\begin{split} h_2''(t) &= 2^{\lambda} \lambda (\lambda - 1)(t + 1)^{\lambda - 2} + \lambda (t + 1)^{\lambda - 1} + \lambda (t + 1)^{\lambda - 1} \\ &+ \lambda (\lambda - 1)t(t + 1)^{\lambda - 2} - 2\lambda (2\lambda - 1)(t + 1)^{2\lambda - 2} \\ &= [2^{\lambda} \lambda (\lambda - 1) + 2\lambda t + 2\lambda + \lambda (\lambda - 1)t - 2\lambda (2\lambda - 1)(t + 1)^{\lambda}](t + 1)^{\lambda - 2}. \end{split}$$

Suppose $l(t) = 2^{\lambda}\lambda(\lambda - 1) + 2\lambda t + 2\lambda + \lambda(\lambda - 1)t - 2\lambda(2\lambda - 1)(t + 1)^{\lambda}, (t \ge 1, \lambda > 1)$. Then

$$l'(t) = 2\lambda + \lambda(\lambda - 1) - 2\lambda(2\lambda - 1)\lambda(t + 1)^{\lambda - 1}$$

$$< \lambda[2 + \lambda - 1 - 2\lambda(2\lambda - 1)]$$

= $\lambda(1 + 4\lambda)(1 - \lambda)$
< 0.

Note that l(t) is decreasing in $t \ge 1$, we have

$$\begin{split} l(t) &\leq l(1) = 2^{\lambda}\lambda^2 - 2^{\lambda}\lambda + 2\lambda + 2\lambda + \lambda^2 - \lambda - 2\lambda(2\lambda - 1)2^{\lambda} \\ &= \lambda 2^{\lambda} + \lambda^2 + 3\lambda - 3\lambda^2 2^{\lambda}. \end{split}$$

Suppose $r(\lambda) = \lambda 2^{\lambda} + \lambda^2 + 3\lambda - 3\lambda^2 2^{\lambda}$, $(\lambda > 1)$. Then

$$\begin{aligned} r'(\lambda) &= 2^{\lambda} + \lambda 2^{\lambda} \ln 2 + 2\lambda + 3 - 6\lambda 2^{\lambda} - 3\lambda^2 2^{\lambda} \ln 2 \\ &= (2^{\lambda} + 2\lambda + 3 - 6\lambda 2^{\lambda}) + (1 - 3\lambda)\lambda 2^{\lambda} \ln 2 \\ &= [(2^{\lambda} - \lambda 2^{\lambda}) + (2\lambda - 2\lambda 2^{\lambda}) + (3 - 3\lambda 2^{\lambda})] + (1 - 3\lambda)\lambda 2^{\lambda} \ln 2 \\ &< 0. \end{aligned}$$

Note that $r(\lambda)$ is decreasing in $\lambda > 1$, we have $r(\lambda) < r(1) = 2 + 1 + 3 - 6 = 0$. It can be seen that $l(t) \le l(1) = \lambda 2^{\lambda} + \lambda^2 + 3\lambda - 3\lambda^2 2^{\lambda} = r(\lambda) < r(1) = 0$. Therefore, $h''_2(t) = (t+1)^{\lambda-2} \cdot l(t) < 0$, then $h_2(t)$ is a concave function, and $h'_2(t)$ is decreasing in $t \ge 1$. Hence we have

$$\begin{split} h_2'(t) &\leq h_2'(1) &= 2^{\lambda} \lambda 2^{\lambda - 1} + 2^{\lambda} + \lambda 2^{\lambda - 1} - 2\lambda 2^{2\lambda - 1} - 1 \\ &= 2^{\lambda} + \lambda 2^{\lambda - 1} - \lambda 2^{2\lambda - 1} - 1. \end{split}$$

Suppose $s(\lambda) = 2^{\lambda} + \lambda 2^{\lambda-1} - \lambda 2^{2\lambda-1} - 1, (\lambda > 1)$. Then

$$s'(\lambda) = 2^{\lambda} \ln 2 + 2^{\lambda-1} + \lambda 2^{\lambda-1} \ln 2 - 2^{2\lambda-1} - \lambda 2^{2\lambda} \ln 2$$

= $(2^{\lambda-1} - 2^{2\lambda-1}) + (2^{\lambda} + \lambda 2^{\lambda-1} - \lambda 2^{2\lambda}) \ln 2$
= $(2^{\lambda-1} - 2^{2\lambda-1}) + [(2^{\lambda} - 2^{\lambda} \lambda 2^{\lambda-1}) + (\lambda 2^{\lambda-1} - 2^{\lambda} \lambda 2^{\lambda-1})] \ln 2$
< 0.

Note that $s(\lambda)$ is decreasing in $\lambda > 1$, we have $s(\lambda) < s(1) = 2 + 1 - 2 - 1 = 0$. Therefore, $h'_2(t) \le h'_2(1) = 2^{\lambda} + \lambda 2^{\lambda-1} - \lambda 2^{2\lambda-1} - 1 = s(\lambda) < s(1) = 0$. Then $h_2(t)$ is strictly decreasing in $t \ge 1$. By the discussion above, $h_2(t)$ is a strictly decreasing concave function. Therefore, $\forall \lambda_2 > 1$, we can find a positive integer *T* to cause ${}^{\lambda_2}M_2(G_2) - {}^{\lambda_2}M_1(G_2) < 0$ when $t \ge T$.

Combining Case 1 and Case 2, $\forall \lambda > 1$, we can find a suitable graph G_1^* to cause ${}^{\lambda}M_2(G_1^*) - {}^{\lambda}M_1(G_1^*) > 0$, or we can find a suitable graph G_2^* to cause ${}^{\lambda}M_2(G_2^*) - {}^{\lambda}M_1(G_2^*) < 0$. Therefore, when $\lambda > 1$, the relationship of numerical value between ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ is indefinite to the distinct unicyclic graphs.

4 Conclusion

With the foregoing discussion and the conclusion in [4], the relationship of ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ in unicyclic graphs for $\lambda \in R$ can be seen that:

(i) ${}^{\lambda}M_1(G)/n \ge {}^{\lambda}M_2(G)/m, \lambda \in (-\infty, 0),$

(ii) ${}^{\lambda}M_1(G)/n \leq {}^{\lambda}M_2(G)/m, \lambda \in [0, 1],$

(iii) the relationship of numerical value between ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ is indefinite in the distinct unicyclic graphs when $\lambda \in (1, +\infty)$.

References

- B. Liu, On a conjecture about comparing Zagreb indices, in: I. Gutman, B. Furtula (Eds.), *Recent Results in the Theory of Randić Index*, Univ. Kragujevac, Kragujevac, 2008, pp. 205–209.
- [2] D. Vukičević, Comparing variable Zagreb indices, MATCH Commun. Math. Comput. Chem. 57 (2007) 633–641.
- [3] D. Vukičević, A. Graovac, Comparing variable Zagreb M₁ and M₂ indices for acyclic molecules, *MATCH Commun. Math. Comput. Chem.* 60 (2008) 37–44.
- [4] B. Horoldagva, K. C. Das, Comparing variable Zagreb indices for unicyclic graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 725–730.
- [5] P. Hansen, D. Vukičević, Comparing the Zagreb indices, *Croat. Chem. Acta* 80 (2007) 165–168.