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Abstract

Recently, the first and second Zagreb indices are generalized into the variable Zagreb

indices which are defined by λM1(G) =
∑

u∈V
(d(u))2λ and λM2(G) =

∑
uv∈E

(d(u)d(v))λ, where

λ is any real number. In this paper, we prove that λM1(G)/n � λM2(G)/m for all unicyclic

graphs and all λ ∈ (−∞, 0]. And we also show that the relationship of numerical value

between λM1(G)/n and λM2(G)/m is indefinite in the distinct unicyclic graphs for each

λ ∈ (1,+∞). With the conclusion in [4], we finish discussing the relationship of λM1(G)/n
and λM2(G)/m in unicyclic graphs for λ ∈ R.

1 Introduction

The first and second Zagreb indices are among the oldest and the most famous topological

indices, which are defined as:

M1(G) =
∑

u∈V
(d(u))2 and M2(G) =

∑
uv∈E

d(u)d(v)

where V is the set of vertices, E is the set of edges and d(u) is degree of vertex u. |V | = n,

|E| = m.

Recently, the system AutoGraphiX proposed the following conjecture:

Conjecture 1.1 For all simple connected graph G,

M1(G)/n � M2(G)/m

and the bound is tight for complete graphs.
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But, in paper [5], this conjecture is proved not true, while it is proved true for chemical

graphs([5]), trees([3]) and unicyclic graphs([1]). The generalization of this claim to the variable

Zagreb indices has been analyzed. The variable first and second Zagreb indices are defined as:
λM1(G) =

∑
u∈V

(d(u))2λ and λM2(G) =
∑

uv∈E
(d(u)d(v))λ

where λ is any real number, with the following theorems from paper [2–4].

Theorem 1.2 For all chemical graphs G and all λ ∈ [0, 1], it holds that λM1(G)/n � λM2(G)/m.

Theorem 1.3 For all trees G and all λ ∈ [0, 1], it holds that λM1(G)/n � λM2(G)/m.

Theorem 1.4 Let λ ∈ R\[0, 1] and G be any unbalanced bipartite graph. Then, λM1(G)/n >
λM2(G)/m.

Theorem 1.5 For all graphs G and all λ ∈ [0, 1/2], it holds that λM1(G)/n � λM2(G)/m.

Theorem 1.6 Let λ ∈ (
√

2/2, 1). Then, there is a graph G such that λM1(G)/n > λM2(G)/m.

Theorem 1.7 For all unicyclic graphs G and all λ ∈ [0, 1], it holds that λM1(G)/n � λM2(G)/m.

It is known to all that the variable Zagreb indices are often used in the study of unicyclic

molecules. In this paper, we show that the relationship of numerical value between λM1(G)/n
and λM2(G)/m for λ ∈ R\[0, 1]. With the conclusion in [4], we finish discussing the relationship

of the variable first and second Zagreb indices in unicyclic graphs for λ ∈ R.

2 Comparing Variable Zagreb Indices for Unicyclic Graphs for λ � 0

Theorem 2.1 Let G be a connected unicyclic graph with n vertices and m edges. Then

λM1(G)/n � λM2(G)/m, λ ∈ (−∞, 0]

Moreover, if λ ∈ (−∞, 0), then λM1(G)/n = λM2(G)/m holds if and only if G is a cycle.

Proof. If G is a cycle, it is easy to see that λM1(G)/n = λM2(G)/m, λ ∈ (−∞, 0]. So we may

assume that G is not a cycle in the following proof.

Since G is a connected unicyclic graph, we have n = m. Moreover, by the definition

of λM1(G) and λM2(G), it is obvious that 0M1(G) =
∑

u∈V
(d(u))2·0 = n = m = 0M2(G) =∑

uv∈E
(d(u)d(v))0. So we only need to prove λM1(G) > λM2(G), λ ∈ (−∞, 0). We prove this

conclusion by induction on n.
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If n = 4, since G is not a cycle, G is a connected unicyclic graph that has a triangle and a

pendant vertex. Then we have

λM1(G) = 22λ + 22λ + 32λ + 12λ = 4λ + 4λ + 9λ + 1,

λM2(G) = (2 × 2)λ + (2 × 3)λ + (3 × 2)λ + (3 × 1)λ = 4λ + 6λ + 6λ + 3λ.

Then

λM1(G) − λM2(G) = 4λ + 4λ + 9λ + 1 − 4λ − 6λ − 6λ − 3λ

> 1 + 9λ − 4λ − 3λ.

Suppose f1(λ) = 1 + 9λ − 4λ − 3λ, λ ∈ (−∞, 0). Then

f ′1(λ) = 9λ ln 9 − 4λ ln 4 − 3λ ln 3

= 2 · 9λ ln 3 − 4λ ln 4 − 3λ ln 3

= (9λ − 3λ) ln 3 + (9λ ln 3 − 4λ ln 4)

< 0.

Note that f1(λ) is decreasing on (−∞, 0) in λ. We have f1(λ) > f1(0) = 1+90−40−30. Therefore,
λM1(G) − λM2(G) > 0, λ ∈ (−∞, 0).

Suppose that it holds for all connected unicyclic graphs with vertices less than n. Since G is

not a cycle, there exists a pendant vertex v and its unique neighbor vertex u. Denote by NG(u) the

set of the neighbor vertices of u. Let NG(u) = {v, v1, v2, · · · , vk}, (k � 1) and NG[u] = NG(u)∪{u},
where vi ∈ V(G), (1 � i � k). Let V(G) = NG[u] ∪ {x1, x2, · · · , xn−k−2}.

Case 1 When k = 1.

Then NG(u) = {v, v1}. Denote NG(v1) = {u, u1, · · · , up}, (p � 1), where ui ∈ V(G), (1 � i �
p).

Subcase 1.1 When p = 1.

Let G′ = G − v. Then G′ is a connected unicyclic graph with n − 1 vertices. Since u is

a pendant vertex in G′, G′ is not a cycle. By the induction hypothesis, we have λM1(G′) >
λM2(G′), λ ∈ (−∞, 0). Now we compare λM1(G) and λM2(G).

λM1(G) = λM1(G′) + 22λ − 1 + 1 = λM1(G′) + 4λ,

λM2(G) = λM2(G′) + 4λ − 2λ + 2λ = λM2(G′) + 4λ.

Then
λM1(G) − λM2(G) = λM1(G′) + 4λ − λM2(G′) − 4λ > 0.

Subcase 1.2 When p � 2.
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Suppose V(G) = {v} ∪NG[v1]∪ {y1, y2, · · · , yn−k−3}, where yi ∈ V(G), (1 � i � n− k− 3). Let

G′′ = G − v − u. Then G′′ is a connected unicyclic graph with n − 2 vertices. If G′′ is a cycle,
λM1(G′′) = λM2(G′′). If G′′ is not a cycle, by the induction hypothesis, λM1(G′′) > λM2(G′′).
Now we compare λM1(G) and λM2(G).

λM1(G) = λM1(G′′) + (p + 1)2λ − p2λ + 22λ + 1,

λM2(G) = λM2(G′′) + [2(p + 1)]λ + 2λ − [pλ − (p + 1)λ]

p∑
i=1

(dG(ui))
λ.

Then

λM1(G) − λM2(G) = λM1(G′′) − λM2(G′′) + (p + 1)2λ − p2λ + 22λ + 1 − [2(p + 1)]λ − 2λ

+[pλ − (p + 1)λ]

p∑
i=1

(dG(ui))
λ

> (p + 1)2λ − p2λ + 22λ + 1 − [2(p + 1)]λ − 2λ.

Suppose g1(x) = (x + 1)2λ − x2λ + 22λ + 1 − [2(x + 1)]λ − 2λ, (x � 2). Then

g′1(x) = 2λ(x + 1)2λ−1 − 2λx2λ−1 − 2λ[2(x + 1)]λ−1

= 2λ{(x + 1)2λ−1 − x2λ−1 − [2(x + 1)]λ−1}
> 0.

Note that g1(x) is increasing in x � 2. We have g1(x) � g1(2) = 1 + 9λ − 2λ − 6λ. Suppose

f2(λ) = 1 + 9λ − 2λ − 6λ, λ ∈ (−∞, 0). Then

f ′2(λ) = 9λ ln 9 − 2λ ln 2 − 6λ ln 6

= 2 · 9λ ln 3 − 2λ ln 2 − 6λ ln 2 − 6λ ln 3

= (9λ − 6λ) ln 3 + (9λ ln 3 − 2λ + 6λ

2
ln 4)

< (9λ − 6λ) ln 3 +
(9λ − 2λ) + (9λ − 6λ)

2
ln 4.

< 0.

Note that f2(λ) is decreasing on (−∞, 0) in λ. We have f2(λ) > f2(0) = 1 + 90 − 20 − 60 = 0.

It can be seen that g1(x) � g1(2) = 1 + 9λ − 2λ − 6λ = f2(λ) > f2(0) = 0. Then we know that
λM1(G) − λM2(G) > 0, λ ∈ (−∞, 0).

Therefore, λM1(G) − λM2(G) > 0, λ ∈ (−∞, 0) when k = 1.

Case 2 When k � 2.

Since G′ = G − v, G′ is a connected unicyclic graph with n − 1 vertices. If G′ is a cycle,
λM1(G′) = λM2(G′). If G′ is not a cycle, by the induction hypothesis, λM1(G′) > λM2(G′). Now

we compare λM1(G) and λM2(G).

λM1(G) = λM1(G′) + (k + 1)2λ − k2λ + 1,
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λM2(G) = λM2(G′) − [kλ − (k + 1)λ]

k∑
i=1

(dG(vi))
λ + (k + 1)λ.

Then

λM1(G) − λM2(G) = λM1(G′) − λM2(G′) + (k + 1)2λ − k2λ + 1 − (k + 1)λ

+[kλ − (k + 1)λ]

k∑
i=1

(dG(vi))
λ

> (k + 1)2λ − k2λ + 1 − (k + 1)λ.

Suppose g2(x) = (x + 1)2λ − x2λ + 1 − (x + 1)λ, (x � 2). Then

g′2(x) = 2λ(x + 1)2λ−1 − 2λx2λ−1 − λ(x + 1)λ−1

= λ[2(x + 1)2λ−1 − 2x2λ−1 − (x + 1)λ−1]

> 0.

Note that g2(x) is increasing in x � 2. We have g2(x) � g2(2) = 1 + 9λ − 4λ − 3λ = f1(λ).

From the foregoing proof, it has been know that f1(λ) > 0. It can be seen that g2(x) � g2(2) =

1+9λ−4λ−3λ = f1(λ) > 0. Therefore, we have λM1(G)− λM2(G) > 0, λ ∈ (−∞, 0) when k � 2.

This completes the proof of theorem. �

3 Comparing Variable Zagreb Indices for Unicyclic Graphs for λ > 1

Now we discuss the changing situation of the Zagreb indices when λ > 1.

Case 1
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Since G = G1(see Fig.1),

λM2(G1) − λM1(G1) = 3(6λ + 2λ − 4λ − 1).

Suppose h1(λ) = 3(6λ + 2λ − 4λ − 1), (λ > 1). Then

h′1(λ) = 3(6λ ln 6 + 2λ ln 2 − 4λ ln 4) > 0.

Note that h1(λ) is increasing in λ > 1. We have h1(λ) > h(1) = 6 > 0. Therefore ∀λ1 >

1, λ1 M2(G1) − λ1 M1(G1) > 0.

Case 2

�
�
�
�
�
��

�
�
�
�
� ������

������

�
�

�
��

�
�
�
�
��

�
�
�
�
�
�

�
�
�
�
�
�

1

2 3 4 5

a1 a2

a3

a4

a5

a6

at

Figure 2. G2
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Since G = G2(see Fig.2),

λM2(G2) − λM1(G2) = 6λ + 6λ + 6λ + [2(t + 1)]λ + t(t + 1)λ − 4λ − 4λ − 9λ − (t + 1)2λ − t.

Suppose h2(t) = 6λ + 6λ + 6λ + [2(t + 1)]λ + t(t + 1)λ − 4λ − 4λ − 9λ − (t + 1)2λ − t, (t � 1, λ > 1).

Then

h′2(t) = 2λ[2(t + 1)]λ−1 + (t + 1)λ + λt(t + 1)λ−1 − 2λ(t + 1)2λ−1 − 1

= 2λλ(t + 1)λ−1 + (t + 1)λ + λt(t + 1)λ−1 − 2λ(t + 1)2λ−1 − 1.

Moreover,

h′′2 (t) = 2λλ(λ − 1)(t + 1)λ−2 + λ(t + 1)λ−1 + λ(t + 1)λ−1

+λ(λ − 1)t(t + 1)λ−2 − 2λ(2λ − 1)(t + 1)2λ−2

= [2λλ(λ − 1) + 2λt + 2λ + λ(λ − 1)t − 2λ(2λ − 1)(t + 1)λ](t + 1)λ−2.

Suppose l(t) = 2λλ(λ − 1) + 2λt + 2λ + λ(λ − 1)t − 2λ(2λ − 1)(t + 1)λ, (t � 1, λ > 1). Then

l′(t) = 2λ + λ(λ − 1) − 2λ(2λ − 1)λ(t + 1)λ−1
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< λ[2 + λ − 1 − 2λ(2λ − 1)]

= λ(1 + 4λ)(1 − λ)
< 0.

Note that l(t) is decreasing in t � 1, we have

l(t) � l(1) = 2λλ2 − 2λλ + 2λ + 2λ + λ2 − λ − 2λ(2λ − 1)2λ

= λ2λ + λ2 + 3λ − 3λ22λ.

Suppose r(λ) = λ2λ + λ2 + 3λ − 3λ22λ, (λ > 1). Then

r′(λ) = 2λ + λ2λ ln 2 + 2λ + 3 − 6λ2λ − 3λ22λ ln 2

= (2λ + 2λ + 3 − 6λ2λ) + (1 − 3λ)λ2λ ln 2

= [(2λ − λ2λ) + (2λ − 2λ2λ) + (3 − 3λ2λ)] + (1 − 3λ)λ2λ ln 2

< 0.

Note that r(λ) is decreasing in λ > 1, we have r(λ) < r(1) = 2 + 1 + 3 − 6 = 0. It can be seen

that l(t) � l(1) = λ2λ+λ2+3λ−3λ22λ = r(λ) < r(1) = 0. Therefore, h′′2 (t) = (t+1)λ−2 · l(t) < 0,

then h2(t) is a concave function, and h′2(t) is decreasing in t � 1. Hence we have

h′2(t) � h′2(1) = 2λλ2λ−1 + 2λ + λ2λ−1 − 2λ22λ−1 − 1

= 2λ + λ2λ−1 − λ22λ−1 − 1.

Suppose s(λ) = 2λ + λ2λ−1 − λ22λ−1 − 1, (λ > 1). Then

s′(λ) = 2λ ln 2 + 2λ−1 + λ2λ−1 ln 2 − 22λ−1 − λ22λ ln 2

= (2λ−1 − 22λ−1) + (2λ + λ2λ−1 − λ22λ) ln 2

= (2λ−1 − 22λ−1) + [(2λ − 2λλ2λ−1) + (λ2λ−1 − 2λλ2λ−1)] ln 2

< 0.

Note that s(λ) is decreasing in λ > 1, we have s(λ) < s(1) = 2 + 1 − 2 − 1 = 0. Therefore,

h′2(t) � h′2(1) = 2λ + λ2λ−1 − λ22λ−1 − 1 = s(λ) < s(1) = 0. Then h2(t) is strictly decreasing

in t � 1. By the discussion above, h2(t) is a strictly decreasing concave function. Therefore,

∀λ2 > 1, we can find a positive integer T to cause λ2 M2(G2) − λ2 M1(G2) < 0 when t � T .

Combining Case 1 and Case 2, ∀λ > 1, we can find a suitable graph G∗1 to cause λM2(G∗1) −
λM1(G∗1) > 0, or we can find a suitable graph G∗2 to cause λM2(G∗2) − λM1(G∗2) < 0. Therefore,

when λ > 1, the relationship of numerical value between λM1(G)/n and λM2(G)/m is indefinite

to the distinct unicyclic graphs.
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4 Conclusion

With the foregoing discussion and the conclusion in [4], the relationship of λM1(G)/n and
λM2(G)/m in unicyclic graphs for λ ∈ R can be seen that:

(i) λM1(G)/n � λM2(G)/m, λ ∈ (−∞, 0),

(ii) λM1(G)/n � λM2(G)/m, λ ∈ [0, 1],

(iii) the relationship of numerical value between λM1(G)/n and λM2(G)/m is indefinite in

the distinct unicyclic graphs when λ ∈ (1,+∞).
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[5] P. Hansen, D. Vukičević, Comparing the Zagreb indices, Croat. Chem. Acta 80 (2007)

165–168.

-468-


