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Abstract

Let G be a simple graph with n vertices and m edges. The variable first and second

Zagreb indices are defined to be

λM1(G) =
∑
u∈V

(d(u))2λ and λM2(G) =
∑
uv∈E

(d(u)d(v))λ

where λ is any real number. In this paper, it is shown that λM1(G)/n ≥ λM2(G)/m for

all graphs G and λ ∈ (−∞, 0), which implies the results in [6, 9, 13]. We also show

that the relationship of numerical value between λM1(G)/n and λM2(G)/m is indefinite in

the distinct trees (resp. chemical graphs and bicyclic graphs) for λ ∈ (1,+∞). With the

conclusions in [9, 10], we finish discussing the direct comparison between λM1(G)/n and
λM2(G)/m in trees (resp. chemical graphs) for λ ∈ R.

1 Introduction

The first and second Zagreb indices are among the oldest and the most famous topological

indices (see [2] and references within) and they are defined as

M1(G) =
∑
u∈V

(d(u))2 and M2(G) =
∑
uv∈E

d(u)d(v)

where G = (V, E) is a simple graph with n vertices and m edges, and d(u) is the degree of

vertex u. These indices have been generalized to the variable first and second Zagreb indices

([7]) defined as

λM1(G) =
∑
u∈V

(d(u))2λ and λM2(G) =
∑
uv∈E

(d(u)d(v))λ

where λ is any real number. Clearly, 1M1(G) = M1(G) and 1M2(G) = M2(G).

A natural issue is to compare the values of the Zagreb indices on the same graph. Observe

that, for general graphs, the order of magnitude of M1 is O(n3) while the order of magnitude
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of M2 is O(mn2). This suggests comparing M1/n with M2/m instead of M1 and M2. In [1], the

AutoGraphiX system proposed the following conjecture:

Conjecture 1.1 ([1]) For all simple connected graphs G,

M1(G)/n ≤ M2(G)/m

and the bound is tight for complete graphs.

However, this conjecture does not hold for all general graphs ([3]), while it is proved to be

true for chemical graphs ([3]), trees ([8]), unicyclic graphs ([5]), and connected bicyclic graphs

except one class ([12]).

Analogously as Conjecture 1.1, many mathematicians proved that

λM1(G)/n ≤ λM2(G)/m (1)

is true for the following cases: all graphs and λ ∈ [0, 1
2
] ([9]), all chemical graphs and λ ∈ [0, 1]

([9]), all trees and λ ∈ [0, 1] ([10]), all unicyclic graphs and λ ∈ [0, 1] ([4]), all graphs G

satisfying Δ(G) − δ(G) ≤ 2 (resp. Δ(G) − δ(G) ≤ 3 and δ(G) � 2) and λ ∈ [0, 1] ([6, 11]),

where Δ(G) and δ(G) denote the maximum and minimum degrees of G, respectively.

On the other hand, the inequality

λM1(G)/n ≥ λM2(G)/m (2)

holds for the following cases: all chemical graphs and λ ∈ (−∞, 0] ([6]), all unbalanced

bipartite graphs and λ ∈ R\[0, 1] ([9]), all unicyclic graphs and λ ∈ (−∞, 0] ([13]), all graphs

G satisfying Δ(G) − δ(G) ≤ 2 (resp. Δ(G) − δ(G) ≤ 3 and δ(G) � 2) and λ ∈ (−∞, 0] ([6]).

In this paper, we show that λM1(G)/n ≥ λM2(G)/m for all graphs G and λ ∈ (−∞, 0),

which implies the results in [6, 9, 13]. Moreover, the relationship of numerical value between

λM1(G)/n and λM2(G)/m is proved to be indefinite in the distinct trees (resp. chemical graphs

and bicyclic graphs) for each λ ∈ (1,+∞). With the conclusions in [9, 10], we finish discussing

the direct comparison between λM1(G)/n and λM2(G)/m in trees (resp. chemical graphs) for

λ ∈ R.

2 Main results

To begin with, we introduce some lemmas which are useful in this paper. We start with the

special case of the rearrangement inequality (proof is given for the sake of the completeness of

the results).
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Lemma 2.1 Let a, b, c, d be positive real numbers with a ≥ b and c ≥ d. Then

ac + bd ≥ ad + bc .

Moreover, the equality above holds if and only if a = b or c = d.

Proof. Suppose a = b + ε1 and c = d + ε2, where ε1, ε2 ≥ 0. Thus

ac + bd = (b + ε1)(d + ε2) + bd = (b + ε1)d + b(d + ε2) + ε1ε2 .

Hence

ac + bd = ad + bc + ε1ε2 ≥ ad + bc

and the equality holds if and only if ε1 = 0 or ε2 = 0, that is, a = b or c = d. �

From Lemma 1 in [9], it follows that (again proof is given for the sake of the completeness

of the results)

Lemma 2.2 Let a, b be positive integers and λ ∈ (−∞, 0). Let

f (a, b) = aλ · bλ ·
(
1

a
+

1

b

)
− a2λ−1 − b2λ−1 .

Then f (a, b) ≤ 0, and the equality holds if and only if a = b.

Proof. On the one hand, if a = b, it is obvious that

f (a, a) = a2λ · 2

a
− 2a2λ−1 = 0 .

Now it will suffice to show that f (a, b) < 0 if a � b. Note that the expression of f (a, b)

above is symmetric in a and b. Hence, we may assume that a > b. Denote x = a
b > 1. Then we

have
a · b · f (a, b)

b2λ+1
= xλ + xλ+1 − x2λ − x = x ·

(
1 − xλ−1

)
·
(
xλ − 1

)
.

Therefore, f (a, b) has the same sign as x ·
(
1 − xλ−1

)
·
(
xλ − 1

)
. Note that

x > 1 > 0, 1 − xλ−1 > 0, and xλ − 1 < 0 f or each λ < 0 .

Hence x ·
(
1 − xλ−1

)
·
(
xλ − 1

)
< 0 for λ < 0, and this completes the proof. �

Let G be a simple graph. We denote the number of vertices of degree i in G by ni and the

number of edges that connect vertices of degree i and j by mi j, where we do not distinguish mi j
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and mji. Let N denote the set of the degrees of vertices in G. Let {i, j}, {k, l} ∈ N2, λ < 0, and

suppose

μ =
∑

k≤l∈N
mkl ·

∑
k≤l∈N

mkl

(
1

k
+

1

l

)
, and

gλ{i, j}, {k, l} = iλ · jλ ·
(
1

k
+

1

l

)
+ kλ · lλ ·

(
1

i
+

1

j

)
− i2λ−1 − j2λ−1 − k2λ−1 − l2λ−1 .

Lemma 2.3 Let G be a simple graph with n vertices and m edges. Then

λM2(G)/m − λM1(G)/n =
1

μ
·
∑

i≤ j, k≤l,
{i, j}, {k, l}⊆N2

(
gλ{i, j}, {k, l} · mi j · mkl

)
.

Proof. On the one hand, we have

λM2(G)

m
=

∑
uv∈E[d(u)d(v)]λ

m
=

∑
i≤ j∈N
(
mi j · iλ · jλ

)
∑

i≤ j∈N mi j
, and

λM1(G)

n
=

∑
v∈V[d(v)]2λ∑

i∈N ni
=

∑
i∈N
(
ni · i2λ

)
∑

i∈N
[(

mii +
∑

j∈N mi j

)
· 1

i

]

=

∑
i∈N
[(

mii +
∑

j∈N mi j

)
i2λ−1
]

∑
i≤ j∈N mi j

(
1
i +

1
j

) =

∑
i≤ j∈N mi j

(
i2λ−1 + j2λ−1

)
∑

i≤ j∈N mi j

(
1
i +

1
j

) .

Therefore,

λM2(G)/m − λM1(G)/n =

∑
i≤ j∈N
(
mi j · iλ · jλ

)
∑

k≤l∈N mkl
−
∑

i≤ j∈N mi j

(
i2λ−1 + j2λ−1

)
∑

k≤l∈N mkl

(
1
k +

1
l

)

=
1

μ
·
⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎣
∑

i≤ j∈N
mi j · iλ · jλ

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
∑

k≤l∈N
mkl

(
1

k
+

1

l

)⎤⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎣
∑

k≤l∈N
mkl

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
∑

i≤ j∈N
mi j

(
i2λ−1 + j2λ−1

)⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

=
1

μ
·
∑

i≤ j, k≤l,
i, j, k, l∈N

{[
iλ jλ
(
1

k
+

1

l

)
− i2λ−1 − j2λ−1

]
mi jmkl

}
.

Collecting in the same summand the case where roles of (i, j) and (k, l) are reversed, it follows

that λM2(G)/m − λM1(G)/n

=
1

μ
·
∑

i≤ j, k≤l,
{i, j}, {k, l}⊆N2

{[
iλ jλ
(
1

k
+

1

l

)
+ kλlλ

(
1

i
+

1

j

)
− i2λ−1 − j2λ−1 − k2λ−1 − l2λ−1

]
mi jmkl

}
.

Hence λM2(G)/m − λM1(G)/n = 1
μ
·∑ i≤ j, k≤l,

{i, j}, {k, l}⊆N2

(
gλ{i, j}, {k, l} · mi j · mkl

)
. �

A graph G is called k-regular if d(v) = k for all v ∈ V(G).

Theorem 2.4 Let G be a simple graph with n vertices and m edges. Then

λM1(G)/n ≥ λM2(G)/m f or λ ∈ (−∞, 0) .

Moreover, the equality holds if and only if G is a regular graph.
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Proof. If λ ∈ (−∞, 0), then by Lemma 2.3,

λM2(G)/m − λM1(G)/n =
1

μ
·
∑

i≤ j, k≤l,
{i, j}, {k, l}⊆N2

(
gλ{i, j}, {k, l} · mi j · mkl

)
.

Hence, we need to show that gλ{i, j}, {k, l} ≤ 0 for each {i, j}, {k, l} ⊆ N2.

Without loss of generality, suppose j = max{i, j, k, l} and k ≤ l. Thus

∂gλ{i, j}, {k, l}
∂ j

=
λ · iλ · jλ−1

k
+
λ · iλ · jλ−1

l
− kλ · lλ

j2
− (2λ − 1) · j2λ−2

= (1 − 2λ) · j2λ

j2
+ λ · iλ · jλ

k · j
+ λ · iλ · jλ

l · j
− kλ · lλ

j2
.

Note that λ < 0, and then

(−λ) · j2λ

j2
≤ (−λ) · iλ · jλ

k · j
, (−λ) · j2λ

j2
≤ (−λ) · iλ · jλ

l · j
,

j2λ

j2
≤ kλ · lλ

j2
.

It follows that
∂gλ{i, j}, {k, l}
∂ j

≤ 0 .

Hence it is sufficient to prove the claim when j = max{i, k, l}.
Case 1. j = i. In this case, we have

iλ · jλ ≤ kλ · lλ and
1

k
+

1

l
≥ 1

i
+

1

j
.

Then by Lemma 2.1,

gλ{i, j}, {k, l} ≤ iλ · jλ ·
(
1

i
+

1

j

)
+ kλ · lλ ·

(
1

k
+

1

l

)
− i2λ−1 − j2λ−1 − k2λ−1 − l2λ−1

=

[
iλ · jλ ·

(
1

i
+

1

j

)
− i2λ−1 − j2λ−1

]
+

[
kλ · lλ ·

(
1

k
+

1

l

)
− k2λ−1 − l2λ−1

]
.

Combining this with Lemma 2.2, we conclude that gλ{i, j}, {k, l} ≤ 0.

Case 2. j = l. Without loss of generality, suppose i ≥ k. Note that

∂gλ{i, j}, {k, j}
∂k

= (1 − 2λ) · k2λ

k2
+ λ · jλ · kλ

j · k + λ ·
jλ · kλ
i · k −

iλ · jλ

k2
.

Since
k2λ

k2
≥ iλ · jλ

k2
, (−λ) · k2λ

k2
≥ (−λ) · jλ · kλ

j · k , (−λ) · k2λ

k2
≥ (−λ) · jλ · kλ

i · k
it follows that

∂gλ{i, j}, {k, l}
∂k

≥ 0
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Hence it will suffice to prove the claim when k = i. By Lemma 2.2,

gλ{i, j}, {i, j} = 2 ·
[
iλ · jλ ·

(
1

i
+

1

j

)
− i2λ−1 − j2λ−1

]
≤ 0

Therefore, we obtain that λM1(G)/n ≥ λM2(G)/m f or λ ∈ (−∞, 0) .

Moreover, from the foregoing proof and combining Lemmas 2.1 and 2.2, the equality above

holds if and only if gλ{i, j}, {k, l} = 0 for all mi j · mkl > 0 , which means i = j = k = l for each

{i, j}, {k, l} ⊆ N2, that is, G is a regular graph. �

Remark 1 If λ ∈ (−∞, 0), by Theorem 2.4, for all chemical graphs ([6]), unbalanced bipar-

tite graphs ([9]), trees, unicyclic graphs ([13]), bicyclic graphs, the inequality λM1(G)/n ≥
λM2(G)/m holds.

Finally, we discuss the relationship between λM1(G)/n and λM2(G)/m for trees (resp. chem-

ical graphs and bicyclic graphs) for each λ ∈ (1,+∞) .

The star graph S n is a tree on n vertices with one vertex having degree n − 1 and the other

vertices having degree 1. A complete bipartite graph is a simple bipartite graph with bipartition

(X, Y) in which each vertex of X is joined to each vertex of Y; if |X| = n1 and |Y | = n2, such a

graph is denoted by Kn1, n2
.

Example 1 Let G1 = S n (n > 1). It is obvious that G1 is a tree, and

λM2(G1)/m − λM1(G1)/n =
n · (n − 1)λ − (n − 1)2λ − (n − 1)

n
< 0 f or λ > 1 .

Example 2 Let G2(t) be the graph shown as in Fig. 1. Clearly, G2(t) is a tree of order 3t + 2

with t vertices having degree 4 and the other vertices having degree 1. By directly computing,

we have

λM2(G2(t))/m − λM1(G2(t))/n =
(2t + 2) · 4λ + (t − 1) · 16λ

3t + 1
− 2t + 2 + t · 16λ

3t + 2

=
(2t + 2)

[
(3t + 2)

(
4λ − 1

)
− 16λ + 1

]
(3t + 1)(3t + 2)

.

Therefore, ∀λ > 1, we can find a positive integer T to cause (3t + 2)
(
4λ − 1

)
− 16λ + 1 > 0

when t ≥ T , which implies λM2(G2(t))/m − λM1(G2(t))/n > 0 .

From Examples 1 and 2, when λ > 1, we can find a suitable tree G∗1 such that λM2(G∗1)/m−
λM1(G∗1)/n < 0, and a suitable tree G∗2 such that λM2(G∗2)/m − λM1(G∗2)/n > 0. Consequently,

when λ ∈ (1,+∞), the relationship of numerical value between λM1(G)/n and λM2(G)/m is

indefinite for distinct trees.
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Example 3 Let G3 be the graph shown as in Fig. 2. Obviously, G3 is a chemical graph (also

a bicyclic graph), and

λM2(G3)/m − λM1(G3)/n =
2 · 3λ + 5 · 9λ

7
− 2 + 4 · 9λ

6
> 0 f or λ > 1 .

Example 4 Let G4 = K2, 3. Then G4 is a chemical graph (also a bicyclic graph),

λM2(G4)/m − λM1(G4)/n =
5 · 6λ − 3 · 4λ − 2 · 9λ

5
< 0 f or λ > 1 .

From Examples 3 and 4, when λ > 1, there is a suitable chemical graph (resp. bicyclic

graph) G∗3 such that λM2(G∗3)/m− λM1(G∗3)/n > 0, and a suitable chemical graph (resp. bicyclic

graph) G∗4 such that λM2(G∗4)/m−λM1(G∗4)/n < 0. Therefore, when λ ∈ (1,+∞), the relationship

between λM1(G)/n and λM2(G)/m is indefinite for distinct chemical graphs (resp. bicyclic

graphs).

With the foregoing discussions and the conclusions in [9, 10], we conclude that the rela-

tionships between λM1(G)/n and λM2(G)/m in trees (resp. chemical graphs, unicyclic graphs

[13]) for λ ∈ R are listed as follows.

(i) λM1(G)/n ≥ λM2(G)/m for λ ∈ (−∞, 0) ;

(ii) λM1(G)/n ≤ λM2(G)/m for λ ∈ [0, 1] ([9, 10]) ;

(iii) The relationship of numerical value between λM1(G)/n and λM2(G)/m is indefinite

when λ ∈ (1,+∞) .

Remark 2 For the relationship between λM1(G)/n and λM2(G)/m in bicyclic graphs, the con-

clusions (i) and (iii) are also true.

Moreover, it is known that when λ ∈ [0, 1
2
], λM1(G)/n ≤ λM2(G)/m for all graphs (in-

cluding bicyclic graphs) ([9]); when λ = 1, the inequality M1/n ≤ M2/m holds for connected

bicyclic graphs except one class ([12]).

Consequently, the relationship between λM1(G)/n and λM2(G)/m in bicyclic graphs re-

mains to be determined for λ ∈ (1
2
, 1).
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