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Abstract

For a (molecular) graph, the first Zagreb index M1 is equal to the sum of the
squares of the degrees of the vertices, and the second Zagreb index M2 is equal
to the sum of the products of the degrees of pairs of adjacent vertices. It is well
known that for connected or disconnected graphs with n vertices and m edges, the
inequality M2/m ≥ M1/n does not always hold. Here we show that this relation
holds for certain kinds of graphs.

1 Introduction

Let G = (V, E) be a simple graph with the vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G) , |E(G)| = m . Also let G be the complement of G . For vi ∈ V (G), di is the

degree of the vertex vi of G , i = 1, 2, . . . , n . The minimum vertex degree is denoted by

δ(G) and the maximum by Δ(G) . The average of the degrees of the vertices adjacent to

vertex vi is denoted by μi .

The first Zagreb index M1(G) and the second Zagreb index M2(G) of a graph G are

defined as follows:

M1(G) =
∑

vi∈V (G)

d2
i

and

M2(G) =
∑

vivj∈E(G)

di dj .
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The Zagreb indices M1(G) and M2(G) were introduced in [1] and elaborated in [2].

The main properties of M1(G) and M2(G) were summarized in [3, 4]. In [5] it was shown

that the trees with the smallest and largest M1(T ) are the path and the star, respectively.

In [6] it was shown that the path and the star are also the trees with the smallest and

largest M2(T ) . Recently, it has been conjectured that for each simple graph G with n

vertices and m edges,

M2(G)/m ≥ M1(G)/n . (1)

The following two examples are obtained from [7, 8].

Fig. 1. A disconnected counterexample to Conjecture (1).

Fig. 2. A connected counterexample to Conjecture (1).

This conjecture has been analyzed in [7, 8, 9, 10] and the following results have been

obtained:

(1) the conjecture is not true in general,
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(2) the conjecture is true for all chemical graphs,

(3) the conjecture is true for all trees,

(4) the conjecture is true for all unicyclic graphs,

(5) the conjecture is not true for all bicyclic graphs,

(6) the conjecture is true for Δ(G) − δ(G) ≤ 2 ,

(7) the conjecture is true for Δ(G) − δ(G) ≤ 3 and δ(G) �= 2 .

Also, further generalizations of this conjecture have been analyzed in [10, 11, 12, 13].

Some recent results on the Zagreb indices are reported in [14–24], where also references

to the previous mathematical research in this area can be found. These indices reflect

the extent of branching of the molecular carbon-atom skeleton, and can thus be viewed

as molecular structure-descriptors [25, 26].

2 Conjecture on comparing Zagreb indices of graphs

In this section we present some results related to the conjecture (1) of graphs.

First let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs on disjoint sets of

vertices. Their union is G1 +G2 = (V1 ∪V2 , E1 ∪E2) . The example given in Fig. 1 shows

that if (1) holds for the graphs G1 and G2, then it needs not hold for their union G1 +G2 .

The join, G1 ∨ G2 , of G1 and G2 is the graph obtained from G1 + G2 by adding

new edges from each vertex of G1 to every vertex of G2 . Then we have |V (G1 ∨ G2)| =

|V (G1)| + |V (G2)| and |E(G1 ∨ G2)| = |E(G1)| + |E(G2)| + |V (G1||V (G2)| . Thus, for

example, Kp ∨ Kq = Kp,q , the complete bipartite graph.

Theorem 2.1. Let G be a simple graph of n vertices with m edges. If (1) holds for G ,

then it also holds for G ∨ G .

Proof: Let n∗ and m∗ be the number of vertices and edges, respectively, in G∨G . Then

n∗ = 2n and m∗ = 2m + n2 . Since (1) holds for G , we have

nM2(G) ≥ mM1(G) .
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Let d∗
i , i = 1, 2, . . . , n∗ be the degree sequence of G ∨ G . Now,

M2(G
∗) =

∑

vivj∈E(G∨G)

d∗
i d

∗
j

= 2
∑

vivj∈E(G)

(di + n)(dj + n) +
∑

vivj∈E(G,G)

(di + n)(dj + n)

= 2M2(G) + 2nM1(G) + 2mn2 + n4 + n

n∑

i=1

(ndi + 2m) +
n∑

i=1

2mdi

= 2M2(G) + 2nM1(G) + n4 + 4m2 + 6mn2 (2)

and

M1(G ∨ G) =
n∗
∑

i=1

d∗2
i = 2

n∑

i=1

(di + n)2

= 2M1(G) + 8mn + 2n3 . (3)

We have to show that

n∗M2(G ∨ G) ≥ m∗M1(G ∨ G)

that is,
(
n − 2m

n

)
M1(G) + 2M2(G) − 4m2 ≥ 0 by (2) and (3)

which, evidently, is always obeyed as M1(G) ≥ 4m2

n
(Weighted Arithmetic-Harmonic mean

inequality) and nM2(G) ≥ mM1(G) . Hence the theorem.

Theorem 2.2. Let G be a simple graph of n vertices with m edges. If (1) does not hold

for G , then (1) holds for G .

Proof: Let n and m be the number of vertices and edges in G . Then n = n and

m =
(

n
2

) − m . Since (1) does not hold for G , we have

M1(G)

n
>

M2(G)

m
. (4)

Let di , i = 1, 2, . . . , n , be the degree sequence of G . Then di = n − di − 1 , i =

4
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1, 2, . . . , n . Now,

M2(G) =
∑

vivj∈E(G)

didj =
∑

vivj /∈E(G) ,i �=j

(n − di − 1)(n − dj − 1)

=
[n(n − 1)

2
− m

]
(n − 1)2 − (n − 1)

∑

vivj /∈E(G),i�=j

(di + dj) +
∑

vivj /∈E(G),i�=j

didj

=
[n(n − 1)

2
− m

]
(n − 1)2 − (n − 1)

2

n∑

i=1

[
(n − di − 1)di + 2m − di − diμi

]

+
1

2

n∑

i=1

di(2m − di − diμi)

=
[n(n − 1)

2
− m

]
(n − 1)2 + 2m2 − M2(G)

+
(
n − 3

2

)
M1(G) − 2m(n − 1)2 (5)

and

M1(G) =
n∑

i=1

d
2

i =
n∑

i=1

(n − di − 1)2

= n(n − 1)2 − 4m(n − 1) + M1(G) . (6)

We have to show that
M2(G)

m
≥ M1(G)

n

that is,

mM1(G) − nM2(G) +
n(n − 2)

2
M1(G) + 4m2 − 2m2n ≥ 0 by (5) and (6),

that is,
n(n − 2)

2
M1(G) + 4m2 − 2m2n ≥ 0 by (4),

which, evidently, is always obeyed as M1(G) ≥ 4m2

n
. Hence the theorem.

Let G = (V,E) be a simple graph of order n with m edges. If we put two similar

graphs G side by side, and any vertex of the first graph G is connected by edges with the

corresponding vertices of the second graph G and the resultant graph is Ĝ . Then we have

|V (Ĝ)| = |V (G)| + |V (G)| = 2n and |E(Ĝ)| = |E(G)| + |E(G)| + |E(G,G)| = 2m + n .
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Theorem 2.3. If (1) holds for G , then it holds for Ĝ also.

Proof: Let n̂ and m̂ be the number of vertices and number of edges in Ĝ . Then n̂ = 2n

and m̂ = 2m + n . We have

M2(Ĝ) =
∑

vivj∈E(Ĝ)

d̂id̂j

= 2
∑

vivj∈E(G)

(di + 1)(dj + 1) +
n∑

i=1

(di + 1)2

= 2M2(G) + 3M1(G) + 6m + n . (7)

and

M1(Ĝ) = 2
n∑

i=1

(di + 1)2 = 2M1(G) + 8m + 2n . (8)

Since (1) holds for G , we have

nM2(G) − mM1(G) ≥ 0 . (9)

Now we have to show that

n̂M2(Ĝ) − m̂M1(Ĝ) ≥ 0 ,

that is,

2n(2M2(G) + 3M1(G) + 6m + n) − (2m + n)(2M1(G) + 8m + 2n) ≥ 0 by (7) and (8),

that is,

2n(2M2(G)+3M1(G)+6m+n)− (2m+n)(2M1(G)+8m+2n) ≥ 4(nM1(G)−4m2) ≥ 0 ,

by (9) and M1(G) ≥ 4m2

n
. Hence the theorem.

Let G = (V, E) be a simple graph on n vertices with m edges. If we take two copies of

G , and any vertex of the first copy is connected by edges to the vertices that are adjacent

to the corresponding vertex of the second copy, the resultant graph is G̃ . Then we have

|V (G̃)| = |V (G)| + |V (G)| = 2n
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and

|E(G̃)| = |E(G)| + |E(G)| +
n∑

i=1

di = m + m + 2m = 4m .

Theorem 2.4. If (1) holds for G , then it holds also for G̃ .

Proof: Let ñ and m̃ be the number of vertices and number of edges of the graph G̃ . Then

ñ = 2n and m̃ = 4m . We have

M2(G̃) =
∑

vivj∈E(G̃)

d̃id̃j

= 2
∑

vivj∈E(G)

4didj + 2
∑

vivj∈E(G,G)

4didj

= 16M2(G) (10)

and

M1(G̃) = 2
n∑

i=1

(2di)
2 = 8M1(G) . (11)

Now,

M2(G̃)

m̃
=

16M2(G)

4m
≥ 4M1(G)

n
=

8M1(G)

2n
=

M1(G̃)

ñ
as nM2(G) − mM1(G) ≥ 0 ,

and by (10) and (11).

Hence the theorem.
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