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Abstract: This paper presents a simple approach to order the first
Zagreb indices of connected graphs. Moreover, by the application of this
simple approach, we extend the known ordering of the first Zagreb indices
for some class of connected graphs.

1 Introduction

In this paper, 𝐺 = (𝑉,𝐸) is a connected undirected simple graph with ∣𝑉 ∣ = 𝑛 and

∣𝐸∣ = 𝑚. If 𝑚 = 𝑛 − 1, 𝑚 = 𝑛 or 𝑚 = 𝑛 + 1, then 𝐺 is called a tree, a unicyclic graph

or a bicyclic graph, respectively. Let 𝑑(𝑢) denote the degree of 𝑢. Specially, Δ = Δ(𝐺)

denotes the maximum degree of vertices of 𝐺. Suppose the degree of vertex 𝑣𝑖 equals 𝑑𝑖

for 𝑖 = 1, 2, ..., 𝑛, then 𝜋(𝐺) = (𝑑1, ..., 𝑑𝑛) is called the degree sequence of 𝐺. Throughout

this paper, we enumerate the degrees in non-increasing order, i.e., 𝑑1 ≥ 𝑑2 ≥ ⋅ ⋅ ⋅ ≥ 𝑑𝑛.

The Zagreb indices was first introduced by Gutman and Trinajstić [1], it is an important

molecular descriptor and has been closely correlated with many chemical properties [1−2].

Thus, it attracted more and more attention from chemists and mathematicians [3−9,12−18].

The first Zagreb index 𝑀1(𝐺) is defined as [1]:

𝑀1(𝐺) =
∑
𝑣∈𝑉

𝑑(𝑣)2.

In this paper, we give a simple approach to order the first Zagreb indices of connected

graphs. Moreover, we illustrate the application of the approach and extend the known

ordering of the first Zagreb indices for some class of connected graphs.
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2 Main results

We recall the notation of majorization (see [10,11]). Suppose (𝑥) = (𝑥1, 𝑥2, ..., 𝑥𝑛) and

(𝑦) = (𝑦1, 𝑦2, ..., 𝑦𝑛) are two non-increasing sequences of real numbers, we say (𝑥) is

majorized by (𝑦), denoted by (𝑥) ⊴ (𝑦), if and only if
∑𝑛

𝑖=1 𝑥𝑖 =
∑𝑛

𝑖=1 𝑦𝑖, and
∑𝑗

𝑖=1 𝑥𝑖 ≤∑𝑗
𝑖=1 𝑦𝑖 for all 𝑗 = 1, 2, ..., 𝑛. Furthermore, by (𝑥) ⊲ (𝑦) we mean that (𝑥) ⊴ (𝑦) and

(𝑥) ∕= (𝑦). A real valued function 𝑓(𝑥) defined on a convex set 𝐷 is said to be convex if

𝑓(𝜆𝑥+ (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) (1)

for all 0 ≤ 𝜆 ≤ 1 and all 𝑥, 𝑦 ∈ 𝐷. If inequality (1) is always strict for 0 < 𝜆 < 1 and

𝑥 ∕= 𝑦, then 𝑓 is called strictly convex. It has been shown that

Lemma 2.1 [10] Suppose (𝑥) = (𝑥1, 𝑥2, ..., 𝑥𝑛) and (𝑦) = (𝑦1, 𝑦2, ..., 𝑦𝑛) are non–increa-

sing sequences of real numbers. If (𝑥)⊴(𝑦), then for any convex function 𝜑,
∑𝑛

𝑖=1 𝜑(𝑥𝑖) ≤∑𝑛
𝑖=1 𝜑(𝑦𝑖). Furthermore, if (𝑥)⊲(𝑦) and 𝜑 is a strictly convex function, then

∑𝑛
𝑖=1 𝜑(𝑥𝑖) <∑𝑛

𝑖=1 𝜑(𝑦𝑖).

Theorem 2.1 Let 𝐺 be a connected graph with degree sequence (𝑎) = (𝑑1, 𝑑2, ..., 𝑑𝑛) and

𝐺′ be a connected graph with degree sequence (𝑏) = (𝑑′1, 𝑑
′
2, ..., 𝑑

′
𝑛). If (𝑎) ⊴ (𝑏), then

𝑀1(𝐺) ≤𝑀1(𝐺
′), where equality holds if and only if (𝑎) = (𝑏).

Proof. Observe that for 𝑥 > 0, 𝑥2 is a strictly convex function. Since (𝑎) ⊴ (𝑏), then

𝑀1(𝐺) ≤ 𝑀1(𝐺
′) follows from Lemma 2.1. Also, Lemma 2.1 implies that equality holds

if and only if (𝑎) = (𝑏).

In the following, the symbol 𝒯𝑛 is used to denote the class of trees of order 𝑛. The tree

𝑆(𝑛, 𝑖) on 𝑛 vertices is called a double star graph, which is obtained by joining the center

of 𝐾1,𝑖−1 to that of 𝐾1,𝑛−1−𝑖 by an edge, where 𝑖 ≥ ⌈𝑛
2
⌉. Particularly, 𝑆(𝑛, 𝑛−1) = 𝐾1,𝑛−1.

Let 𝒯 𝑠
𝑛 = {𝑇 ∈ 𝒯𝑛∣Δ(𝑇 ) = 𝑠}.

Corollary 2.1 Let 𝑇 be a tree in 𝒯 𝑠
𝑛, where 𝑠 ≥ ⌈𝑛

2
⌉. Then, 𝑀1(𝑇 ) ≤𝑀1(𝑆(𝑛, 𝑠)), where

equality holds if and only if 𝑇 ∼= 𝑆(𝑛, 𝑠).

Proof. Note that the tree degree sequence (𝑠, 𝑛−𝑠, 1, ..., 1) is maximal in the class of 𝒯 𝑠
𝑛,

i.e., the ordering ⊲. Since 𝑆(𝑛, 𝑠) is the unique tree with (𝑠, 𝑛 − 𝑠, 1, ..., 1) as its degree

sequence, thus the statement immediately follows from Theorem 2.1.

Let 𝐺 be a connected undirected simple graph with 𝑛 vertices and 𝑚 edges. If 𝑚 =

𝑛 + 𝑐 − 1, then 𝐺 is called a 𝑐−cyclic graph. For integers 𝑛, 𝑐, 𝑘 with 𝑐 ≥ 0 and
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0 ≤ 𝑘 ≤ 𝑛− 2𝑐− 1, let 𝒢𝑛(𝑐, 𝑘) be the class of connected 𝑐-cyclic graphs with 𝑛 vertices

and 𝑘 pendant vertices, and 𝒮𝑛(𝑐, 𝑘) be the class of connected graphs on 𝑛 vertices obtained

by attaching 𝑐 cycles at a unique common vertex, says 𝑣1, and then attaching 𝑘 paths at

𝑣1, i.e., 𝒮𝑛(𝑐, 𝑘) denotes the class of connected graphs with (2𝑐+ 𝑘, 2, 2, ..., 2︸ ︷︷ ︸
𝑛−𝑘−1

, 1, 1, ..., 1︸ ︷︷ ︸
𝑘

) as

their degree sequences. Obviously, 𝒮𝑛(𝑐, 𝑘) ⊆ 𝒢𝑛(𝑐, 𝑘). For example, let 𝑈3, 𝑈4 be the

unicyclic graphs as shown in Fig. 2, and 𝐵10, 𝐵11 be the bicyclic graphs as depicted in

Fig. 3. By definition, 𝑈3, 𝑈4 ∈ 𝒮𝑛(1, 𝑛−4) and 𝐵10, 𝐵11 ∈ 𝒮𝑛(2, 𝑛−6). If 𝐺′,𝐺 ∈ 𝒮𝑛(𝑐, 𝑘),

since they share the same degree sequences, then we have

Proposition 2.1 If 𝐺′ and 𝐺 are graphs in 𝒮𝑛(𝑐, 𝑘), where 𝑐 ≥ 0 and 1 ≤ 𝑘 ≤ 𝑛−2𝑐−1,

then 𝑀1(𝐺) = 𝑀1(𝐺
′).

Theorem 2.2 Let 𝐺′ and 𝐺 be the graphs in 𝒮𝑛(𝑐, 𝑘) and 𝒢𝑛(𝑐, 𝑘)∖𝒮𝑛(𝑐, 𝑘), respectively,

where 𝑐 ≥ 0 and 1 ≤ 𝑘 ≤ 𝑛− 2𝑐− 1. Then, 𝑀1(𝐺) < 𝑀1(𝐺
′).

Proof. Clearly, 𝐺′, 𝐺 ∈ 𝒢𝑛(𝑐, 𝑘). Thus, there are exactly 𝑘 elements 1 in their degree

sequences. Since 𝐺′ ∈ 𝒮𝑛(𝑐, 𝑘), we have 𝜋(𝐺′) = (𝑑′1, 𝑑
′
2, ..., 𝑑

′
𝑛−𝑘, 1, 1, ..., 1︸ ︷︷ ︸

𝑘

) = (2𝑐 +

𝑘, 2, 2, ..., 2︸ ︷︷ ︸
𝑛−𝑘−1

, 1, 1, ..., 1︸ ︷︷ ︸
𝑘

). Let 𝜋(𝐺) = (𝑑1, 𝑑2, ..., 𝑑𝑛−𝑘, 1, 1, ..., 1︸ ︷︷ ︸
𝑘

), where 𝑑1 ≥ 𝑑2 ≥ ⋅ ⋅ ⋅ ≥

𝑑𝑛−𝑘 ≥ 2. Since
∑𝑛−𝑘

𝑖=1 𝑑𝑖 = 2(𝑛 + 𝑐 − 1) − 𝑘, then 𝑑1 ≤ 2𝑐 + 𝑘. Suppose 𝑑1 = 2𝑐 + 𝑘,

then 𝑑2 = 𝑑3 = ⋅ ⋅ ⋅ = 𝑑𝑛−𝑘 = 2, which implies that 𝐺 ∈ 𝒮𝑛(𝑐, 𝑘), a contradiction. Thus,

𝑑1 < 2𝑐+𝑘. Since 𝑑𝑖 ≥ 2 holds for 1 ≤ 𝑖 ≤ 𝑛−𝑘, then
∑𝑖

𝑙=1 𝑑𝑙 = 2(𝑛+ 𝑐− 1)−𝑘−𝑑𝑖+1−
𝑑𝑖+2 − ⋅ ⋅ ⋅ − 𝑑𝑛−𝑘 ≤ 2(𝑛 + 𝑐 − 1) − 𝑘 − 2(𝑛 − 𝑘 − 𝑖) =

∑𝑖
𝑙=1 𝑑

′
𝑙 holds for 1 ≤ 𝑖 ≤ 𝑛 − 𝑘.

Thus, 𝜋(𝐺) ⊴ 𝜋(𝐺′) but 𝜋(𝐺) ∕= 𝜋(𝐺′). Now by Theorem 2.1, the result follows.

Theorem 2.3 Let 𝐺 and 𝐺′ be graphs with the greatest first Zagreb index in 𝒢𝑛(𝑐, 𝑘) and

𝒢𝑛(𝑐, 𝑘 + 1), respectively, where 𝑐 ≥ 0 and 1 ≤ 𝑘 ≤ 𝑛− 2𝑐− 2. Then, 𝑀1(𝐺) < 𝑀1(𝐺
′).

Proof. By Theorem 2.2, it follows that 𝐺 ∈ 𝒮𝑛(𝑐, 𝑘) and 𝐺′ ∈ 𝒮𝑛(𝑐, 𝑘 + 1). Thus,

𝜋(𝐺) = (2𝑐+𝑘, 2, 2, ..., 2︸ ︷︷ ︸
𝑛−𝑘−1

, 1, 1, ..., 1︸ ︷︷ ︸
𝑘

) and 𝜋(𝐺′) = (2𝑐+𝑘+ 1, 2, 2, ..., 2︸ ︷︷ ︸
𝑛−𝑘−2

, 1, 1, ..., 1︸ ︷︷ ︸
𝑘+1

). It is easy

to check that 𝜋(𝐺) ⊴ 𝜋(𝐺′) but 𝜋(𝐺) ∕= 𝜋(𝐺′), which implies that 𝑀1(𝐺) < 𝑀1(𝐺
′) by

Theorem 2.1.

Let 𝑈 𝑡
𝑛 denote the unicyclic graph obtained from the cycle 𝐶𝑡 by attaching 𝑛 − 𝑡

pendant edges to the same vertex on 𝐶𝑡. By Theorems 2.2-2.3, it follows immediately

that
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Corollary 2.2 [9] Let 𝐺 be a unicyclic graph of order 𝑛 and girth 𝑡. If 𝐺 is different

from 𝑈 𝑡
𝑛, then 𝑀1(𝐺) < 𝑀1(𝑈

𝑡
𝑛).
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Fig. 1. The trees 𝑇2, ..., 𝑇13.

Let 𝑇1 = 𝐾1,𝑛−1, 𝑇2, 𝑇3, ..., 𝑇13 be the trees on 𝑛 vertices as shown in Fig. 1. In [9, 12],

the five trees with the first through fourth greatest first Zagreb indices among all trees of

order 𝑛 were given. The next result extends this ordering by determining the fifth up to

eighth greatest first Zagreb indices together with the corresponding trees among all trees

of order 𝑛.

Theorem 2.4 Suppose 𝑇 ∈ 𝒯𝑛 ∖ {𝑇1, 𝑇2, ..., 𝑇13} and 𝑛 ≥ 13, then 𝑀1(𝑇1) > 𝑀1(𝑇2) >

𝑀1(𝑇3) > 𝑀1(𝑇4) = 𝑀1(𝑇5) > 𝑀1(𝑇6) > 𝑀1(𝑇7) = 𝑀1(𝑇8) = 𝑀1(𝑇9) > 𝑀1(𝑇10) =

𝑀1(𝑇11) = 𝑀1(𝑇12) > 𝑀1(𝑇13) > 𝑀1(𝑇 ).

Proof. By an elementary computation, we have 𝑀1(𝑇1) = 𝑛2−𝑛, 𝑀1(𝑇2) = 𝑛2− 3𝑛+ 6,

𝑀1(𝑇3) = 𝑛2 − 5𝑛 + 16, 𝑀1(𝑇4) = 𝑀1(𝑇5) = 𝑛2 − 5𝑛 + 14, 𝑀1(𝑇6) = 𝑛2 − 7𝑛 + 30,

𝑀1(𝑇7) = 𝑀1(𝑇8) = 𝑀1(𝑇9) = 𝑛2−7𝑛+26, 𝑀1(𝑇10) = 𝑀1(𝑇11) = 𝑀1(𝑇12) = 𝑛2−7𝑛+24,

𝑀1(𝑇13) = 𝑛2 − 9𝑛 + 48. Thus, 𝑀1(𝑇1) > 𝑀1(𝑇2) > 𝑀1(𝑇3) > 𝑀1(𝑇4) = 𝑀1(𝑇5) >

𝑀1(𝑇6) > 𝑀1(𝑇7) = 𝑀1(𝑇8) = 𝑀1(𝑇9) > 𝑀1(𝑇10) = 𝑀1(𝑇11) = 𝑀1(𝑇12) > 𝑀1(𝑇13).

Next we only need to show that if 𝑇 ∈ 𝒯𝑛 ∖ {𝑇1, 𝑇2, ..., 𝑇13}, then 𝑀1(𝑇13) > 𝑀1(𝑇 ).

Clearly, 𝑇1 is the unique tree with Δ = 𝑛 − 1, 𝑇2 is the unique tree with Δ = 𝑛 − 2,

𝑇3, 𝑇4, 𝑇5 are the all trees with Δ = 𝑛 − 3, 𝑇6, ... 𝑇12 are the all trees with Δ = 𝑛 − 4.

Since 𝑇 ∈ 𝒯𝑛 ∖ {𝑇1, 𝑇2, ..., 𝑇13}, then Δ(𝑇 ) ≤ 𝑛− 5.

Let (𝑎) = (𝑑1, 𝑑2, ..., 𝑑𝑛) be the degree sequence of 𝑇. Note that the degree sequence

of 𝑇13 is (𝑏) = (𝑛− 5, 5, 1, ..., 1), it is easy to see that (𝑎) ⊴ (𝑏) and (𝑎) ∕= (𝑏) because 𝑇13
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is the unique tree with (𝑏) as its degree sequence. Thus, 𝑀1(𝑇13) > 𝑀1(𝑇 ) follows from

Theorem 2.1.
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Fig. 2. The unicyclic graphs 𝑈1, ..., 𝑈16.

Let 𝕌(𝑛) denote the class of connected unicyclic graphs of order 𝑛. Let 𝑈1, ..., 𝑈16 be

the unicyclic graphs as shown in Fig. 2. In [11], we have determined the four unicyclic

graphs with the first through third greatest first Zagreb indices among the class of con-

nected unicyclic graphs of order 𝑛. The next result extends this ordering by determining

the fourth up to seventh greatest first Zagreb indices together with the corresponding

unicyclic graphs among the class of connected unicyclic graphs of order 𝑛.

Theorem 2.5 If 𝐺 ∈ 𝕌(𝑛) ∖ {𝑈1, ..., 𝑈16} and 𝑛 ≥ 12, then 𝑀1(𝑈1) > 𝑀1(𝑈2) >

𝑀1(𝑈3) = 𝑀1(𝑈4) > 𝑀1(𝑈5) > 𝑀1(𝑈6) > 𝑀1(𝑈7) = 𝑀1(𝑈8) = 𝑀1(𝑈9) = 𝑀1(𝑈10) =

𝑀1(𝑈11) = 𝑀1(𝑈12) > 𝑀1(𝑈13) = 𝑀1(𝑈14) = 𝑀1(𝑈15) = 𝑀1(𝑈16) > 𝑀1(𝐺).

Proof. By an elementary computation, we have 𝑀1(𝑈1) = 𝑛2−𝑛+6, 𝑀1(𝑈2) = 𝑛2−3𝑛+

14, 𝑀1(𝑈3) = 𝑀1(𝑈4) = 𝑛2 − 3𝑛 + 12, 𝑀1(𝑈5) = 𝑛2 − 5𝑛 + 26, 𝑀1(𝑈6) = 𝑛2 − 5𝑛 + 24,

𝑀1(𝑈7) = 𝑀1(𝑈8) = 𝑀1(𝑈9) = 𝑀1(𝑈10) = 𝑀1(𝑈11) = 𝑀1(𝑈12) = 𝑛2 − 5𝑛 + 22, and

𝑀1(𝑈13) = 𝑀1(𝑈14) = 𝑀1(𝑈15) = 𝑀1(𝑈16) = 𝑛2 − 5𝑛 + 20. Thus, 𝑀1(𝑈1) > 𝑀1(𝑈2) >

𝑀1(𝑈3) = 𝑀1(𝑈4) > 𝑀1(𝑈5) > 𝑀1(𝑈6) > 𝑀1(𝑈7) = 𝑀1(𝑈8) = 𝑀1(𝑈9) = 𝑀1(𝑈10) =
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𝑀1(𝑈11) = 𝑀1(𝑈12) > 𝑀1(𝑈13) = 𝑀1(𝑈14) = 𝑀1(𝑈15) = 𝑀1(𝑈16). Next we only need to

prove that if 𝐺 ∈ 𝕌(𝑛) ∖ {𝑈1, ..., 𝑈16}, then 𝑀1(𝑈16) > 𝑀1(𝐺).

It is easy to check that 𝑈1 is the unique unicyclic graph with Δ = 𝑛− 1, 𝑈2, 𝑈3, 𝑈4 are

the all unicyclic graphs with Δ = 𝑛 − 2, and 𝑈5, 𝑈6, ..., 𝑈16 are the all unicyclic graphs

with Δ(𝐺) = 𝑛− 3. If 𝐺 ∈ 𝕌(𝑛) ∖ {𝑈1, ..., 𝑈16}, then Δ(𝐺) ≤ 𝑛− 4. Suppose the degree

sequence of 𝐺 is (𝑎) = (𝑑1, 𝑑2, 𝑑3, ..., 𝑑𝑛), since 𝐺 ∈ 𝕌(𝑛), then 𝐺 has exactly one cycle.

This implies that 𝑛− 4 ≥ 𝑑1 ≥ 𝑑2 ≥ 𝑑3 ≥ 2. Let (𝑏) = (𝑛− 4, 5, 2, 1, ..., 1), then (𝑎)⊴ (𝑏).

By Theorem 2.1, we can conclude that

𝑀1(𝐺) ≤ (𝑛− 4)2 + 52 + 22 + 𝑛− 3 = 𝑛2 − 7𝑛+ 42 < 𝑛2 − 5𝑛+ 20 = 𝑀1(𝑈16).

This completes the proof of this result.

Let 𝔹(𝑛) be the class of connected bicyclic graphs of order 𝑛. Let 𝐵1,..., 𝐵11 be the

bicyclic graphs as shown in Fig. 3.

Theorem 2.6 If 𝐺 ∈ 𝔹(𝑛) ∖ {𝐵1, ..., 𝐵11} and 𝑛 ≥ 11, then 𝑀1(𝐵1) > 𝑀1(𝐵2) >

𝑀1(𝐵3) > 𝑀1(𝐵4) = 𝑀1(𝐵5) > 𝑀1(𝐵6) = 𝑀1(𝐵7) = 𝑀1(𝐵8) = 𝑀1(𝐵9) > 𝑀1(𝐵10) =

𝑀1(𝐵11) > 𝑀1(𝐺).

Proof. By an element computation, we have 𝑀1(𝐵1) = 𝑛2−𝑛+14, 𝑀1(𝐵2) = 𝑛2−𝑛+12,

𝑀1(𝐵3) = 𝑛2 − 3𝑛 + 24, 𝑀1(𝐵4) = 𝑀1(𝐵5) = 𝑛2 − 3𝑛 + 22, 𝑀1(𝐵6) = 𝑀1(𝐵7) =

𝑀1(𝐵8) = 𝑀1(𝐵9) = 𝑛2 − 3𝑛+ 20, 𝑀1(𝐵10) = 𝑀1(𝐵11) = 𝑛2 − 3𝑛+ 18. Thus, 𝑀1(𝐵1) >

𝑀1(𝐵2) > 𝑀1(𝐵3) > 𝑀1(𝐵4) = 𝑀1(𝐵5) > 𝑀1(𝐵6) = 𝑀1(𝐵7) = 𝑀1(𝐵8) = 𝑀1(𝐵9) >

𝑀1(𝐵10) = 𝑀1(𝐵11). Next we only need to prove that if 𝐺 ∈ 𝔹(𝑛) ∖ {𝐵1, ..., 𝐵11}, then

𝑀1(𝐵11) > 𝑀1(𝐺).

It is easy to check that 𝐵1, 𝐵2 are the all bicyclic graphs with Δ = 𝑛− 1, 𝐵3, ..., 𝐵11

are the all bicyclic graphs with Δ = 𝑛 − 2. If 𝐺 ∈ 𝔹(𝑛) ∖ {𝐵1, ..., 𝐵11}, then Δ(𝐺) ≤
𝑛− 3. Suppose the degree sequence of 𝐺 is (𝑎) = (𝑑1, 𝑑2, 𝑑3, ..., 𝑑𝑛), since 𝐺 ∈ 𝔹(𝑛), then

𝑛 − 3 ≥ 𝑑1 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑4 ≥ 2. Let (𝑏) = (𝑛 − 3, 5, 2, 2, 1, ..., 1), then (𝑎) ⊴ (𝑏). By

Theorem 2.1, we can conclude that

𝑀1(𝐺) ≤ (𝑛− 3)2 + 52 + 22 × 2 + 𝑛− 4 = 𝑛2 − 5𝑛+ 38 < 𝑛2 − 3𝑛+ 18 = 𝑀1(𝐵11).
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This completes the proof of this result.
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Fig. 3. The bicyclic graphs 𝐵1,..., 𝐵11.

Corollary 2.3 [9] 𝐵1 is the unique graph with the greatest Zagreb index among the class

of connected bicyclic graphs of order 𝑛.

Since the degree sequence (2, .., 2, 1, 1) is minimal in the class of 𝒯 (𝑛) (i.e., in the order

⊴), the degree sequence (2, 2, .., 2) is minimal in the class of 𝕌(𝑛), and the degree sequence

(3, 3, 2, .., 2) is minimal in the class of 𝔹(𝑛), by Theorem 2.1 we have

Theorem 2.7 [8, 9] (1) If 𝑇 ∈ 𝒯𝑛 ∖ {𝑃𝑛}, then 𝑀1(𝑇 ) > 𝑀1(𝑃𝑛); (2) If 𝐺 ∈ 𝕌𝑛 ∖
{𝐶𝑛}, then 𝑀1(𝐺) > 𝑀1(𝐶𝑛); (3) Let ℋ be the class of connected bicyclic graphs with

(3, 3, 2, ..., 2) as theirs degree sequences. If 𝐺 ∈ 𝔹𝑛 ∖ {ℋ}, then 𝑀1(𝐺) > 𝑀1(𝐻1), where

𝐻1 is a graph of ℋ.
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[10] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press,

England, 1952.

[11] E. Ruch, I. Gutman, The branching extent of graphs, J. Comb. Inf. System 4

(1979) 285–295.

[12] M. H. Liu, B. Liu, New sharp upper bounds for the first Zagreb index, MATCH

Commun. Math. Comput. Chem. 62 (2009) 689–698.
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