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Abstract

In the paper, a transfer-matrix expression of the Clar covering polynomial of some
hexagonal systems is given. As examples, we present the explicit expressions of the Clar
covering polynomials of several types of hexagonal systems. Consequently, a series of
topological indices such as Clar number, Kekulé structure count and the first Herndon
number are obtained. For any unbranched catacondensed hexagonal system, a method

for determining its Clar covering polynomial is also presented.

1 Introduction

Transfer-matrix method is widely used in statistical mechanics and mathematical chem-
istry. There are many investigations about the enumeration of matchings by using this
tool [1, 3, 8, 9, 11]. Babi¢ et al. [2] determined the matching polynomial of a polygraph.
Randi¢ et al. [12] gave an algorithm for obtaining the matching polynomial of an unbranched
catacondensed hexagonal system.

A hexagonal system is a finite 2-connected plane graph in which every interior face is
bounded by a regular hexagon. Its subgraph is called a generalized hexagonal system. The
Clar covering polynomial of a (generalized) hexagonal system was first introduced by H.

Zhang and F. Zhang [15], and thus called Zhang-Zhang polynomial [4]. It unifies many

*This work is supported by NSFC (grant no. 10831001).
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useful topological indices such as Clar number, the number of Kekulé structures and the
first Herndon number. Gutman et al. [5, 6] showed that the Clar covering polynomial is
related to resonance energy, and some basic properties of P(G;1) were established. The
Clar covering polynomial of a hexagonal system can be used to estimate the resonance
energy of a hexagonal system [13] and to deal with the comparison of topological properties
of some S, T-isomers [14]. Gutman et al. [4] gave an explicit combinatorial expression
of the Clar covering polynomial of a large class of pericondensed benzenoid systems, the
multiple linear hexagonal chains M,, ,,. C. Lin and G. Fan [10] showed a compute method
for calculating the Clar covering polynomial. In this paper, a transfer-matrix expression
of the Clar covering polynomial of a sort of hexagonal systems is given. As examples, the
explicit formulae of the Clar covering polynomials of several hexagonal systems are presented.
The sextet polynomials of these hexagonal systems are also given here. For any unbranched
catacondensed hexagonal system, a method for determining its Clar covering polynomial can
be obtained.

2 Preliminary

For convenience, the hexagonal systems we considered are generalized hexagonal systems.

Let G be a generalized hexagonal system. A subgraph H of G is called a Clar cover
if it is the union of some mutually disjoint hexagons and independent edges and it covers
every vertex of G. When the number of hexagons in H is k, we call H a k-Clar cover. A
Kekulé structure (perfect matching) is a Clar cover which is composed of independent edges.
Denote the number of Kekulé structures of G by K(G). A subgraph H of G is said to be a
nice subgraph of G if G — H has a perfect matching. All the hexagons in a Clar cover form a
sextet pattern. A sextet pattern is said to be a Clar formula if it has the maximum number
of hexagons. The number of hexagons in a Clar formula of G is called the Clar number of

G and denoted by C'(G). The Clar covering polynomial of G is defined as follows:

o@)
P(G;z) = Z (G k)t

k=0
where ¢(G; k) is the number of k-Clar covers of G.
The following theorem shows that many useful topological indices can be got from the

Clar covering polynomial of a hexagonal system.

Theorem 1 [15] Let G be a hexagonal system. Then we have the following properties for
the Clar covering polynomial of G:

(1) K(G) = ¢(G;0),

(2) the degree of the polynomial P(G;z) is C(G), the Clar number of G,
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(3) the coefficient of the highest degree term, ¢(G; C(G)) equals the number of Clar for-
mulas of G,
(4) hi(G) = ¢(G; 1),where hy(G) is the first Herndon number.

In 1975, Hosoya and Yamaguchi[7] proposed the concept of sextet polynomial of a hexag-

onal system :
(@)

o(Gyz) = Z s(Gs k)at,

k=0
where s(G; k) is the number of all sextet patterns with & hexagons in G.
The correlation between Clar covering polynomial and sextet polynomial of a class of

hexagonal system is given as follows.

Theorem 2 [16] Let G be a hexagonal system with a perfect matching. Then

(1) the Clar covering polynomial P(G;x) of G can be expressed in the following form:

c(@) @)
P(G;x) = Z c(Gyi)at = Z a(G;i)(z 4 1),
=0 =0

(2) Z!.C:((]G)a(G;i)xi is the sextet polynomial of G if and only if G has no coronene (see

Figure 1) as its nice subgraph.

Figure 1: coronene

By the above theorem, we know that if G is a hexagonal system with a perfect matching

and has no coronene as its nice subgraph, then the following equation holds:

fel(e)) C(G) (@)
P(G;z) = Z o(Gyi)at = Z a(Gyi)(x+ 1) = Z s(G;) (x4 1) = o(Giz+1). (2.1)

3 Transfer-matrix method

In this section, we give a transfer-matrix expression of the Clar covering polynomial of a
sort of hexagonal systems.
Let G7 and G9 be two generalized hexagonal systems and they are connected by two

disjoint edges e and e’ which lie in a common hexagon, say C. As we see in Figure 2.
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Let G = GiUGy U {e,e'} and X = {e,e'}. Let Wi = 0, WX = {e}, W = {'}, W)X =
{e,e'}, W& = C. ¢(G(WFX); k) is the number of k-Clar covers H of G such that HNX = WX,
i = 1,2,3,4. c(GW:);k) is the number of k-Clar covers H of G such that C € H.
Let ¢(G,n(W7¥); k) be the number of k-Clar covers H of the generalized hexagonal system
G — WX, where G,, X is obtained from G,, by deleting all the vertices that are incident
with edges in WX, i = 17 -« .5, m=1,2. Then we have

Figure 2: G,G1,Gy and X.

(GW¥); k) = Zc(G1<WX) Pe(Go(WX )ik —j), i =1, 4,

(G k) = e(Gr W) el Ga(W3 )k = 1= ).
Lemma 3
%:C(G(Wx);k)rk = (Zk:c( zk:c (Go(WX):k)a®), i =1,--- 4,
3GV ket = (3 e GWE); k) 3) (3 e(Go (W ); ka3,
k k &

Let PH(GS)2) = S (G (W) k)b, i =1,--- 4, and
k

P( %X);x) = zk: (G (WZ%); k)z*"2 m =1,2. Then lemma 3 can be rewritten as:

ST GWF)sk)at = PG ) PH(GYYs), i =1, 5. (3.1)
k

Lemma 4 P(G;z) = LE(LY)T, where LY is a vector of dimension 5 with the i-th element
(LX), = P( 0. & ), 1<i<5, m=1,2.
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Proof: 5
P(G, $) _ Z ( Z ZC WX ZC k)
. — =1 k
5
N PG ) PG ) = LY(LF)T .
i—1

Consider a generalized hexagonal system G(n) = G; U X; UG-+ U X,,_1 UG, which
is illustrated in Figure 3. Before approaching to the main theorem, we give some notations
here. Denote c(G,,Z(I/ViX”, ij"); k) the number of k-Clar covers of the generalized hexagonal
system G, — (WZ.X” u WjX"), m=1,---,n

Xi = {ei> ;} WXl = @ W2Xl = {62'}7W3Xl = {eé}vwzlxz = {ehe;}vWSXl =C;.

Giit1),j = GiUX; UG - U X1 UG

P*(G;,;],(X‘"’X");x) = ZC(G,,L(WX” qu) k)az*, i #5and j # 5.

e
PHGHY XD 2) = 37 (G (W W) )2k 4a, i =5, # 5 ori #5,j = 5.
%

PG 3) = S (G (W], W) k)2, i = 5 and j =5

k

S (G (W W) k)22, i = 5.

k

k

* Xp Xay. ) — S Xp Xay. 1y ok 5

P Gn(W " W) 2) = S e(Gr(W " W) k2%, i =1, 4
* Xp Xqy.

P (Gm(M/L I"}[/j )1I)

Obviously,
PG :2) = PG,
PHGEHY XD, 1) = PG (W

Figure 3: G(n)

Theorem 5 For any n > 2,

n—2

P(G(n);x) = L [ T (LX),
i=1
where L and L¥»1 are two vectors of dimension 5, (L3'); = P*(GZ(X1 ), (Lyn); =
P*(Gﬁx"’l);x), i =1,---,5. Transfer-matrix Tj;41) is a 5 x 5 matrix with [Ti1)]m =
P*(Giﬂ(x“X1+l);x)7 1<1<5,1<m<5.
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Proof: We apply induction on n (n > 2). For n = 2, the assertion is true by Lemma 4.
Assume it states for n — 1, consider G(n) (n > 2). By Lemma 4,

P(G(n)iz) = (PG ), PG )
(PG 5), - PRGN 5)T, (3:2)
where, G1 Ko 1)1 =G g1 — W'l-X"’l Then by induction hypothesis, for i = 1,--- .4,
PG Vsa) = Y (G e (W) K2

k
= L3 ] Ty (P (G (W2 W) 1) o P (G (W52 W) 1))

and
PG ) = z (G g (W) k)23
= (zc(ol,,,n,l(wg‘wl); k)z*)z2

k
= LTI Ty (P (Goa (W2 WS )5) o PH(Ga (W52, W5 ) ) T,

That is, for 2 =1,---,5,

n—3
PG ) = L T Ty (PG i) o PGS )T,
i=1

Then
s ~1(Xn 5 Xn 1
(P{(GI i), PHEE s 0)) =L [T Ty - Tin-2)n)s

By (3.2), we have that
P(G(n);x) = L T Ty (L)

4 Applications of Theorem 5

In [15], the recurrence for the Clar covering polynomial of unbranched catacondensed
hexagonal system (also called hexagonal chain) is given. As a conclusion of Theorem 5, the
Clar covering polynomial of unbranched catacondensed can be presented as the multiplica-
tion of some matrices. The patterns of fusions determine the sequences of matrices. For

unbranched catacondensed hexagonal system:
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. el
LY =L =(1,0,0,1,2%),
¢
ewl
L¥1 = R=(1,0,0,1,22)7,

e;m
100 1 x
4 G 0100 0

Tiom=I=]001 0 0 [,
: 000 1 0
€
¢ ’ 000 2z 0
, 1 00 1 a2
‘o 00100
e, +1
Tiin=J=] 0 100 0 [,
‘ 1 000 0
G 22 000 0
1 00 1 a2
' 0010

. Tion=K=] 0 100 0
1 000 0
g 2 000 0

It is easy to see that L = R and J = K.
We calculate the Clar covering polynomials of two small unbranched catacondensed

hexagonal systems to illustrate how we work with this method.

Ej (I I] ;
( ..... ( ........ N N P(G;z) = LIJ*I?R = 15 + 22z + 82°.
L
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. U/ P(G;2) = LJIJI?R = 17 + 28z + 142® + 22°.

In the following, we get the explicit formulae of the Clar covering polynomials of some
hexagonal systems. Combine the facts shown in Section 2, we also give the sextet polynomials
and some topological indices of these hexagonal systems.

As before, let Wi =0, WX = {e;}, W35 = {ef}, WX = {e;, ]}, W = Ci.

Example 1. Let F(n) be a hexagonal system (see Figure 4), n > 2. Then

LX = (22 + 52 4 5,0,0,1, 22),

L¥nt = (1,0,0,1,23),

Ty =T, Vie{l,--- ,n—2}

P(F(n);x) = (% + 5z +5,0,0,1, x2)T"2(1,0,0,1, z2)7.

where
245c+5 00 1 a2
0 10 0 O
T= 0 01 0 0
2+4z4+4 00 1 a2
22(z?+4x4+4) 0 0 22 x

@fﬁ(%{i---ﬁi(%f]

Figure 4: The hexagonal system F(n)

Now we put the concrete expressions of vectors and formula of P(F(n);z) into the soft-
ware Mathematica and run: L.MatrizPower[T, n-2].R. We get the explicit expression of the
Clar polynomial of F(n) and also the expression of the number of Kekulé structures when
we put = 0 in P(F(n);x). Note that we get all the expressions in the following examples
with the same way.

The Clar covering polynomials of F(n) is
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1 9 ) " IZ n
P(F(n);x):2n(2+w)\/m<<6+6x+x + (24 2)V8+8x + )

- (6+6:1;+:1;27 (2+1)\/m)n) (4.1).

In Appendix, we give the Clar covering polynomials of F(n) for small n, see Table 1.
Let 2 =0 in P(F(n);x) then we obtain the number of Kekulé structures of F(n):
(3+2v2)"-(3-2v2)" (v2+1)"-(v2-1)"
K(F(n)) = = .
42 4v2
It is clear that C(F(G)) = 2(n — 1).
Let =0 in P/(F(n); ) then we obtain the first Herndon number of F(n):

n—1
42

It is easy to see that F'(n) has no coronene as its nice subgraphs, as in (2.1), we can get

ha(F(n)) =

((3+2v2)"=(3-2v2)") = (n — DK(F(n).
the sextet polynomials of F'(n) immediately:

o(F(n);x) = P(F(n);x — 1)
1
T (1t2) Vitoxta?

f(1+4x+x27(1+x)\/1+6x+x2>").

(<1+4z+x2+(1+x)\/1+6x+x2>n

Example 2. Let L(n) be a hexagonal system (see Figure 5), n > 2.

Figure 5: The hexagonal system L(n)

P(L(n);z) = (z* + 122 + 29z + 19,0,0,1,22)T"%(1,0,0,1, 27)".

where
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2 +12224+292+19 0 0 1 a3

0 100 0

T= 0 01 0 0
P+1222+28z+18 0 0 1 a3

2723+ 1222+ 282+18) 0 0 z2 =z

1
2+ /396 + 11922 + 137622 + 7602 + 20427 + 2425 4 26

P(L(n);z) =
. ( (

20 + 30z + 1222 + 2° 4+ /396 + 1192 + 137622 + 76023 + 204z* + 2425 + 1;6)”

_ (20 1302 + 1222 + 2 — /396 + 11922 1 137622 + 76025 + 204" + 2425 + x°)>
(4.2).

In Appendix, we also give the Clar covering polynomials of L(n) for small n, see Table
2. Similarly, we obtain the C(L(n)), K(L(n)) and hy(L(n)):

C(L(n)) = 3(n—1),
(10 + 3v/11)" — (10 — 33/11)”

K(L(n)) = oV
hi(L(n)) = 65134( (99v1Tn + 1650 — 149V11) (10 +3V11)"

- (99\/ﬁn —165n — 149\/ﬁ) (10 - 3\/ﬁ> )

Also we can get the sextet polynomials of L(n) immediately, since L(n) has no coronene

as its nice subgraphs:

1

o(L(n);x) = — _
2n . /1 + 18z + 9522 + 16423 + 992+ + 1825 + 6

- ( (1 92+ 922 + 2% + V1 + 187 + 9522 + 1642° + 9927 + 1825 + $6>

- (1 107+ 922 + 2% — V11 182 + 9522 + 1642 + 9924 + 1825 + x6) )

5 Further example

Let G(n) be a hexagonal system shown in Figure 6, n > 2.

By Theorem 5, we obtain

P(G(n);z) = (2° + 92% + 21z + 14,0,0, 2% + 62 + 6, 2% (¢ + 5z + 5))T"2(1,0,0,1,22)".
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Figure 6: The hexagonal system G(n)

where
34+ 922 421z +14 0 0 246246  x2(22+5x45)
0 3x4+4 0 0 0
T = 0 0 3r+4 0 0
42% + 120 + 9 0 0 22 4+50+5  x2(2?+ 4z +4)
22 (422 + 12z + 9) 0 0  a2(a®+5z+5) x(a?+4dx+4)

If we denote

223 4 142? + 30z + 19,

B= (22 + 3)V4x® + 2822 + 567 + 33,
v=2a*+ 1823 + 5822 + 86z + 51,
then

2n(y —a)p
1

20t (4 2) (3 + 4) (27 + 3) (22 + 22 + 2) Va3 + 2822 + 56z + 33

- ( <2x4 + 1823 4 5822 + 862 + 51 — (22 + 3)V4ad + 2822 + 562 + 33)

- (22 + 140 4 800 + 19 + (20 + 3)VAa7 + 2507 + 56z + 33)"

— (20 + 182 + 5807 + 86z + 51 + (20 + 3)VAaT + 2827 + 561 + 33)

. (213 + 1422 4 30z + 19 — (2% + 3)V/4x3 + 2822 + 56 + 33)") (5.1).

In Appendix, we also give the Clar covering polynomials of G(n) for small n, see Table
3. Similarly, we obtain the K (G(n)) and hy(G(n)):
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C(L(n)) =3(n—1),
) = s (17 VB i (2,
hi(G(n)) = P'(G(n);0)

1

NeE
S )<19+23 33>

((2541 — 4125n — 1181v/33 + 1485V/33n
19 — 3v/33\n
— (2541 — 4125n + 1181v/33 — 1485v/33n) (%) )

A hexagonal system G is said to be k-resonant (k > 1) if, for any i(1 < ¢ < k) disjoint
hexagons hy, -+, h; of G, G — U;;l h; has a perfect matching. M. Zheng showed that a
hexagonal system is 3-resonant if and only if it’s k-resonant (k > 3) [17], and gave the
construction of any 3-resonant hexagonal system in [18]. From the construction in [17],
we know G(n) in Figure 6 is 3-resonant, so it is k-resonant. Then any k mutually disjoint
hexagons in G(n) form a sextet pattern. Hence, it is not hard to see that C(G(n)) = 3(n—1)
and the coefficient of the highest term of P(G(n)) is n. Of course, this can also be obtained
from P(G(n)) directly as above. As G(n) contains coronene as its nice subgraph, equation
(2.1) can not be used. But since any & mutually disjoint hexagons form a sextet pattern in
G(n), the transfer-matrix can be easily used here to determine its sextet polynomial, details

are omitted. The order of the transfer-matrix is 2:

o(G(n);z) = (1 + 62 + 62° + xg,zé(l + 3z + r2))

n—2
1462+ 622 + 2% 23(1 4 3z + 22) 1
x%(l + 27)? z(1 + x)? x2

1
2mHL (g 4 4a3 32 + 22 + 1) V1627 + 8027 + 10827 + 6122 + 14z + 1

~ ( (2:[;4 1 102% + 142 + 112 + 3 — /1625 + 8027 + 10825 + 6122 1 14z + 1)

. (2x3 822+ T + 1 + V1625 + 802 + 1082% + 6122 + 14z + 1)”

— <2x4 +102% 4+ 142° + 112 + 3 + V1625 + 802 + 10827 + 6122 + 14z + 1)

: (21’3 4822+ 7w + 1 — /1625 + 8021 + 10827 + 612 + 14z + 1) )

Some enumeration results are illustrated in Appendix. They are all obtained in Mathe-

matica by putting n = 2,3,---.



-391-

Acknowledgement

The authors are grateful to Professor Douglas J. Klein for his kind help.

References

(1] D. Babi¢ and A. Graovac, Enumeration of Kekulé structures in one-dimensional poly-
mers, Croat. Chem. Acta 59 (1986) 731-744.

[2] D. Babi¢, A. Graovac, B. Mohar and T. Pisanski, The matching polynomial of a poly-
graph, Discrete Appl. Math. 15 (1986) 11-24.

[3] A. Graovac, D. Babi¢ and M. Strunje, Enumeration of Kekulé structures in polymers,
Chem. Phys. Lett. 123 (1986) 433-436.

[4] 1. Gutman and B. Borovi¢anin, Zhang-Zhang polynomial of multiple linear hexagonal
chains, Z. Naturforsch. 61 (2006) 73-77.

[5] I. Gutman, B. Furtula and A.T. Balaban, Algorithm for simultaneous calculation of
kekulé and clar structure counts, and clar number of benzenoid molecules, Poly. Arom.
Comp. 26 (2006) 17-35.

[6] 1. Gutman, S. Gojak and B. Furtula, Clar theory and resonance energy, Chem. Phys.
Lett. 413 (2005) 396-399.

[7] H. Hosoya and T. Yamaguchi, Sextet polynomial. A new enumeration and proof tech-
nique for the resonance theory applied to the aromatic hydrocarbons, Tetrahedron Lett.
52 (1975) 4659-4662.

[8] D. J. Klein, G. E. Hite, W. A. Seitz and T. G. Schmalz, Dimer coverings and Kekulé
structures on honeycomb lattice strips, Theoret. Chim. Acta 69 (1986) 409-423.

[9] D. J. Klein and H. Zhu, Resonance in elemental benzenoids, Discrete Appl. Math. 67
(1996) 157-173.

[10] C. Lin and G. Fan, A direct method for calculation of Clar covering polynomial, J.
Xiamen University (Natural Science) 37 (1998) 340-345. (In Chinese)

[11] J. Qian and F. Zhang, On the number of Kekulé structures in capped zigzag nanotubes,
J. Math. Chem. 38 (2005) 233-245.

[12] M. Randi¢, H. Hosoya and O. E. Polansky, On the construction of the matching poly-
nomial for unbranched catacondensed benzenoids, J. Comp. Chem. 10 (1989) 683-697.

[13] F. Zhang, H. Zhang and Y. Liu, The Clar covering polynomial of hexagonal systems II,
Chinese J. Chem. 14 (1996) 321-325.

(14] H. Zhang, The Clar covering polynomial of S,T-isomers, MATCH Commun. Math.
Comput. Chem 29 (1993) 189-197.

[15] H. Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems I, Discrete
Appl. Math. 69 (1996) 147-167.

[16] H.Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems III, Discrete
Math. 212 (2000) 261-269.

[17] M. Zheng, The k-resonant benzenoid systems, J. Mol. Struct. (Theochem) 231 (1991)
321-334.

(18] M. Zheng, Construction of 3-resonant benzenoid systems, J. Mol. Struct. (Theochem)
277 (1992) 1-14.



-392-

Appendix
Table 1. Clar covering polynomial of F'(n):
n Clar covering polynomial P(F(n);x)
2 a?+6x+6
3 @t 41223 + 4722 + 70z + 35
4 2% 4 182° + 1242* + 4162 + 71822 + 6122 + 204
5 2% 42427 + 23726 + 125425 + 38862 + 724023 + 796222 + 47562 + 1189
6 x'0 43029 + 38628 + 280027 + 126712 + 373982 + 730442 + 9350423 + 7535122 + 34650z + 6930
7 22 4+ 362! + 571210 + 527027 + 315012 + 12847227 + 36682720 + 7398902 + 104831121

+101986023 + 64827322 + 2423462 + 40391

8 't 442218 4+ 792212 + 88802t + 66100210 + 34549620 + 1308008z + 364614427 + 752810225
+1147207625 4 12721896z + 997228823 + 523252422 + 1647912 + 235416

9 !0 4+ 482'% 4 1049z + 13846213 + 123488212 + 788928zt + 3734972210 + 133704242°
43659774228 + 7691553627 + 12382804620 + 151279748x° + 13766132421 + 9031803222
+4034467622 + 10976840z + 1372105

10 @'® + 54217 4 1342216 + 20384215 4 211981214 + 160242623 + 9124816212 + 40027248z
+137165018210 + 3701168762 + 7887793162% + 132556681627 + 174511393826 + 17770763085
+1370321816x* + 77286784023 + 30053743722 + 719749262 + 7997214.

Table 2. Clar covering polynomial of L(

n  Clar covering polynomial P(L(n);z)

2 2%+ 1222 + 30z + 20

3 26 4 2425 + 2042t + 7602 + 137922 + 1198z + 399
4

5

29 + 3628 + 52227 + 394826 + 1709827 + 44612z* + 712902 + 6821622 + 35860z + 7960
212 4821t 4 984210 + 113122 + 808532 + 37864227 + 119828126 + 26028242° + 3882289x4
+390584423 + 253146622 + 954004z + 158801

6 x'® + 60z 4 1590213 + 24580212 + 24707621 + 1707880210 + 839322029 + 2995348828
+7861193127 + 1524608962 + 2177491322° + 225807288x* + 1654241272 + 8100715622
+23792330z + 3168060

7 '8 4 72217 + 234020 + 454802 1% + 5909352 + 5441942213 + 36790579212 + 18683672021
+723903526210 + 21617214482° + 500267115628 + 897957434427 + 1244759724525
+1318372471425 + 104623223292 + 601745046023 + 236733146522 + 5696167942 + 63202399

8 22! 84220 4 3234219 + 757402'® + 1208334217 + 13944300216 + 12072982225 + 803372808z 14
+4178202550213 + 17187250328z 12 + 5638511265621 + 148292894368z 10 + 3133701408862
+531655906848x% + 7210851402722 7 + 7752151482802° + 6512859333002° + 418109802056z
4197916326308z + 6506180203222 + 13258279400z + 1260879920

Table 3. Clar covering polynomial of G(n):

n  Clar covering polynomial P(G(n);z)

223 + 1522 + 32 + 20

320 + 4825 + 2952 + 89623 + 143122 + 1148z + 364

429 + 10328 + 109227 + 633425 + 223322° 4 49945x* + 7121425 + 6268522 + 31020z + 6596

5212 + 1842 + 2854210 + 2516429 + 1420392° + 54461227 + 146197326 + 27794402°

+372597524 + 344386023 + 2087967x2 + 747052z + 119500

6 625 4 295z 4 6156213 + 743082'2 + 588614z + 3269343210 4 1323057627 + 398917992
49064339227 + 15561733225 4 2006399162° + 19113177324 + 13042599423 + 6027174922
+16886908x + 2164964

7 Tz'® 4440217 4+ 11733210 + 182484215 + 1887650211 4 13933172213 + 76562096212 + 321733860211
4105179331520 + 270219896422 + 5480598823x% + 877025198427 + 1100769444726
+107034992402° + 7894921051z + 426683032823 + 159261637522 + 366677340z + 39222316

8 8zl 4623220 + 20496210 + 394710218 + 5094484217 + 47416826216 + 332864244x1°
+18150474862 14 + 784246584023 + 2721609845912 + 7652622394021 + 1752048780000
+327116898664x° + 4971788922678 + 611860206268z7 + 603863356354a0 + 470694806988z
+283053795089z* + 126596507558z + 3962807466922 + 7743450572z + 710584580

SN




