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Abstract
In this study, we compare three variational approaches for solving the one-
dimensional Schrödinger equation. Particular attention is paid to accurate calculation 
of the vibrational energy levels lying close to the dissociation limit in bound 
electronic states of diatomic molecules. The approaches are tested on the ground 
state of the hydrogen molecule.  
 

1. Introduction 

 It is not easy nowadays to justify searching for a new approach for solving a one-

dimensional Schrödinger equation, particularly that describing molecular vibrations. Besides the 

well-known perturbative solutions or the models like that by Morse, a number of simple 

numerical procedures are available. However, the appearance of some special effects, like large-

amplitude vibrations in “floppy” molecules, peculiar forms of the potential energy curves, 

avoided crossings of the potential energy surfaces, the need for compact wave functions in terms 
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of expansions in appropriate bases etc. has a consequence that this apparently trivial problem is 

not yet universally solved. This matter illustrates also the fact that a more than modest 

contribution, meanwhile thirty years old �1	, of one of the present authors (M.P.) in which a 

comparison of several methods for solution of the vibrational Schrödindger equation based on ab 

initio computed potential energy curves was carried out, belongs to the most cited of his papers. 

In this study, two variational approaches were discussed. The first one was based on the 

polynomial representation of the potential energy curve and the use of the eigenfunctions of a 

one-dimensional harmonic oscillator as the basis for matrix representation of the Hamiltonian. 

This approach has later been refined and the accuracy of the corresponding results for vibrational 

energy levels and wave functions was explicitly demonstrated in Ref. �2	. However, this method 

cannot describe properly the levels close to the dissociation limit (of e.g. diatomic molecules), 

because the polynomial representing the potential energy curve tends to (+ or –) infinity at large 

values of the vibrational coordinate, instead of asymptotically approaching the energy of 

separated atoms. This fact motivated the alternative use of trigonometric functions (Fourier 

series) for representing the potential energy curves and also the vibrational basis functions �3–6	. 

Such an approach can be applied not only in cases when the potential energy function is periodic, 

but also when such periodicity does not exist; in the latter case one can define an artificial 

periodicity, provided that it does not obscure the real physical situation. While removing the 

problem of false representation of the dissociation limit, this approach has, however, several 

drawbacks. Accurate fitting of some particular forms of the potential energy functions (typically 

of those resembling exponential functions) to trigonometric series is not easy, relatively large 

basis sets have to be used (see, e.g. �6	) to achieve high numerical accuracy of the results 

(particularly for the wave functions), etc. For these reasons, we introduce in the present study a 

third approach that seems to overcome the drawbacks of the two above mentioned. It should  be 

stressed that all three methods can be applied not only to handle the vibrations in diatomic 

molecules, but also in a very common case when a multidimensional vibrational problem can be 

in a good approximation reduced to an effectively one-dimensional problem. 

 Of course, there are many alternative ways for solution of the one-dimensional 

Schrödinger equation. Here we wish to mention only several studies recently published in the 

present journal �7-12	. For a more detailed overview the reader is referred to the references cited 

in these papers. 
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 The present paper is organized as follows: In Section 2 we briefly describe the three 

approaches for solving the vibrational Schrödinger equation. In Section 3. we apply them to 

compute the vibrational energy levels in the ground electronic state of the hydrogen molecule. In 

these computations the very accurate potential energy curve calculated by Kolos and Wolniewicz 

�13	 is employed. This section involves brief concluding remarks. 

 

2. Method 

 In the present paper we deal with the one-dimensional Schrödinger equation, 
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where -  is the reduced mass, and  an appropriate function representing the potential 

energy for vibrations of molecular nuclei. In this section we describe three variational 

approaches for solving Eq. 1. 

)(xV

 

2.1. Polynomial approach 

 The potential energy is assumed to be of the form 
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kc  are the expansion coefficients obtained by fitting the ab initio computed electronic energies in 

the framework of the Born–Oppenheimer approximation, , to the function (2) by 

means of the least squares procedure. It is convenient to rewrite (2) as  
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The Hamiltonian in the Schrödinger equation (1) can now be written in the form 
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The (orthonormal) basis functions for the representation of the Hamiltonian (4) are taken in the 

form of eigenfunctions of the one-dimensional harmonic oscillator with the reduced mass -  and 

the conveniently chosen “force constant” , k
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where �/-( k
 , and  represents the n-th Hermite polynomial. The matrix elements of 

the operator  are 
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with -4 /k/ .  The part  of the Hamiltonian only involves the terms . The corresponding 

matrix elements can be easily calculated by using the formulae 

'V̂ kx
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2.2. Fourier approach 

 This approach may be used when the potential energy curve has certain periodicity (as 

e.g. for torsional vibrations) or if some artificial periodicity is properly defined. Let r  be a real 

vibrational coordinate (e.g. the bond length in a diatomic molecule). Choosing for “the period” 

some length  covering the complete range of physically relevant variations of L r , we define a 

new variable 5  as 

 

r
L
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The potential energy function is then expressed in the form 
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The application of the least squares procedure leads to the optimal expansion coefficients. 

Depending on the concrete situation, we can use as the basis functions for the representation of 

the Hamiltonian either cos or sin functions in 5n , or both of them. In the former case the 

orthonormalized basis functions are  
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The kinetic energy operator is 
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and its matrix has only diagonal elements, 
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The elements of the potential energy matrix are 
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The sin basis consists of the functions 
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The matrix elements of the potential energy part of the Hamiltonian are 
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2.3. “New” approach 

 For the reasons that will be explained in Chapter 3, it is convenient to generalize the 

Polynomial approach assuming the potential energy function is of the form 
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)  is a suitably chosen parameter. For 0
)  this approach reduced to the Polynomial one. The 

expansion coefficients are obtained by solving the system of equations 
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All integrals needed for computation of the elements of the Hamiltonian matrix can be obtained 

by means of the formulae 
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( n  is even integer). The basis functions are chosen in the form 
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( 4
0 /1(
N ).  These basis functions are normalized, but not mutually orthogonal. The elements 

of the overlap matrix are  
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(  is even; the special case is ). The elements of the kinetic energy matrix are nm � 100 
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and the potential energy is represented by the matrix with the elements  
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3. Results and Discussion 

 As a concrete example we apply Eq. 1 for calculating the vibrational energy levels of the 

H2 molecule. It is well known that the “radial” part of the nuclear Schrödinger equation for 

diatomic molecules has the form �14	 
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i.e. it involves the radial coordinate r  defined in the range  ,, r0 ;  is the rotational 

quantum number ( , and U  is the potential energy for vibrational motions. Eq. 26 

may be simplified by the substitution 
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In bound electronic states, the potential energy has a minimum value at some equilibrium )(rU
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internuclear distance . Introducing the new coordinate er 0rr �/9 , we transform Eq. 27 into 
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Since  rises rapidly when , i.e. for U 0�r er��9 , we can safely replace the real boundary 

condition 0lim '
�� S
er9  by 0'lim 
� S�9 , i.e. to define the coordinate 9  in the range 

 ,, � 9 . Renaming 9  as x , we bring Eq. 27 to the form of Eq. 1. 

 In Table 1 are presented the results of calculations of the vibrational levels in the ground 

electronic state of  the H2  molecule. We employ the potential energy curve pointwise calculated 

by Kolos and Wolniewicz [13]. 

 

Table 1. Vibrational levels of the ground electronic state of the H2  molecule. -5�V�5 

v Exact Polynomial Fourier Present 

  r0=1.4 r0=1.4 r0=2.0 r0=1.4 sin cos r0=1.4 r0=2.5 r0=2.0 

  �=17 �=10 �=10 �=10   �=10 �=10 �=10 
  �=0 �=0 �=0 �=0   �=1 �=1 �=1 

  V�10 V�10 V�10 0.9�V�2.4 -5�V�5 V�10 

0 0 0 0 0 0 0 0 0 0 0 

1 4162 4198 4198 4140 4162 4162 4162 4156 4161 4162 

2 8089 8114 8114 8058 8089 8090 8090 8098 8090 8090 

3 11785 11786 11786 11757 11786 11785 11785 11777 11786 11786 

4 15254 15236 15236 15235 15258 15253 15253 15249 15254 15256 

5 18496 18476 18475 18489 18533 18495 18495 18508 18497 18497 

6 21511 21509 21502 21510 21696 21508 21508 21547 21512 21511 

7 24294 24385 24307 24294 24899 24289 24289 24301 24295 24294 

8 26838 27318 26874 26832 28267 26832 26832 26848 26843 26837 

9 29131 30578 29197 29117 31850 29123 29123 29188 29162 29130 

10 31158 34265 31409 31141 35656 31146 31146 31432 31175 31159 

11 32894 38379 33801 32912 39692 32880 32879 33959 32916 32924 

12 34308 42907 36597 34584 43924 34314 34271 36837 34367 34603 
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 In the second column of Table 1 are displayed the energies of thirteen discrete vibrational 

levels, obtained by an exact numerical solution of the Schrödinger equation, as given in Ref. 

[15]. The results of the present calculations are shown in columns three to eleven. We employ 

generally all the potential energy points computed in Ref. [13] (80 points), except of those for 

very small internuclear distances ( r 75.0�  bohr), corresponding to energies very high compared 

to that of the dissociation limit (–1.0 hartree). Omitting these points we substantially facilitate the 

fitting of the potential curve, without influencing the accuracy of the discrete energy levels to be 

computed. All the energy levels in Table 1 are given with respect to the lowest-lying one 

( ). 0
E

 The columns three to six contain the results obtained by the Polynomial approach. That 

means that the potential energy curve is represented by a polynomial expansion and the 

vibrational basis function are the eigenfunctions of an appropriately chosen harmonic oscillator. 

As already stated, our new approach (denoted by “Present” in Table 1) collapses into the 

Polynomial one when the value of the parameter )  equals zero. In all cases when either of these 

two approaches are employed, the number of basis functions is 30. The bases of such size ensure 

the convergence of the results for the lowest thirteen vibrational levels.  The number of terms in 

the potential energy expansions is 21 (except in computations of the energy levels given in the 

sixth column, where it is 11). 

 The results displayed in the third column are generated by the most straightforward 

application of the Polynomial approach. The parameter ( , determining the form of the 

vibrational basis functions, is chosen to be 17.3 bohr-2. This value is obtained as �/-( k
 , 

where  is the harmonic force constant for the potential energy curve in question, 

hartree bohr-2. The basis functions are centered at the value of  bohr, being 

the equilibrium H-H bond length (i.e. the value of the x coordinate at this point is taken to be 

zero). Note that already the energy difference between the first and the zeroth vibrational level, 

4198 cm-1, is significantly above that obtained in the exact treatment. On the other hand, the 

energy of the level v = 12 (42907 cm-1) is very much higher than the exact one (34308 cm-1).  

Only the levels between v = 3 and v = 6 agree with the exact results. 

k

330.0
k 401.10 
r

 These results clearly illustrate the drawbacks of the Polynomial method. The two main 

sources of the errors are: a) Relatively poor representation of the potential energy curve by a 

polynomial expansion when the curve is extended up to the dissociation limit. Particularly, each 
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polynomial expansion tends at x  to either + �   or  �  instead of approaching the horizontal 

asymptote. b) The eigenfunctions of the harmonic oscillator representing the quadratic 

approximation of the real problem are in the vicinity of the equilibrium bond length not “diffuse” 

enough to ensure correct representation of the large-amplitude vibrations. The second of these 

problems can partly be removed by using smaller ( -values (e.g. (  = 10 bohr-2, fourth column 

in Table 1). Indeed, in this way an appreciably better agreement with the exact results is obtained 

for the high-energy part of the spectrum. The results can be further improved by shifting the 

centers of the basis functions towards the internuclear distances larger than the equilibrium one 

(fifth column,  = 2 bohr), aiming to better cover the region approaching the dissociation limit. 

In this way the calculation error for the level v = 13 is reduced to roughly 280 cm-1, and the 

maximal discrepancy between the results given in the columns two (exact) and five for the levels 

between v = 0 and v = 10, i.e. in the energy range larger than 31000 cm-1, does not exceed 30 cm-

1. The Polynomial method generates, as expected, very accurate results when the dissociative 

region is cut off. In the sixth column of Table 1 we give the result obtained in calculations that 

employ only the part of the potential curve between r = 0.9 and r = 2.4 bohr. In this case the 

potential energy is represented by 11 expansion terms (up to x10). Since the chosen part of the 

potential curve involves only five lowest-lying vibrational levels, all other levels presented in the 

sixth column (separated from the former by a horizontal line) are unrealistic. The reason for that 

is seen in Fig. 1 (middle part): The polynomial expansion has at x 2.4 bohr a completely 

different form than the exact potential curve. However, the mentioned five levels practically 

coincide with the exact ones.  

0r

�

 In the last three (ninth, tenth and eleventh) columns of Table 1 are displayed the results 

generated by means of the new procedure (”Present”). In each case the potential energy curve is 

scaled such that the dissociation limit corresponds to the zero energy. It is represented by the 

expansion in � �2exp xx k 0� )  with 1
)  bohr-2 and for three different values of . The first of 

them (  = 1.401 bohr) represents the minimum of the potential curve, and the other two values 

(  = 2.0 and 2.5 bohr) are chosen to ensure better description of higher vibrational levels. The 

vibrational basis functions are of the form 

0r

0r

0r

� �25.0exp xx n 00� (  with 10
(  bohr-2. The best 

results are obtained with  = 2.0 bohr (last column). The levels between v = 0 and v = 11 

calculated in this way virtually coincide with the exact ones. Only two highest-lying levels, v = 

0r
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11, 12 (separated from the former by a horizontal line) are not accurately computed. This is a 

consequence of the  concrete choice of the functions representing the potential energy curve and 

the vibrational basis functions (in Fig. 1, top, are displayed the first members of these sets of 

function, � 	2
0 )(exp rr ��  and � 	2

0
2
0 )(10exp rr ��:2 ; the choice of the parameters 1
)  bohr-2, 

10
(  bohr-2  is a compromise that ensures proper and most economical description of the levels 

v = 0 to v = 10. 

 

 
Fig. 1. Bottom:  Potential energy curve for the ground electronic state of H2 and the vibrational 
levels computed by means of the “New approach”. Center: Application of the Polynomial 
approach. Bottom: Illustration for the use of the Fourier approach.  
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 Finally, in the seventh and the eight column are presented the results obtained by 

applying the Fourier approach. In this case the potential curve has to be arranged to simulate an 

artificial periodicity. The choice made in the present study is shown in Fig. 1, bottom. Physically 

not interesting region of small values for the internuclear distance is replaced by a gaussian-like 

curve and the dissociation limit is cut off at the value of r  = 5 bohr, to facilitate the fitting 

procedure. The results for vibrational energies, obtained by employing 50 expansion terms for 

the potential energy curve and 50 sin- or cos-type basis functions, are in excellent agreement 

with the exact ones. All the levels lying below the dissociation limit are artificially double 

degenerate if both the sin- and cos-vibrational basis functions are used. The splitting startes in the 

vicinity of the dissociation limit (v = 11, 12). 

 Based on the previous analysis it could be concluded that the Fourier approach is 

superior to both of the other two proposed. However, it has some disadvantages. As a 

consequence of the fact that it does not contain any particular feature resembling the vibrational 

problem, it generally requires relatively large number of expansion terms for the description of 

both the potential energy curves and wave functions (see e.g. Ref. [6]). Further, artificial small-

amplitude oscillatory form of the wave functions makes the computation of some properties (e.g. 

very small transition moments) inaccurate. 

 The Fourier approach is, however, very appropriate for handling the problems in which 

the potential energy curves are really periodic. An important example is the torsional motion, e.g. 

in B2H2 �3	 or C2H4 �16	. 

 It is hardly possible that the simple and convenient approach denoted in the present study 

as “New” has not been invented before. However, the sense of the present study is just to show 

what does (i.e. does not) work in handling real one-dimensional molecular vibrations.  
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