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Abstract

In this paper, we introduce two combinatorial operations and a knot-theoretical approach for 

generation and description of fullerene architectures. The ‘Spherical rotating–vertex bifurcation’ operation 

applied to original fullerene polyhedra can lead to leapfrog fullerenes. However, the ‘Spherical 

stretching–vertex bifurcation’ operation applied to fullerene generates a family of related polyhedra, which 

go beyond the scope of fullerenes. These related cages, the cubic tessellations containing not only 5-gons 

and 6-gons but also 3-gons and 8-gons, are potential candidates in carbon chemistry. By using a simple 

algorithm based on knot theory, these two homologous series of molecule graphs can be transformed into 

various polyhedral links. For these interlocked architectures, it is now possible to quantify their properties 

by knot invariants. By means of this application, we show connections (1) between knot polynomials and 

fullerene isomers determination, (2) between knot genus and fullerene complexity and (3) between 

unknotting numbers and fullerene stability. Our results suggest that techniques coming from knot theory 

have potential applications and offer novel insights in predicting several structural and chemical properties 

of fullerene polyhedra. 
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1. Introduction 

Fullerenes, a family of ball-shaped carbon allotropes in addition to diamond and graphite, 

were discovered in 1985 [1]. In mathematical terms, a fullerene graph is a planar, three-regular 

and three-connected graph, 12 of whose faces are 5-gons and any remaining faces are 6-gons. 

The interest in these species is rapidly increasing because of not only their activity in 

chemistry, physics and materials sciences, but also their intriguing and highly symmetric 

architectures and topologies [2-6]. For such purposes, it turns out to be useful to look at some 

mechanisms for fullerene conversion, such as the Stone-Wales (SW) rearrangement [7] for 

isomerization and the Endo-Kroto C2 insertion [8] for growth, which were shown to be two 

subsets of the more general theoretical framework based on patch replacement [9, 10]. By 

extension, research on complex operations [2, 11], such so-called leapfrog, chamfering and 

capra operations, are of particular importance and interest.  

However, the outcomes of these transformations include not only fullerenes but also 

some related cages with rings of other sizes. Diudea and coworkers [12-15] have demonstrated 

that map operations, as well as SW isomerizations, can be used to generate some kinds of 

nanostructures containing faces of different sizes, such as 4-gons and 8-gons. A different 

approach, decoration operation, has been used to generate several series of icosahedral 

fulleroids by Delgado Friedrichs and Deza in 2000 [16]. Perhaps the most famously 

fullerene-like structures, fulleroids [17] are the cubic convex polyhedra with faces of size 5 or 

greater (e.g., 7-gons). Despite these successes, many more hypothetical analogies for 

carbon-cages remain appealing targets, particularly in theoretical and mathematical chemistry. 

A parallel line of investigation involves the use of mathematical techniques to study 

structural properties of fullerenes, and it is an area ripe for development and deserves special 

encouragement. In 1995, Fowler and Manolopoulos have made an atlas of fullerenes [18], from 

which we can conclude that the mathematics for fullerenes combines techniques in several 

areas: (1) topology to probe the electronic structure and stability, (2) group theory to capture 

the symmetry and to distinguish isomers, (3) graph theory to provide several topological 

indices for coding and nomenclature and (4) geometry for 3-dimensional aspects and 
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structural formation. For details, we can see more ref. [19-21]. 

The paper contains two parts. Recently, two types of operations have been proposed for 

icosahedral fullerenes which are also called Goldberg polyhedra [22-24]. Based on these 

operations, the first part proposes two combinatorial ways and shows how they can be applied 

to fullerenes of any symmetry. In addition, a simple method based on knot theory is 

introduced in the second part, which can easily transform fullerene graphs into corresponding 

polyhedral links [25-27]. This part also describes how concepts from knot theory for fullerene 

polyhedral links can be related to other known mathematic tools for fullerene graphs. In 

particular, we mainly focus on some knot invariants and suggest potential applications in 

investigating structural and chemical properties of fullerenes. The results also have shed new 

light to describe the topological properties of a polyhedral molecule. 

In particular, there are some important definitions in the paper. We define polyhedra with 

3-gons added on fullerenes by (3, 0)-fullerenes, 3-gons and 4-gons added by (3, 4)-fullerenes, 

and 3-gons and 8-gons added by (3, 8)-fullerenes. 

2. Generating leapfrog fullerenes and (3, 8)-fullerenes 

This section will show how to combine three basic operations to generate two new 

combinatorial operations, which can be used to generate leapfrog fullerenes and (3, 

8)-fullerenes. 

2.1. Basic operations 

First, we recall two basic operations [22] of 'Spherical rotating' and 'Spherical stretching' 

on polyhedra. The spherical rotating (SR) describes the deformation of rotating polygons on a 

sphere and introduces 3-gons to replace vertices of parent polyhedra, while the spherical 

stretching (SS) depicts the deformation of stretching spaces between polygons on a sphere and 

introduces 3-gons and 4-gons to replace vertices and edges of parent polyhedra, respectively. 

The results are hence some four-valent polyhedra and two transformation matrixes  and 

 which can be described by three geometrical parameters of vertex (v), face (f) and edge 

numbers (e) as follows: 

SRM

SSM
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Now, we introduce another basic operation of 'vertex bifurcation', which was proposed by 

Jablan [28], who utilized bigons to replace vertices of basic planar graphs (all four-valent). In 

the following, we apply the vertex bifurcation (VB) to 4-valent fullerenes which are obtained 

by two above methods. It can be noted that the replacement of bigons has two choices, which 

are illustrated in Figure 1. In order to generate new pentagons and hexagons, we add another 

restriction in which bigons must traverse original pentagons or hexagons. Accordingly, 

vertices can be inserted into edges, each new edge joined the two new vertices and extra faces 

are formed. This operation may be chemically realized by the reaction which is similar to C2 

insertion [8], and the transformation matrix MVB is 
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Figure 1. Two ways of the operation of vertex bifurcation (bigons are denoted by bold edges). 

2.2. Spherical rotating–vertex bifurcation 

Spherical rotating–vertex bifurcation (SRVB) is a transformation which combines two 

operations of SR and VB. First, we apply SR operation on fullerene graph, and add trigons at 

vertices of the parent fullerene graphs G, thus many 4-regular extended (3, 0)-fullerene graphs 

G' are obtained. Then, by replacing their vertices of G' with bigons, larger fullerene graphs G'' 

are obtained. For the operation, we can conclude that the transformation matrix  is SRVBM

�
�
�

�

�
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�

�
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The SRVB transformation contains three stages: 

(1) Start with an original fullerene graph Cn, whose geometrical parameters are 

65,, fffev �
 ,

where f5=12, f6=
2
n -10, and fi denotes the number of i-gonal faces. 

(2) Add n trigons at all vertices, a (3, 0)-fullerene graph with 
2

3n  four-valent vertices is 

obtained. For this intermediate, the number of vertices v' equals to the original edge number e; 

the number of edges e' is twice of the original edge number e; while the number of faces f' 

equals to the sum of original face number f and the original vertex number v. The 

transformation geometrical parameters are 

fvfeeev �


 ',2',' . 

 

 
Figure 2. The SRVB operation to C20, C24 and C28 fullerene graphs. 
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(3) Then, use 
2

3n  bigons to cover new four-valent vertices, the original 12 pentagons 

and f6 hexagons remain unchanged, while the n trigons are transformed into n benzene 

structures. These 
2

3n  covering bigons alternatively distribute at n benzene which are 

obtained from trigons. After this operation, the number of faces does not change, but the 

number of vertices is increased by twice and edges equals to the sum of vertex number v' and 

edge number e’ of the (3, 0)-fullerene. The transformation geometrical parameters are 

'",''",'2" ffevevv 
�

 . 

For examples, Figure 2 shows C60 (Ih), C72 (D6h), and C84 (Td), which are generated from 

C20 (Ih), C24 (D6h), and C28 (Td), respectively. It is easy to see that the symmetry is remained 

throughout these operations. Note that the results of SRVB are as same as the leapfrog 

transformation [2], which can be achieved by different combinations of simple operations: 

truncation of the dual graph or dual of the omnicapping graph. Thus, the SRVB operation 

applied to fullerenes can lead to leapfrog fullerenes, and the goal of such a transformation is 

to isolate the pentagons by the appearance of hexagons. 

2.3. Spherical stretching–vertex bifurcation  

Similar to SRVB operation, Spherical stretching–vertex bifurcation (SSVB) is a 

transformation which combines two operations of SS and VB. First, we apply SS on fullerene 

graph, and add trigons at vertices and tetragons between edges of the parent fullerene graphs 

G, many 4-regular extended (3, 4)-fullerene graphs G' are obtained. Then by replacing their 

vertices of G' with bigons, a class of fullerene graphs G'' with novel tilings are obtained. For 

the operation, the transformation matrix  is SSVBM

�
�
�

�

�

�
�
�

�

�




111
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006

SSVBSSVB MMM . 

The SSRB transformation also contains three stages: 

(1) Start with an original fullerene graph Cn, whose geometrical parameters are 

65,, fffev �
 , 
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where f5=12, f6=
2
n -10. 

(2) Add n trigons at vertices and 
2

3n  tetragons between edges, a (3, 4)-fullerene graph 

with 3n four-valent vertices is obtained. For this intermediate, the number of vertices v' equals 

to three times of original; the number of edge e’ equals to the twice of original edge number e 

added to the vertex number v'; while the number of faces f' equals to the sum of original face 

number f and the original vertex number v and original edge number e. The transformation 

geometrical parameters are 

fevfevevv ��
�

 ',23',3' . 

 

 
Figure 3. The SSVB operation to C20, C24 and C28 fullerene graphs. 
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(3) Then, using 3n bigons to cover new coming four-valent vertices, the original 12 

pentagons, f6 hexagons and n trigons remain unchanged, while the 
2

3n  tetragons are 

transformed into 
2

3n  [8]annulene. These 3n covering bigons alternatively distribute at 
2

3n  

[8]annulene which are obtained from tetragons. After this operation, the number of faces does 

not change, but the number of vertices is increased by twice and edges equals to the sum of 

vertex number v' and edge number e’ of the (3, 4)-fullerene. The transformation geometrical 

parameters are 

'",''",'2" ffevevv 
�

 . 

For examples, Figure 2 shows C120 (Ih), C144 (D6h), and C168 (Td), which are generated 

from C20 (Ih), C24 (D6h), and C28 (Td), respectively. It is clear that the symmetry is still 

remained throughout these operations. These novel transformations take carbon cages out of 

the fullerene series and have as yet no direct chemical relevance. Nevertheless, they could be 

useful in a mathematical context for constructing and counting trivalent polyhedra. We call 

these related cages as (3, 8)-fullerenes, because they not only contain 5-gons and 6-gons of 

the original, but also introduce 3-gons and 8-gons. One of the examples is shown in Figure 4. 
 

 
Figure 4. The (3, 8) – fullerene C360 which is obtained from C60 by the SSVB operation 

The famous Euler formula is useful in checking the consistence of an assumed structure 

and yields the following relation: 

*
+

���
��
7

543 )6()1(1223
i

ifigfff
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where fi denotes the number of i-gonal faces of p, and g denotes the genus of a graph. For a (3, 

8)-fullerene Cn, it has f3=
6
n , f4=0, f5=12, f8=

4
n , and i=8, thus we can conclude that g=0, i.e., 

the (3, 8)-fullerene is a closed sphere. The presence of 3-gonal faces compensates negative 

curvature leading by 8-gonal faces. These two types of faces may appear by two reasons. One 

is Buckminster Fuller utilized 3-gons to construct the original geodesic dome; the other is 

8-gons preserving the sp2-like nature of carbon nets. Despite these feasibilities, the chemical 

significance and Kekulé count in (3, 8)-fullerenes need further investigating. In particular, 

molecular graphs for Ih and I symmetry of these novel fullerenes are the architecturally 

simplest and can be described by the Goldberg vectors (h, k). The vertex counts are 

)(40 22 khkhn ��
  

where integers .0,0 +,, hhk  

3. Knot- theoretical method for fullerene polyhedral links 

3.1. The knot algorithm 

Mathematically, all normal fullerene and related (3, 8)-fullerene graphs are cubic 

(3-regular) graphs which can be embedded in the surface of a sphere. But each vertex is 

connected by a bigon, so they are all 4-valent as chemical entities. In knot theory [28, 29], each 

four-valent plane graph can be seen as a projection of an alternating link. Accordingly, a knot 

algorithm that involves two steps is proposed. First, a bigon is transformed into a double-line, 

while a set of bigons corresponds to a perfect matching or a Kekulé structure (KS) in 

chemistry. Second, the related two vertices are transformed into a pair of alternate crossings, 

where one of them is overcrossing and the other is undercrossing, and vice versa. As a result, 

the vertices of fullerene graphs are changed to crossings, and the edges are changed to the 

curves supporting the framework of polyhedral links. Although a fullerene graph results in 

two mirror polyhedral links, only one configuration is counted because KS is insensitive to 

chirality. Thus, there is a one-to-one correspondence between each KS and a polyhedral link. 

In order to describe our ideas, some examples are shown in Figure 5, after applying the 
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algorithm to one of KSs of C20, C24 and C28, then a knot, a three-component link and a 

two-component link are obtained, respectively. 
 

 
Figure 5. The knot algorithm for one of KSs of C20, C24 and C28 can lead to (a) a knot, (b) a 

three-component link and (c) a two-component link. 

 
Figure 6. Two fullerene polyhedral links of (a) the least leapfrog fullerne C60 and (b) the relating cage of 

C360. 

In addition, we look at what kind of topological structures can be obtained by the 

application of knot algorithm to leapfrog fullerenes and (3, 8)-fullerenes. A leapfrog fullerene 

has many notable properties. For instance, it contains at least 2 v/8 different KS [30]. Thus, 

when a leapfrog fullerene graph is changed to a projection of an alternating polyhedral link, 

there are at least 2 v/8 polyhedral links for a fullerene graph. By the reason that pentagons in 

such a series of fullerene having been isolated by hexagons and every bigons are distributed 

on hexagons, the related links shown in Figure 6(a) are nested by some hexagonal rings, and 
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such complex forms were found in nature such as kinetoplasts DNA [31]. The emergence of 

alternating bigons in octagons make (3, 8)-fullerenes also have KS, so we can also use knot 

algorithm to generate their corresponding polyhedral links. As a consequence, a (3, 

8)-fullerene, with no adjacent 3-gons, 5- and 6-gons, are changed to a network similar to 

chainmail armor which is regularly catenated by some 8-memberd rings. See Figure 6 (b). 

3.2. Some chemical applications 

Using the aforementioned connection between alternating link diagrams and 4-regular 

diagrams of fullerenes, it is now clear that fullerene graphs appear as polyhedral links of 

interlocked circles that reside in space in a topologically nontrivial way. For such structures, 

there is hope of using topological methods to gain chemical information. The branch of 

topology known as knot theory is a powerful tool of quantifying and comparing the various 

configurations of such nontrivial molecules [32-34]. However, since the application of 

knot-theoretical approaches on fullerenes is a niche research area, which was originally 

proposed by Jablan (http://members.tripod.com/~modularity/ful.htm#cont), there are only two 

published literatures to our best knowledge [35, 36]. 

Now, we only outline a strategy and focus on the application of knot invariants in three 

aspects preliminarily. These applications are not very clear, thus, our account is informal and 

needs our own further exploring, and we also hope researchers to pay more attention to this 

new line of research. Furthermore, a few examples are potential to make these comments 

clearer. Figure 7 shows two knots corresponding to two different KSs of the dodecahedron of 

C20. To compute knot invariants for links, we put the same orientation to each component. 

 

 
Figure 7. Two knots corresponding to two different KSs of the dodecahedron of C20. 
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(1) The determination of fullerene isomers. To enumerate all isomers of a fullerene is a 

complicated mathematical problem that has still not been solved completely; even through 

some methods such as the SW rearrangement [18]. If we transform fullerene graphs into 

polyhedral links, it corresponds to a fundamental problem in knot theory: recognition of links. 

To address the problem, mathematicians have developed a number of elegant and powerful 

knot polynomials [29]. For instance, the HOMFLY polynomial, the Alexander polynomial and 

the Jones polynomial are able to distinguish between various links and indicate the structure 

of related fullerenes. These polynomials are powerful tools as invariants because they are the 

same if one oriented link is ambient isotopic to another. In fact, some of the earlier works can 

be found in ref. [28]. So far, there are a number of excellent computer programs that can 

compute all of the link polynomials. 

To distinguish knots in Figure 7, we use the Program "KNOT" made by Kodama to 

calculate the one-variable HOMFLY polynomial because of its computational feasibility. For 

each link, we associate a polynomial. By calculation, the corresponding HOMFLY 

polynomial of the knot of Figure 7 (a) is 

106424610 510910105 vvvvvvv ������� ���� , 

while the HOMFLY polynomial of the knot of Figure. 7 (b) is 

1064224610 4621264 vvvvvvvv �������� ���� . 

Thus, they are topologically distinct.  

(2) The complexity of fullerenes. On this topic, several graph invariants have been 

successfully defined to describe the complexity of fullerene graphs [37]. Similarly, a number of 

knot invariants are examined to evaluate the complexity of fullerene polyhedral links. Knot 

genus is the least genus of any Seifert surface for a given knot, whose value quantifies the 

complexity of links. In Figure 8, applying Seifert's algorithm D0 to a projection of an 

alternating knot or link, the crossing has been eliminated to yield a Seifert surface of minimal 

genus. For example, the genus of unknot is zero. Except for the knot genus, other measures of 

link complexity include the crossing number, the bridge index, the stick number and span of 

any knot polynomial, etc. 
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Figure 8.  Three digrams of (+), (-), and (0) crossings. The arrows indicate the orientation of curves. 

 

For the cases in Figure 7, we apply Seifert's algorithm to get their Seifert surfaces with 

maximum Seifert circles, and then use the following equation to obtain the genus:  

))]((1[))](())((1[)(2 GLGLcGLsFg -����
  

where s is the number of Seifert circles, c is the crossing number and � is component number. 

For the knot in Figure 7 (a), s = 13, then the genus g =4; and for the knot in Figure 7 (b), s = 

11, then the genus g’ =5. Accordingly, we conjecture that the knot of Figure 7 (b) is more 

complex.  

(3) The stability of fullerenes. As far as we know, besides some graph invariants [38], there 

are some operations and criterions to yield and to estimate stable isomers, such as leapfrog 

transformation in geometry, Clar type in graph theory and steric strain in topology [18, 39]. For 

fullerene polyhedral links, a different approach using the calculation of the unknotting or 

unlinking numbers is selected for our potential idea [40]. It can be assumed that the most stable 

isomer corresponds to a knot or link with the largest unknotting or unlinking number. Our 

reason is that we can use these two invariants to estimate how hard a fullerene link is turned 

into a knot or a trivial link. These two numbers are related to the simple operation of crossing 

changes, which can be found from a sequence determined by particular diagrams from D+ to 

D- or from D- to D+, as shown in Figure 8.  

To compute unlinking numbers, we have to encode a knot or link with DT notation or 

Conway notation. Then, using the program LinKnot [28], we can obtain the estimated values of 

unknotting numbers of the knot or link according to Bernhard-Jablan Conjecture. However, 

LinKnot can only be used for alternating knots and links up to 12 crossings. Thus, we cannot 

compare the stability by this invariant for the examples in Figure 7, and it is still an area full 

of open questions which needs developing a more effective measure in the future works.   
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4. Conclusion

Polyhedra are higher forms of molecular organisms, thus, they are very useful for 

theoretical speculation on diverse chemical structures. In the paper, combinations of the 

spherical rotating and the spherical stretching with vertex bifurcation can be used to define 

two symmetry transformations as SRVB and SSVB, respectively. The SRVB applied to 

fullerenes can generate leapfrog fullerenes, and the SSVB generates a family of novel 

polyhedra named (3, 8)-fullerenes. Except for 5-gonal and 6-gonal faces, (3, 8)-fullerenes also 

contain 3-gonal and 8-gonal faces. These exotic faces lead very little mechanical strain, so we 

hypothesize these structures may be stable. These polyhedra are all 3-regular but 4-valent, 

thus, may be promising as candidates for carbon solids. It is very interesting that the 

construction of their duals, in which all faces are 3-gons, are of a special important type and 

may be used to model virus capsids. Additionally, two transformation matrixes offer a 

systematic way of predicting the shapes. 

Furthermore, the knot algorithm has been proposed to transform fullerene graphs into 

polyhedral links. These carbon chain mails, such as regular networks of topological 

interlocked with hexagonal or octagonal carbon-carbon rings imply a new method. In contrast 

with commonly used mathematical tools, the knot-theoretical method can find their 

applications in describing such topological nontrivial structures. In general, we can use knot 

polynomials to distinguish fullerene isomers, knot genus to predict the complexity of 

fullerenes, and unknotting numbers to estimate the stability of fullerenes. Although the 

method has some inherent restrictions limited by the development of knot theory itself, we 

expect this wok to create more opportunities to show how knot invariants are related to 

polyhedral molecules, most significantly, fullerene graphs.  
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