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Abstract

A semiregular element of a permutation group is a non-identity element having
all cycles of equal length in its cycle decomposition. The existence of semiregular
automorphisms in fullerenes is discussed. In particular, the family of fullerene graphs
is described via the existence of semiregular automorphisms in their automorphism
groups.

1 Introductory remarks

A fullerene graph (in short a fullerene) is a 3-connected cubic planar graph, all of whose

faces are pentagons and hexagons. By Euler formula the number of pentagons is 12. From

a chemical point of view, fullerenes correspond to carbon ‘sphere’-shaped molecules, the

important class of molecules which is a basis of thousands of patents for a broad range of

commercial applications [42, 43]. In this respect, graph-theoretic observations on structural

properties of fullerenes play an important role [5, 7, 8, 9, 11, 12, 14, 15, 20, 21, 22, 23, 40, 45,
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46]. Some recent developments with regards to certain open problems about the chemistry

of fullerenes together with the methods used to answer these problems find their natural

environment in a graph-theoretic context. An example of such a problem is a long standing

conjecture that an arbitrary fullerene contains a Hamilton cycle, that is, a simple path

going through all vertices of the fullerene (see [37]). Not much progress has been made

with regards to this conjecture. It has been verified for graphs on at most 176 vertices (see

[2]), and to the best of our knowledge, the most general result in this topic is the result on

the existence of Hamilton cycles and paths in the so-called Leapfrog fullerenes (see [34]).

In this paper fullerenes are described via their automorphism groups, and the obtained

results give possible directions this area of research is likely to take in the near future.

Motivated by the problem posed by the second author in 1981 (see [31, Problem 2.4]) who

asked if it is true that a vertex-transitive digraph contains a nonidentity automorphism with

all orbits of equal length, in short, a semiregular automorphism, fullerenes are characterized

with regards to the existence of semiregular automorphisms in their automorphism groups

(see Theorem 3.8). There exist fullerenes with non-trivial automorphism groups without

semiregular automorphisms. In particular, it is shown at the end of Section 3 that there

exists an infinite family of fullerenes with the automorphism group isomorphic to Z3 or S3

with no semiregular automorphisms.

In the context of vertex-transitive graphs the existence of semiregular automorphisms

helps proving the existence of Hamilton paths/cycles for some classes of such graphs, see for

example [1, 26, 28, 33, 35, 36]. (The problem of whether every connected vertex-transitive

graph contains a Hamilton path is a long standing open problem posed by Lovász in [29].)

It seems reasonable to expect that methods similar to those used for finding Hamilton

paths/cycles in vertex-transitive graphs could be applied, at least in some cases, to fullerenes

as well. An example of this is given in Section 2.

Throughout this paper graphs are simple and finite, undirected and connected. For

group-theoretic terms not defined here we refer the reader to [41, 44, 47]. Given a graph

X we let V (X), E(X), A(X) and AutX be the vertex set, the edge set, the arc set and

the automorphism group of X, respectively. For adjacent vertices u and v in X, we write
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u ∼ v and denote the corresponding edge by uv. If u ∈ V (X) then N(u) denotes the set

of neighbors of u. A sequence (u0, u1, u2, . . . , uk) of distinct vertices in X is called a k-arc

if ui is adjacent to ui+1 for every i ∈ {0, 1, . . . , k − 1}. By an n-cycle we shall always mean

a cycle with n vertices.

2 Representation of graphs admitting semiregular au-

tomorphisms

Let G be a permutation group on a finite set V . A semiregular element of G is a non-

identity element having all cycles of equal length in its cycle decomposition. In particular,

a (k, n)-semiregular element of G is a non-identity element having k orbits of length n and

no other orbit. For a graph X and a partition W of V (X), we let XW be the associated

quotient graph of X relative to W, that is, the graph with vertex set W and edge set induced

naturally by the edge set E(X). In the case when W corresponds to the set of orbits of a

semiregular automorphism ρ ∈ AutX, the symbol XW will be replaced by Xρ.

Let X be a connected graph admitting a (k, n)-semiregular automorphism

ρ = (u0
0u

1
0 · · ·u

n−1
0 )(u0

1u
1
1 · · ·u

n−1
1 ) · · · (u0

k−1u
1
k−1 · · ·u

n−1
k−1), (1)

and let W = {Wi | i ∈ Zk} be the set of orbits Wi = {us
i | s ∈ Zn} of ρ. Using

Frucht’s notation [19] X may be represented in the following way. Each orbit of ρ is

represented by a circle. Inside a circle corresponding to the orbit Wi the symbol n/T ,

where T = T−1 ⊆ Zn \ {0}, indicates that for each s ∈ Zn, the vertex us
i is adjacent to all

the vertices us+t
i where t ∈ T . When |T | ≤ 2 we use a simplified notation n/t, n/(n/2) and

n, respectively, when T = {t,−t}, T = {n/2} and T = ∅. Finally, an arrow pointing from

the circle representing the orbit Wi to the circle representing the orbit Wj, j �= i, labeled

by y ∈ Zn means that for each s ∈ Zn, the vertex us
i ∈ Wi is adjacent to the vertex us+y

j .

When the label is 0, the arrow on the line may be omitted. Two examples illustrating this

notation are given in Figure 1 and Figure 2.
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Figure 1: The dodecahedron given in Frucht’s notation relative to a (4, 5)-semiregular automorphism.

Figure 2: The C60 fullerene given in Frucht’s notation relative to a (12, 5)-semiregular automorphism.

As mentioned in Section 1 a frequently used approach to constructing Hamilton cycles

in graphs is based on a quotienting/reduction with respect to a suitable semiregular auto-

morphism, preferably one of prime order. Provided the quotient graph contains a Hamilton

cycle it is sometimes possible to lift this cycle to construct a Hamilton cycle in the original

graph, consistently spiraling through the corresponding orbits. This idea was first intro-

duced in [32] to show existence of Hamilton cycles in particular Cayley graphs. The same

idea can be used to show, for example, the existence of a Hamilton cycle in one of the

fullerenes of order 32. This fullerene has a (16, 2)-semiregular automorphism ρ and it can

be nicely represented in Frucht’s notation as shown in Figure 3. The quotient graph Xρ

with respect to the (16, 2)-semiregular automorphism ρ has 16 vertices, corresponding to

16 orbits of ρ. Since 1 generates Z2 the outer cycle of Xρ lifts to a Hamilton cycle in the

fullerene.

3 Automorphism groups of fullerenes

A map M = M(X) is an embedding of a finite connected graph X into a surface so

that it divides the surface into simply-connected regions, called the faces of M. To each
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Figure 3: A fullerene of order 32 given in Frucht’s notation relative to a (16, 2)-semiregular automorphism.

face f we associate a closed walk of X with edges surrounding f , to which we shall also

refer as a face of M. An automorphism of M is an automorphism of X which preserves its

faces. A graph is planar if it underlies a map on the 2-sphere. Finite planar graphs form

one of a few families of graphs for which the automorphism groups have been satisfactorily

determined, see [3]. In general, the automorphism group of an underlying map M(X) of

a graph X is a subgroup of the full automorphism group Aut(X) of X, that is, not every

automorphism of X can be realized as an automorphism of the map M. However, in 1971

Mani [3, 30] proved that every 3-connected planar graph X can be embedded on the 2-sphere

as a convex polytope P in such a way that the automorphism group of X coincides with

the automorphism group of the convex polytope P formed by the embedding, that is, the

combinatorial automorphisms of X are in fact the same as the topological automorphisms

of P . Special cases of this result have been proved in [4, 24].

Proposition 3.1 [30] For each polyhedral graph X, there exists a 3-dimensional convex

polytope P such that every automorphism of X is induced by a symmetry of P .

Of course, the topological automorphisms of P form a subgroup of the group of all

automorphisms of the 2-sphere. Let the subgroup formed by rotations of P be called the
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rotation group of P . Then the above proposition implies that there are precisely two infinite

families and three sporadic examples of finite rotation groups of the 2-sphere: the cyclic

groups Zn, the dihedral groups D2n, where n ∈ N, the alternating group A4, the symmetric

group S4 and the alternating group A5. In addition, either the rotation group of P is its

full automorphism group or the full automorphism group of P is a product of its rotation

group and a reflection. Since fullerenes are planar graphs, these facts imply the following

proposition.

Proposition 3.2 Let Rot(F ) be the rotation group of a fullerene F . Then Rot(F ) ∼=

A4, S4, A5, Zn or D2n, where n ∈ N, and either Aut(F ) = Rot(F ) or Aut(F ) = Rot(F ) ∪

Rot(F )τ ∼= Rot(F ) · Z2 where τ is a reflection.

A stronger result was obtained in 1993 by Fowler, Manolopoulos, Redmond and Ryan

[18]. In particular, they gave a list of exactly 28 groups that can occur as the automorphism

groups of fullerenes (see also [10]).

In this section a detailed characterization of fullerenes is given based on (non)existence of

semiregular automorphisms in their automorphism groups (see Theorem 3.8). We start with

a simple observation about the length of cycles in fullerenes which is a direct consequence

of the fact that fullerenes are cyclically 5-edge connected. (This means that the maximum

number k such that a fullerene cannot be separated into two components, each containing

a cycle, by deletion of fewer than k edges, is 5, see [13, Theorem 2] and also [39].)

Lemma 3.3 Let F be a fullerene. Then every 5-cycle and every 6-cycle in F is a boundary

cycle of a face in a planar embedding of F . Moreover, the length of the shortest non-

boundary cycle is more than or equal to 8.

Proof. This is a direct consequence of the fact that fullerenes are cyclically 5-edge con-

nected and the fact that two adjacent 5-cycles give us an 8-cycle.

The next lemma tells us that no nonidentity automorphism in a fullerene fixes a 2-arc.
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Lemma 3.4 Let F be a fullerene, let Aut(F ) be its automorphism group and let u, v, w ∈

V (F ) be such that (u, v, w) is a 2-arc in F . Then the stabilizer Aut(F )(u,v,w) of the 2-arc

(u, v, w) is trivial.

Proof. Let u0, u1, u2 ∈ V (F ) be vertices of F such that (u0, u1, u2) is a 2-arc in F . Let

(u0, u1, u2, . . . , ul), where l ∈ {4, 5}, be the boundary cycle of a face f of length l + 1 con-

taining the 2-arc (u0, u1, u2) in a planar embedding of F . Let u′
i be the vertex adjacent to

ui, i ∈ {0, 1, . . . l}, not lying on the face f . Suppose that there exists a non-trivial auto-

morphism α ∈ Aut(F ) that fixes the 2-arc (u0, u1, u2). Then, with no loss of generality, we

may assume that uα
l = u′

0 which means that the 3-arc (u′
0, u0, u1, u2) lies on an (l+1)-cycle.

Since l ∈ {4, 5}, Lemma 3.3 implies that this (l + 1)-cycle is a boundary cycle of a face in

the planar embedding of F . But then the 2-arc (u0, u1, u2) is contained on two different

faces of F , a contradiction.

Proposition 3.5 Let F be a fullerene, let Aut(F ) be its automorphism group and let u ∈

V (F ). Then the stabilizer Aut(F )u of u is trivial or it is isomorphic to one of the following

three groups: the cyclic group Z2, the cyclic group Z3 and the symmetric group S3.

Proof. By Lemma 3.4 the stabilizer of any 2-arc in F is trivial. Consequently, the sta-

bilizer of a vertex u ∈ V (F ) acts faithfully on the neighbors’ set N(u). The result is then

clear.

A finite group G is said to be a {p1, . . . , p2}-group if {pi | i ∈ {1, 2, . . . , n}} is the set of

all prime divisors of the order of G. For example, the symmetric group S3 is a {2, 3}-group.

Proposition 3.6 Let F be a fullerene admitting an automorphism α ∈ Aut(F ) of order 5.

Then α is a semiregular automorphism of F .

Proof. By Proposition 3.5 the stabilizer of any vertex in F is a subgroup of a {2, 3}-

group and thus without elements of order 5. Consequently, all orbits of an automorphism
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α ∈ Aut(F ) of order 5 are of length 5.

Examples of fullerenes admitting automorphisms of order 5 are, for example, the dodec-

ahedron C20, the soccer-ball-shaped fullerene C60, as well as the infinite family of fullerenes

admitting a non-trivial cyclic-5-cutset which were recently classified in [27]. (A set of k

edges whose elimination disconnects a graph into two components, each containing a cycle,

is called a cyclic-k-cutset and moreover, it is called a trivial cyclic-k-cutset if at least one

of the resulting two components induces a single k-cycle.)

The next lemma can be proved using the list of 28 possible automorphism groups of

fullerenes given in [18]. We do, however, for the sake of completeness give an independent

proof using elementary concepts from group actions on combinatorial objects.

Lemma 3.7 Let F be a fullerene. Then its automorphism group Aut(F ) is a subgroup of

a {2, 3, 5}-group. Moreover, the order of Aut(F ) divides 23 · 3 · 5.

Proof. Let T be the set of twelve 5-cycles in F and consider the natural action of

A = Aut(F ) on T in a natural way. Let O be the set of orbits of A on T and let O ∈ O.

Then cardinality |O| equals lO for some lO ∈ {1, 2, . . . , 12}, and thus the quotient group

A/KO is a group of degree l, where KO is the kernel of the action of A on O ∈ O. Clearly,

by Lemma 3.4, it follows that for any 5-cycle T ∈ O the restriction (KO)T equals KO, and

therefore KO = 1 or KO
∼= Z2 or KO

∼= Z5 or KO
∼= D10. Moreover, since a 5-cycle cannot

be fixed by an automorphism of order 3, Proposition 3.5 implies that the stabilizer (A/KO)T

of a 5-cycle T ∈ T is a subgroup of a {2, 5}-group. In particular, considering the induced

action of A/KO on T we have that (A/KO)T = 1 or (A/KO)T
∼= Z2 or (A/KO)T

∼= Z5 or

(A/KO)T
∼= D10. By the well-known orbit-stabilizer property of permutation groups [17] it

follows that |(A/KO)/(A/KO)T | = lO, and hence

|A| = |KO| · |(A/KO)T | · lO = 2mO · 5nO · lO (2)

where mO ∈ {0, 1, 2} and nO ∈ {0, 1, 2}. But this holds for every orbit O in O and so the

lengths of two orbits in O, if not coprime (one of length 2, and the other of length 5) and

if not equal, may only differ by a factor of 2, 4, 5, or 10. Hence, since
∑

O∈O
lO = 12, we
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have that lO �∈ {7, 9, 11}. Now checking up the various remaining possibilities it may be

seen that A is a subgroup of a {2, 3, 5}-group, and moreover its order divides 24 · 3 · 52. In

what follows we show that in fact |A| divides 23 · 3 · 5.

Suppose first that 5 divides |A| and that a Sylow 5-subgroup Syl5(A) of A is of order 52

and consider its action on the set T of twelve 5-cycles in F . Now Syl5(A) being a 5-group,

it must have at least two trivial orbits in its action on T . Hence there exist 5-cycles with

stabilizers divisible by 25, contradicting the above statements on stabilizers of 5-cycles. It

follows that |Syl5(A)| = 5.

Suppose now that 2 divides |A| and that a Sylow 2-subgroup Syl2(A) of A is of order 24

and consider its action on the set T of twelve 5-cycles in F . Using a similar argument as in

the preceding paragraph, we infer that there are either three orbits of length 4 or one orbit

of length 8 and one of length 4 arising from this action. Now consider the action of Syl2(A)

on an orbit of length 4 in its action on T . Since, by assumption, Syl2(A) is of order 24,

the orbit-stabilizer property implies that the subgroup of Syl2(A) that stabilizes a 5-cycle

in this orbit is of order 4, a contradiction. Thus the order of Syl2(A) divides 23, as claimed.

We are now ready to prove the main result of this paper.

Theorem 3.8 Let F be a fullerene with non-trivial automorphism group. Then either F

admits a semiregular automorphism or Aut(F ) ∼= Z2, Z3 or S3.

Proof. In view of Proposition 3.6 and Lemma 3.7 we may assume that Aut(F ) is a

subgroup of a {2, 3}-group with order dividing 23 · 3. Further, assume that the rotational

subgroup Rot(F ) of Aut(F ) has even order. Then it has an involuntary rotation, that is, a

half-turn rotation. If this rotation was not semiregular, there would be at least one vertex

of F lying on the axis of this rotation. But then the set of neighbors of this vertex would not

be fixed by this half-turn rotation. We may therefore assume that Rot(F ) is of odd order

and hence either trivial or isomorphic to Z3. Consequently, Aut(F ) is one of Z2, Z3 or S3.

There are examples of fullerenes with Z2, Z3 and S3 groups not having semiregular

automorphisms (see Figures 4, 5, and 6), and therefore Theorem 3.8 is best possible.

-275-



The leapfrog fullerene Le(F ) is obtained from a fullerene F by performing the so-called

tripling (leapfrog transformation) [16, 25, 38] which consists in the truncation of the dual

Du(F ) of F . That is, Le(F ) = Trun(Du(F )) and consequently Aut(F ) = Aut(Le(F )).

Observe that a vertex in F corresponds to a hexagonal face in Le(F ) and one can easily

see that every non-trivial automorphism of F fixing a vertex ‘lifts’ to a semiregular au-

tomorphism in Le(F ). Therefore the leapfrog transformation enables us to construct an

infinite family of fullerenes with a prescribed non-trivial automorphism group and having

a semiregular automorphism.

On the other hand, there are also infinitely many fullerenes having non-trivial automor-

phism groups without semiregular automorphisms as is shown by the three examples given

in Figures 7,8 and 9. They are the smallest three members of an infinite family of such

fullerenes, of order 70 + 24k, having S3 as their automorphism group for k even and Z3 as

their automorphism group for k odd. The construction rule is best understood if the point

of view is the outer hexagon, that is, the boundary of the infinite region. Its neighboring

faces make up a ring of six hexagons, which is in turn followed by a second ring consisting

of alternate hexagons and pentagons, six of each. This ring is then followed by k rings

each containing twelve hexagons. The last of these rings is followed by a ring consisting of

alternate pairs of hexagons and pentagons, three of each, and, to close up the picture, a

stack of six hexagons in a triangle shape turned upside down in our figures, in the middle

of which is the fixed vertex of the automorphism of order 3. There is an additional reflexive

symmetry when k is even, about an axis passing through 10 + k vertices, the above central

vertex in the Z3-symmetry being one of them (see Figures 7 and 9). The automorphism

group is therefore S3 in this case. When k is odd this bisective symmetry is broken by the

odd number of rings of twelve hexagons between the two rings containing pentagons and

thus the group is Z3 in this case (see Figure 8).
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Figure 4: A fullerene of order 34 without a semiregular automorphism with the full auto-
morphism group isomorphic to the cyclic group Z2.

Figure 5: A fullerene of order 40 without a semiregular automorphism with the full auto-
morphism group isomorphic to the cyclic group Z3.

Figure 6: A fullerene of order 34 without a semiregular automorphism with the full auto-
morphism group isomorphic to the symmetric group S3.
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Figure 7: The first fullerene (k = 0) in an infinite family of fullerenes without a semiregular
automorphism with the full automorphism group isomorphic to the symmetric group S3.

Figure 8: The second fullerene (k = 1) in an infinite family of fullerenes without a semireg-
ular automorphism with the full automorphism group isomorphic to the symmetric group
Z3.
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Figure 9: The third fullerene (k = 2) in an infinite family of fullerenes without a semiregular
automorphism with the full automorphism group isomorphic to the symmetric group S3.

4 Conclusions

In this paper we have characterized fullerene graphs via their automorphism groups, in

particular, via the existence of semiregular automorphisms. We believe that the use of the

concept of semiregular automorphisms will prove useful in some open problems regarding

fullerenes such as, for example, the hamiltonicity problem.
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