
The keeping and reversal of chirality for dual links 

Dan Lu and Wen-Yuan Qiu*

Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, 

Lanzhou University, Lanzhou 730000, P.R. China 

E-mail: wyqiu@lzu.edu.cn 

(Received November 25, 2008) 

Abstract

A new method for understanding the construction of dual links has been developed on the basis of 

medial graph in graph theory and tangle in knot theory. The method defines two types of oriented 4-valent 

plane graph: Ge and Go, whose vertices are covered by E-tangles and O-tangles, respectively. The result 

shows that there are two types of dual links: E-dual links and O-dual links, which have many differences in 

topological properties, especially their chiral rule. In our paper, we show that dual links can be constructed 

by oriented 4-valent plant graphs and tangles. This research puts forward the definition of dual links and 

the methodology for the construction of dual links. Dual links open a new approach for the research of links, 

and the methodology may also be used to direct the synthesis of chiral molecules. 

1. Introduction  

Duality is a fundamental concept that underlies almost all natural phenomena. Roughly 

speaking, duality is the product of the interaction that takes place between the paired 

components of an elementary system [1, 2]. In physics, duality is used to describe theoretical 

models that appear to be different, nevertheless can be shown to describe exactly the same 

physics, and are divided into “trivial” and “nontrivial” [3]. Moreover, duality is also introduced 
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into the research of string theory, and shows that all five string theories, together with 

M-theory, are dual to one another [4]. In geometry, duality defines a kind of relationship 

between two polyhedra. According to the duality principle, for each polyhedron, there is 

another polyhedron whose faces and vertices occupy complementary locations [5]. In graph 

theory, duality is more universal. Given a plane graph G, the 4-valent plane graph Med(G) is 

defined as the graph as having vertices the edges of G with two vertices adjacent if and only if 

they share a vertex and belong to a common face. If Med(G) = Med(G�), then G and G� are 

dual [6].

Knot theory [7-9] is the area of topology that studies mathematical knots. The recognition 

problem of knot theory is to determine whether two knots are equivalent or not. Many knot 

invariants are put forward to solve basic problem, such as bridge number, linking number, 

HOMFLY polynomial, etc. A table of link and link invariants introduce information of them. 

Duality is a pervasive and important concept in (modern) mathematics. However, duality of 

links is never noticed in knot theory. In the paper, a method of constructed dual links is put 

forward, which is based on median graph in graph theory and tangle in knot theory. Two types 

of oriented 4-valent plane graph: Ge and Go are defined, and tangles are divided into E-tangles

and O-tangles. E-tangles cover vertices of Ge, which can construct E-dual links, and 

O-tangles cover vertices of Go, which can construct O-dual links. The duality of link offers 

new thought for researching and classifying of links. 

At the same time, the chirality of dual links has been studied in this paper because of its 

importance in chemistry, biology and knot theory. The synthesis and the discovery of many 

chiral compounds [10] and icosahedral virus capsids [11] show the importance of chirality. Knots 

and links are the mathematical form of big molecule [12-18], the theoretical research has gotten 

many fruits ,[19-27]  and therefore, the research of chirality of dual links is necessary. The result 

shows that chrial rule of E-dual links and O-dual links are different, and the chiral rule shows 

that the same components have different chiral results after different manipulations. With this 

chiral rule, our research can direct the synthesis of chiral molecule, and help understand this 

kind of structure. 

- 80 -



2. Tangles as Building Blocks 

Tangles are building blocks of constructing dual links. A tangle is a portion of link 

diagram from which four arcs emerge pointing in the compass directions NW, NE, SW, and SE

(Figure 1(a)). In this paper, according to the number of half twist, we class tangles into two 

types: E-tangles with even crossings (Figure 1(b)), and O-tangles with odd crossings (Figure 

1(c)). Figure 2 shows two important manipulations: reflection and 90°-rotation. If reflect a 

tangle in a mirror that is perpendicular to the projection plane on the NW-SE line, it is known 

as reflection (Figure 2(a)), and if rotate a tangle 90° around an axis that is perpendicular to the 

projection plane on the intersection of NW-SE and SW-NE line, it is known as 90°-rotation 

(Figure 2(b)).  

Figure 1. The classification of tangles 

Figure 2. Two operations of tangles 

Tangle composition is a new manipulation which bases on any 4-valent plant graph. If 

all 4-valent vertices of a plant graph are covered by tangles, and four arcs of tangles superpose 

the four edges coming out from the same vertex, then, connecting the arc of a tangle to the arc 

of another tangle along edge, the process is denoted by tangle composition (Figure 3).
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Figure 3. The operation of tangle composition 

3. Definition  

Four regions of a projection plane come together at a crossing. The over-strand 

counterclockwise rotates, passing over two of the regions which are labeled with an A and the 

remaining two regions with a B. If we split open a channel between the two regions labeled A,

and call this an A-split (Figure 4( )). For two interlaced links, if their all-A-split states are 

complementary, we denote the pair of links by dual links (Figure 4( )). It means that the 

all-A-split state of one is the all-B-split state of the other and vice versa.  

Let G be a 4-valent plant graph, and is denoted by C , C1 2 a bipartition of the face-set of 

G. Such that no two adjacent faces of G own the same signature. We denote the oriented 

graph by Ge (Figure 5(a)), the edges of which are oriented so that the faces of C1 are on the 

right of an incident edge. And the dual links which are constructed by Ge and vertices cover of 

E-tangles are denoted by E-dual links.

On the other hand, all edges of G attribute to a set of central circuit CC. A clockwise 

orientation is selected on each CC of G, and we denote the oriented graph by Go (Figure 5(b)). 

The dual links which are constructed by Go and vertices cover of O-tangles are denoted by

O-dual links.
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Figure 4. ( ) The operation of A-split; ( ) The operation of all-A-split. From two interlaced links (the 
leftmost graph), and two all-A-split states (the rightmost graph) of them are obtained.  

Figure 5. Ge and Go

It is clear that orientations of E-dual links and O-dual links are determined by Ge and Go,

respectively. Further, the chirality of oriented link K’ can be determined by the linking 

numbers l(K’): the link is denoted D configurations if l(K’) > 0 and L configurations if l(K’) < 

0 [28]. For an oriented link, )( p�  is given a sign according to the convention, as shown in 

Figure 6, the linking numbers l(K’) can be calculated by the following equations:
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Figure 6. Convention used to assign crossings 

Where )( p� defined to be ±1 if the overpass slants from top left to bottom right or from 

bottom left to top right, and is the set of crossings of two different components.ji �� �

4. Construction of dual links 

For our benefit, the plane graph of cubo-octahedron is selected to construct dual links. In 

geometry, hexahedron and octahedron are dual polyhedra, and when we cut them by planes 

perpendicular to their diagonals to the midpoints of edges, cubo-octahedron is obtained [5].

Cubo-octahedron owns 12 vertices, 8 trigonal and 6 quadrangular faces, and 4 CC. Two types 

of orientation of cubo-octahedron are given: Ge (Figure 7(a)) and G (Figure 9(a)). o

 with E-tangles. The left is the GFigure 7. The E-dual links of Ge e of cubo-octahedron. In the medial, (b) is 
G  which vertices are covered by 2-tangles; each 2-tangles of (b) is 90°-rotated and reflected obtain (c) and 

(d), respectively. In the right, (e), (f) and (g) are the results of tangle composition, (e) and (f) are L
configurations, and (g) is D configurations. 

e
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Figure 7 shows the process of constructing E-dual links by Ge and 2-tangles. Firstly, 

twelve 2-tangles cover 12 vertices of Ge (Figure 7(b)). Secondly, two new graphs (Figure 7(c) 

and (d)) are obtained by rotating and reflecting these 2-tangles, respectively. Finally, 

undergoing the tangle composition, three links (Figure 7(e), (f) and (g)) are constructed. l(K’) 

values of the three links show that Figure 7(e), (f) and (g) belong to L, L and D configurations,

respectively. Moreover, two of them (Figure 7(f) and (g)) with 6 components are mirror 

images to each other, which are dual to the other one (Figure 7(e)) with 8 components. The 

results show that E-dual links constructed by 90°-rotation of E-tangles have the same chirality, 

and E-dual links constructed by reflection of E-tangles have opposite chirality. The 

orientations of 12 tangles are opposite in each oriented links.

Figure 8. Topological transformation of E-dual cubo-octahedron links. The top are octahedral links, and the 
others are hexahedral links. The left links are in 2-dimensional space, and the right links are in 

3-dimensional space 

Cubo-octahedron provides a bridge between hexahedron and octahedron with the 

potential emergence in both directions. Similarly, the cubo-octahedron link provides a bridge 

between hexahedron and octahedron links. Figure 8 shows the results of topological 

transformation of E-dual cubo-octahedron links. Firstly, N-tangle is transformed into n
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-twisted double-edge by the movement of crossings and the polyhedral link is obtained in 

2-dimensional space. Then, the polyhedral link in 2-dimensional space is topologically 

deformed in 3-dimensional structure. An octahedral link (Figure 8(d)) and two hexahedral 

links (Figure 8(e) and (f)), which are mirror images of each other, are generated in 

3-dimensional structure. Chirality of links is kept in topological deformation, and the 

configurations of Figure 8(d), (e) and (f) are L, L and D, respectively. 

Figure 9. The O-dual links of G  with O-tangles. The left is the Go o of cubo-octahedron. In the medial, (b) is 
G  which vertices are covered by 3-tangles; each 3-tangles of (b) is 90°-rotated and reflected obtain (c) and 

(d), respectively. In the right, (e), (f) and (g) are the results of tangle composition, (e) and (g) are L
configurations, and (f) is D configurations. 

o

O-dual links which are constructed by Go and 3-tangles are shown in Figure 9. 

Comparing with E-dual links, the same manipulations are performed, and different 

components are needed. Firstly, twelve 3-tangles substitute into 12 vertices of Go (Figure

9(b)). Secondly, two new graphs (Figure 9(c) and (d)) are obtained by the manipulation of 

90°-rotation and reflection, respectively. Finally, undergoing the tangle composition, three 

links (Figure 9(e), (f) and (g)) with 4 components are constructed. Different chiral rule with 

E-dual links are found by calculating the l(K’) values of the three links. In the three links, 

Figure 9(e) and (g) belong to L configurations, and Figure 9(f) belongs to D configuration 
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which is the mirror images of Figure 9(g). We have two groups of O-dual links: Figure 9(e) 

and Figure 9(g) have been obtained by reflection with the same chirality, Figure 9(e) and 

Figure 9(f) have been obtained by 90°-rotation with the opposite chirality. The orientations of 

12 tangles show different result with even-dual links. In the 12 tangles, 8 of them have 

opposite orientation, and the other 4 have the same orientation. 

Figure 10. Topological transformation of O-dual cubo-octahedron links. The top are octahedral links, and 
the others are hexahedral links. The left links are in 2-dimensional space, and the right links are in 

3-dimensional space 

Just like the topological deformation of E-dual cubo-octahedron links, O-dual

cubo-octahedron links can topologically deform into hexahedral and octahedral links with odd 

crossings. Figure 10 shows the process and the construction of an octahedral link (Figure

10(d)) and two hexahedral links (Figure 10(e) and (f)) which are mirror images of each other. 

The chirality of Figure 10(d), (e) and (f) are L, D and L configuration, respectively. 

5. Topological comparing E-dual links with O-dual links

The two types of dual cubo-octahedron links which have been constructed represent the 

topological property of E-dual links and O-dual links. The topological differences of E-dual
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links and O-dual links are represented as follows: 

1. The component rule of dual links is different. In E-dual links, each component rounds a 

face of graph, so a pair of dual links has different components. Whereas, in O-dual links, each 

component is a central circuit CC, and the number of central circuit CC of a 4- plant graph is 

invariable, so a pair of dual links has the same components. E-dual links have different 

components, which are equal to the number of C1 and C2, respectively. O-dual links have the 

same components, which are equal to the number of CC.

2. The chiral rule of dual links is different. The linking numbers l(K’) determines 

configuration descriptors class (D and L) of links . In the manipulation of reflection, E-dual

links have the same chirality, and the chirality of O-dual links are opposite; on the contrary, 

O-dual links have the same chirality in the manipulation of 90°- rotation, and the chirality of 

E-dual links are opposite.

3. The oriented rule of tangles in links is different. In the method, the orientation of each 

component of oriented link is directed. E-tangles have opposite orientations in oriented link, 

however, the orientation of O-tangles is multiform. In oriented links with odd crossing, 

O-tangles can be divided into two types. Some of them are of opposite orientations, and the 

others are the same orientations.

6. Conclusion  

In graph theory, any 4-valent plane graph can construct a pair of dual graphs by inversing 

medial graph, and set up relationship of graphs. Our work associates medial graph with tangle, 

which brings forward a method of constructing dual links. Given a 4-valent plane graph, a set 

of dual links can be constructed and divided into two types: E-dual links and O-dual links.

The definition and construction of dual links may provide a new insight and methodology for 

the research and classification of links. The component rule, chiral rule and oriented rule of E-

and O-dual links are different. The study of these rules not only provide further insight into 

theoretical characterization of the DNA polyhedral catenane, but also bring forward a project 
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to design dual chiral molecule by using the same material. 

In our paper, another innovation of the method is the chiral rule. The chirality of dual 

links which is obtained by reflection of Ge with E-tangles and 90°- rotation of Go with 

O-tangles are opposite. Contrarily, the chirality of dual links which is obtained by 90°- 

rotation of Ge with E-tangles and by reflection of Go with O-tangles are the same. Using the 

method of “inverse medial graph”, any 4-valent plant graph can generate a pair of dual plant 

graph G and G*. According to the chirality, G and G* can correspond to four pairs of dual 

links: left G and left G* links, left G and right G* links, right G and right G* links, right G

and left G* links, respectively. The same components undergoing the different manipulation 

can get two chiral results, which is a very interesting question in knot theory. Moreover, given 

a special 4-valent plant graph, two topological deformations can deform dual links to 

polyhedral links. This study puts forward the definition of dual links which is a new definition 

in knot theory, and can also help to set up relationship of links. If two things are dual, they 

have the same characters, and they can complement each other during research. The method 

opens a new door for the research and classification of links.  
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