
Topological transformation of dual polyhedral links 

Dan Lua, Guang Hua, Yuan-Yuan Qiub, and Wen-Yuan Qiua,*

aDepartment of Chemistry, State Key Laboratory of Applied Organic Chemistry, 

Lanzhou University, Lanzhou 730000, P. R. China 

bSchool of Humanities and Social Sciences, Nanyang Technological University, Nanyang 

Avenue 639798, Singapore 

E-mail: wyqiu@lzu.edu.cn 

(Received August 29, 2008)

Abstract

In this paper, the novel topology of Platonic polyhedral links is discussed on the basis of the graph 

theory and topological principles. This interesting problem of the dual polyhedral links has been solved by 

using our method of the ‘sphere-surface-movement’. There are three classes of dual polyhedral links which 

can be explored: the tetrahedral link is self-dual, the hexahedral and octahedral link, as well as the 

dodecahedral and icosahedral link are dual to each other. Our results show that the duality of self-dual 

tetrahedral link is ‘trivial’, and the duality of hexahedral and octahedral link as well as dodecahedral and 

icosahedral link are ‘nontrivial’. This study provides further insight into the molecular design and 

theoretical characterization of the new polyhedral links. 

1. Introduction 

As the interlinked architectures, topological links [1-8] are the new forms of molecular 

structures, from organic molecules to DNA. There have been many milestones in the 

development of syntheses of DNA polyhedral links including the DNA tetrahedron [9, 10], DNA 
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cube [11, 12], DNA truncated octahedron [13], DNA octahedron [14], and DNA trigonal bipyramid 
[15]. Knot theory, a branch of topology, provides us a useful tool to research molecular 

catenanes and has made a connection with chemistry. For example, many polyhedral links 

have been constructed based on Goldberg polyhedra, carbon nanotubes, and some other novel 

polyhedra by Qiu and his co-workers [26-30]. Despite these successes, it is the very first time for 

investigating the duality of polyhedral links in chemical and natural world. 

In geometry, duality means closely related relationships between two patterns,

particularly, two polyhedra. If the centers of faces of one polyhedron are the vertices of the 

other, they are considered to be dual, which implies their symmetry groups coincide. A pair of 

dual polyhedra can be exchanged through dual operation: truncation along their edges or 

truncation of their vertex perpendicular diagonals. According to the dual theory, five Platonic 

polyhedra can be divided into three groups: two self-dual tetrahedrons, the hexahedron and 

octahedron, the dodecahedron and icosahedron, where the two latter groups are dual to each 

other [31]. However, polyhedral links are some forms more complex than polyhedra, because 

they can be transformed to each other not only by geometrical operations but also by 

topological changes, such as twisting, bending and stretching. Due to these particular 

topological properties, their dual relationships shall be more interesting and need further 

exploring. Describing it mathematically is a nice challenge! 

To achieve our goals, we first use ‘three-cross-curve and double-line covering’ [32] to 

construct original polyhedral links, and then use a new method of ‘sphere-surface-movement’ 

as the dual transformation on the basis of topological principles. As a result, Platonic 

polyhedral links belong to six dual groups, in which three are left-handed and another three 

are right-handed. Among them, the tetrahedral link is self-dual, the hexahedral and 

dodecahedral link are dual to the octahedral link and icosahedral link, respectively. Moreover, 

duality is divided into ‘trivial’ and ‘nontrivial’ in physics. Thus, the self-dual relationship of 

tetrahedral links is considered to be ‘trivial’, and the other dual relationships between two 

different links are ‘nontrivial’. More curiously, our research provides a new point of view for 

the molecular design and theoretical characterization of polyhedral links. 
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2. Dual polyhedral links 

In graph theory, given a plane graph G, the medial graph Med(G) is defined as the graph 

having as vertices the edges of G with two vertices adjacent if and only if they share a vertex 

and belong to a common face. If Med(G) = Med(G*), then G and G* are dual [34]. It is easy to 

know that Med(G) are all 4-valent. See Fig. 1. 

Fig. 1. The progress of a plane graph G changes to a medial graph Med (G) 

In knot theory, there is a one-to-one correspondence between link diagrams and plane 

graphs [35]. From a projection of link L, a corresponding planar graph G can be created in the 

following way. First shade every other region of the link diagram so that the infinite 

outermost region is not shaded, then put a vertex at the center of each shaded region and 

connects with an edge any two vertices which are in regions that share a crossing. See Fig. 2. 

Fig. 2. The progress of a link L changes to a planar graph G

According to above basic concepts, we can define dual polyhedral links as follows: 

(1) If polyhedra P1 and P  are dual, then Med (P ) = Med (P );2 1 2

(2) If L (P ) and L (P ) are two polyhedral links, then G (L (P )) and G (L (P1 2 1 1)) are their 

corresponding planar graphs;  

(3) If G (L (P )) = Med (P ) and Med (P ) = G (L (P )), then L (P ) and L (P1 1 2 2 1 2) are a pair 

of dual polyhedral links.
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3. Polyhedral links construction 

In this section, the construction of polyhedral links is the foundation of future 

development of new dual links. The original polyhedral link is constructed by using a 

three-cross-curve to cover a vertex and using a double-line to cover an edge, then connecting 

the three-cross-curve with the double-line, respectively. This method is called ‘three-cross- 

curve and double-line covering’ and can only be used for 3–regular polyhedra. Thus, among 

five Platonic polyhedra, we can construct the corresponding tetrahedral link, hexahedral link, 

and dodecahedral link.  

If using 4 three-cross-curve and 6 double-line as building blocks to cover 4 vertices and 

cover 6 edges, respectively, in the tetrahedron, and connecting the three-cross-curve with the 

double-line, then, it is surprising to get one interesting tetrahedral link (Fig. 3). The 

hexahedral link (Fig. 4) and dodecahedral link (Fig. 5) are constructed by the same process 

but different numbers of building blocks as the tetrahedral link. In general, if using 8 

three-cross-curve and 12 double-line in the hexahedron, then the hexahedral link is obtained, 

and if using 20 three-cross-curve and 30 double-line in the dodecahedron, then it is surprising 

to discover a curious dodecahedral link (Fig. 5).

4. The topological transformation of dual polyhedral links 

‘Sphere-surface-movement’ is such a manipulation that each component of polyhedral 

links continuously moves on the spherical surface after the link is transformed to a spherical 

surface through topological mapping. The continuous movement means that the manipulation, 

which can be achieved without cutting and joining, is topological. Applying this method to 

polyhedral links which we have constructed in section 3, three groups of dual polyhedral links 

are obtained.

In order to describe our ideas, for the example, the manipulation of ‘sphere-surface- 

movement’ for the tetrahedral link is shown in Fig. 3. First, transform the tetrahedral link in 

R3 (Fig. 3(a)) to a spherical surface. Second, move 4 loops of the tetrahedral links (Fig. 3(b)) 

on spherical surface in direction, then an ‘intermediate’ (Fig. 3(d)) and the spherical surface  
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Fig. 3. The topological transformation of tetrahedral link 

Fig. 4. The topological transformation of hexahedral link 

   Fig. 5. The topological transformation of dodecahedral link 

- 71 -



of a new tetrahedral link (Fig. 3(f)) emerge. Finally, the spherical surface of new tetrahedral 

link (Fig. 3(f)) is topologically deformed to the new tetrahedral link (Fig. 3(g)) in

R3. In the progress, we can obtain a new tetrahedral link from the original one; thus, the 

tetrahedral link is self-dual. 

In contrast with the tetrahedral link, the topologically transformation from the hexahedral 

link (Fig. 4(a)) and dodecahedral link (Fig. 5(a)) to the octahedral link (Fig. 4(g)) and 

icosahedral link (Fig. 5(g)) are shown in Fig. 4 and Fig. 5, respectively. The octahedral link 

(Fig. 4(f)) and an ‘intermediate’ (Fig. 4(d)) can be generated by the oriented movement of 6 

loops of the hexahedral link (Fig. 4(b)) on spherical surface. And then, the octahedral link in 

R3 (Fig. 4(g)) is generated by topological mapping. It means that the hexahedral link and the 

octahedral link are dual. Similarly, the emergence of the icosahedral link (Fig. 5(f)) and an 

‘intermediate’ (Fig. 5(d)) requires oriented movement of 12 loops of the dodecahedral link 

(Fig. 5(b)) on spherical surface. Topological transformation shows that the dodecahedral link 

and the icosahedral link are also a pair of dual polyhedral links. 

The processes of ‘sphere-surface-movement’ for the tetrahedral link, octahedral link, and 

icosahedral link are shown in Fig. 3, 4, and 5. As a result, we can obtain the dual of such three 

polyhedral links: another tetrahedral link, the octahedral link, and the icosahedral link, 

respectively. In contrast with the tetrahedral link, four-cross-curve and five-cross-curve are 

building blocks, which are used to construct the octahedral link and icosahedral link, 

respectively. Thus, two new methods, ‘four-cross-curve and double-line covering’ (Fig. 6(a)) 

and ‘five-cross-curve and double-line covering’ (Fig. 6(b)), are developed for constructing 

polyhedral links for 4-regular and 5-regular polyhedra.  

The octahedron has Oh symmetry group, and with vertices of degree 4. It is easy to see 

that its link, which is O symmetry, can be constructed by 6 four-cross-curve and 12 double- 

line through the method of ‘four-cross-curve and double-line covering’. The polyhedron with 

Ih symmetry group has vertices of degree 5. Hence its link with I symmetry can be 

constructed by 12 five-cross-curve and 30 double-line through the method of ‘five-cross- 

curve and double-line covering’. 
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Fig. 6. Three new methods of constructing polyhedral links 

Fig. 7. Archimedean polyhedra and their links 
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In the process of addressing the duality of polyhedral links, three-cross-curves and 

double-lines are thereby changed into triangular and rectangular spaces. If the position of each 

loop is proper, the rectangular spaces change to square spaces, and three ‘intermediates’ (Fig. 

3(d), 4(d), and 5(d)) emerge. In fact, using the method of ‘cross-curve and single-line 

covering’ (Fig. 6(c)), then three polyhedral links (Fig. 7(b), (d), and (f)), which correspond to 

three ‘intermediates’, can be constructed from Archimedean polyhedra (3 4 3 4), (3 4 4 4), as 

well as (3 5 3 5) (Fig. 7(a), (c), and (e)).

5. Discussion  

The study of the topological process of dual polyhedral links, from Fig. 3 to Fig. 5, 

reveals three outstanding properties: 

(1) A pair of dual polyhedral links has the same symmetry and chirality. In our work, the 

tetrahedral link (Fig. 3(a)), hexahedral link (Fig. 4(a)) and dodecahedral link (Fig. 5(a)) 

correspond to the ‘sphere-surface-movement’ of 4, 6, and 12 loops, respectively. During the 

progress of dual transformation, we assume each loop is infinitely flexible and cannot be 

broken during deformation. Hence it is not difficult to know that three groups of dual 

polyhedral links keep T, O, I symmetry, respectively. In addition, the chirality of dual 

polyhedral links is also kept. It means that we cannot turn the left-handed polyhedral link to 

its dual right-handed polyhedral link by a topological operation.

(2) Three groups of dual polyhedral links are classified into two types of duality. 

Physicists use the term ‘duality’ to describe theoretical models that appear to be different but 

can be shown to describe exactly the same physics, and are divided into ‘trivial’ and 

‘nontrivial’. There are three groups of polyhedral links: the tetrahedral link and another 

tetrahedral link; the hexahedral link and the octahedral link; the dodecahedral link and the 

icosahedral link. The first group of two tetrahedral links is self-dual, and both of them can be 

obtained by ‘three-cross-curve’ as building blocks. Therefore, it is ‘trivial’ because there are 

none of new forms has been presented in their dual translation. Such translation, which is the 

same as the translation between two different languages, brings no new insight. The second 

group contains the hexahedral link and the octahedral link, which are constructed by 
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‘three-cross-curve’ and ‘four-cross-curve’, respectively. The third group contains the 

dodecahedral link and the icosahedral link, which are constructed by ‘three-cross-curve’ and 

‘five-cross-curve’, respectively. Although their topological characteristics and symmetry 

remain unchanged, new methods of constructing polyhedral links and new polyhedral frames 

appear; hence these two groups of dual polyhedral links belong to ‘nontrivial’. The process is 

similar with the transmutation between water and ice. We notice quite easily that the self-dual 

of tetrahedral link is ‘trivial’; whereas, the duality of hexahedral link and octahedral link, as 

well as the duality of dodecahedral link and icosahedral link belong to ‘nontrivial’. 

(3) The construction of dual polyhedral links is alterative. Starting from the hexahedral 

and hexahedral link with ‘three-cross-curve and double-line covering’, the structures of 

octahedral and icosahedral link with ‘four-cross-curve and double-line covering’ and 

‘five-cross-curve and double-line covering’ are obtained, respectively. As we known, the 

transformations are all topological, so ‘three-cross-curve’ can be transformed into 

‘three-cross-curve’ and ‘five-cross-curve’, and vice versa. It means that the construction of 

dual polyhedral links is alterative. 

6. Conclusions  

Duality is a fundamental concept that underlies almost all natural phenomena. Roughly 

speaking, the duality is the product of the interaction that takes place between the paired 

components of an elementary system [36-38]. Research on Platonic polyhedral links develops a 

new form of duality on the topological spaces. It is represented as follows: the tetrahedral link 

is self-dual; the hexahedral link and dodecahedral link are dual to the octahedral link and 

icosahedral link, respectively. Thus, the method of the ‘sphere-surface-movement’ is a new 

topological dual operation in contrast with truncation in geometry. The basic investigation of 

dual polyhedral links enriches the theoretic characteristics of these novel structures.  

Topological analysis indicates that duality preserves symmetry and chirality in dual 

polyhedral links. It is not difficult, intuitively, at least, to see that the left-handed link and 

right-handed link are distinct. Especially, in the natural world, it is true that one of them is the 
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virus capsid and the other may be a medicinal model. Furthermore, considering of the 

handedness of polyhedral links, the result of ‘sphere-surface-movement’ is hence six groups 

of dual polyhedral links existing in ten Platonic polyhedral links. Three groups are left-handed 

and others are right-handed. How to find a new method to implement dual transformation 

with the reversal of handedness is still one of the biggest challenges.  

Further, two types of duality, ‘trivial’ and ‘nontrivial’ are obtained. The ‘trivial’ links 

employ the same method for constructing polyhedral links, whereas the ‘nontrivial’ links use 

two different methods as ‘four-cross-curve and double-line covering’ and ‘five-cross-curve 

and double-line covering’ to construct polyhedral links. These two methods correspond to 

polyhedra with vertices of degree 4 and 5, respectively. Now we are ready to achieve some 

nice drawings using simple constructions! It is important to remember that they enrich the 

method of constructing polyhedral links. Additionally, these new forms are the foundation of 

future development of new products and processes, so that synthetic chemists and biologists 

are able to test and develop their synthetic strategies. 
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