
PI index of toroidal polyhexes ∗

Saihua Liu, Heping Zhang†

School of Mathematics and Statistics, Lanzhou University,

Lanzhou, Gansu 730000, P. R. China.

E-mail addresses: zhanghp@lzu.edu.cn, liush2005@lzu.cn.

(Received January 9, 2009)

Abstract

Padmakar-Ivan (PI) index of a graph G is defined as PI(G) =
∑

e=uv∈E(nu(e) +
nv(e)), where nu(e) (resp. nv(e)) is the number of edges of G lying closer to u (resp.
v) than to v (resp. u). In this paper, we obtain a formula of the PI index of toroidal
polyhexes without torsion.

1 Introduction

Topological indices reflect important information about the chemical structure of molecules.

The first well-known topological index in chemistry is the Wiener index proposed by H.

Wiener [15] in the study of paraffin boiling points. The Wiener index of a tree T can be

expressed as

W (T ) =
∑

e=uv∈E

n′
u(e) · n′

v(e),

where n′
u(e) (resp. n′

v(e)) denotes the number of vertices of T lying nearer to u (resp. v) than

to v (resp. u). Then, I. Gutman [4] generalized the above formula of the Wiener index on

trees to arbitrary graphs with cycles and named it the Szeged index. Note that the Wiener

index and Szeged index coincide on trees.
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The Wiener-Szeged-Like Padmakar-Ivan (PI) index proposed by P.V. Khadikar et al. [10]

is a modification of the Szeged index. The PI index of a graph G is defined as

PI(G) =
∑

e=uv∈E

(nu(e) + nv(e)),

where nu(e) (resp. nv(e)) is the number of edges of G lying closer to u (resp. v) than to v

(resp. u). In the QSPR/QSAR studies, PI index promises to be a useful descriptor and a

combination of PI index and Szeged index could give good results [6, 8, 9, 10].

Let G = (V,E) be a graph with vertex set V and edge set E. The distance between two

vertices u and v of G, denoted by d(u, v), is the length of a shortest u, v− path. For an edge

e = xy and a vertex z of G, the distance between e and z in G, denoted by d(e, z), is defined

as d(e, z) = min{d(x, z), d(y, z)}. Given an edge e = uv, let Ne be the set of all the edges

which have equidistance to both ends of e; that is, Ne = {e′ ∈ E| d(e′, u) = d(e′, v)}. It is

trivial that e ∈ Ne. We use |Ne| for the number of the edges in Ne. Then PI(G) can be also

expressed as

PI(G) =
∑
e∈E

(|E| − |Ne|).

Up to now, the PI index has been computed for a class of molecular graphs, such as

benzenoid systems [14], hexagonal chains [7], polyhex nanotubes [1] and so on [2, 3, 11].

Especially, P.V. Khadikar et al. [14] described a method for computing PI index of benzenoid

systems using orthogonal cuts.

Generally, S. Klavžar [13] introduced PI-partitions to simplify the computation of the PI

index of a class of graphs, which include the partial Hamming graphs. Later, M.H. Khalifeha

et al. [5] obtained a general formula for the PI index of Cartesian product of graphs.

For the toroidal polyhex H(p, q), the edges can be decomposed into three edge classes

under automorphisms [16]. In this paper, we count the edges in Ne for one edge e of each of

the three edge classes by dividing H(p, q) into several subgraphs and computing the distances

in the subgraphs independently. Then we obtain a formula for PI(H(p, q)).

2 Preliminaries

A toroidal polyhex H(p, q, t) can be drawn in the plane regular hexagonal lattice L using

the representation of the torus by a p × q-parallelogram Q with the usual torus boundary

identification with torsion t: each side of Q connects the centers of two hexagons and is

perpendicular to an edge-direction of L, where both top and bottom sides pass through p

vertical edges and two lateral sides pass through q edges. In order to form a toroidal polyhex
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H(p, q, t), first identify two lateral sides of Q to form a tube, and then identify the top side

of the tube with its bottom side after rotating it through t hexagons.

For example, the toroidal polyhex H(4, 3, 0) arising from a 4 × 3-parallelogram of the

hexagonal lattice is shown in Figure 1, where the two gray half-hexagons are glued into one.

1
e 2

e

3
e

Figure 1. H(4, 3, 0) with a left-slant edge e1, a right-slant edge e2 and a vertical edge e3.

We use H(p, q) shortly for toroidal polyhexes without torsion in the following. Let Q be

a p×q-parallelogram to represent H(p, q) by the usual torus boundary identification without

torsion. We define a set of symbols first for convenience: A right (resp. left) slant edge is an

edge directed from left (resp. right) to right (resp. left) when it goes from the top down in

Q (illustrated in Figure 1). Denote the left slant edge set, right slant edge set and vertical

edge set by M1, M2 and M3, respectively. Then M1, M2 and M3 form a decomposition of the

edge set of H(p, q). A right (resp. left)-down-directed path, RDP (resp. LDP ) for short, is

a path consisting of right (resp. left) slant edges and vertical edges alternatively in Q. The

paths Pi (i = 0, 1, 2 · · ·) in Figure 2 are all RDP s. And in a path, we call an edge a step.

Let P be a path and a, b be two vertices on P . Then aPb denotes the sub-path from a to b

on P and |P | is the length of P .

Let B(m,n) be the graph obtained from the p × q parallelogram with two vertices x, y

as shown in Figure 2 by adding new edges e = uv, ux and vy.

Lemma 2.1. For graph B(m,n) with the given edge e = uv, we have

|Ne| = θ(m + n − 1) · min{m,n} + 1,

where θ(X) = 3
2

+ (−1)X

2
.

Proof. Denote the RDP s illustrated in bold in Figure 2 by P1, P2, · · ·Pt. Note that t = m+n

and all the vertices on Pi are nearer to u than to v when i � �m+n
2

� and they are nearer to v

than to u when i � �m+n
2

�. Moreover, the vertices on Pi adjacent to Pi−1 are one step nearer

(resp. further) to u (resp. v) than those adjacent to Pi+1. Two cases are distinguished:
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Figure 2. Benzenoid parallelograms: (a), m + n is odd, and (b), m + n is even.

Case 1. m + n is odd (see Figure 2 (a)).

Let e0 = w1w2 be any edge on P
m+n
2

� such that w1 and w2 are adjacent to P
m+n
2

�−1 and

to P
m+n
2

�+1, respectively. Then d(u, e0) = d(u,w1) = d(v, w2) = d(v, e0). Obviously, all the

vertices on Pi are nearer to u than to v when i � �m+n
2

� and nearer to v than to u when

i � �m+n
2

�. Then all the edges of P
m+n
2

� but no other edges belong to Ne. Thus |Ne| = 2

min{m,n}+ 1 since P
m+n
2

� passes through min{m,n} hexagons and the length of P
m+n
2

� is

2 min{m,n} + 1.

Case 2. m + n is even (see Figure 2 (b)).

In this case, no edges other than those between Pm+n
2

and Pm+n
2

+1 (the edges in bold)

belong to Ne. Thus |Ne| = min{m,n} + 1.

In all, |Ne| = θ(m + n − 1)·min{m,n} + 1, where θ(X) = 3
2

+ (−1)X

2
.

Note that in B(m,n), if the two edges ux, vy are substituted by two paths with the same

length, the same conclusion as in Lemma 2.1 can be obtained.

Let Tvuu′(k) be the graph obtained from the benzenoid triangularity with k hexagons on

each of the three sides by adding new edges uc0, u
′c and uv, where c0, c and v(= c′0) are three

vertices on the benzenoid triangularity as shown in Figure 3.

Tvu′u(k) is the graph obtained from Tvuu′(k) by deleting e = uv and adding a new edge

vu′. In fact, Tvu′u(k), Tvuu′(k) are the same graph and vu, vu′ are the same edge in the sense

of isomorphism.

Lemma 2.2. For graph Tvuu′(k) with the given edge e = uv, we have

|Ne| = k + 1.

If the edge uc0 in Tvuu′(k) is substituted by an odd path P with length 2t1 + 1 and the

vertex v(= c′0) is substituted by an even vc0 path P ′ with length 2t2 (see Figure 3 (b)), then

|Ne| =

⎧⎪⎨
⎪⎩

k − (t1 − t2) + 1, if t1 � t2 and k � |t1 − t2|,
k − (t2 − t1) + 2, if t2 � t1 and k � |t1 − t2|,
1, if |t2 − t1| > k,
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where the only edge of Ne lies on P or on P ′ when |t2 − t1| > k.

Proof. Let P0, P1, P2, · · ·Pk be the LDP s in Tvuu′(k) and ci, c
′
i be the end vertices of Pi for

each i (0 � i � k). Denote the vertex between ci and ci+1 (resp. c′i and c′i+1) on the boundary

of Tvuu′(k) by bi (resp. b′i) for 1 � i � k (see Figure 3).
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Figure 3. (a), Tvuu′(k) with t1 = t2 = 0; (b), Tvuu′(k) with t1 = 3, t2 = 2.

Let ei = wiw
′
i be the middlemost edge of the odd path uc0c1b1 · · · ciPic

′
ic

′
i−1 · · · c′1c′0v

for 0 � i � k. Since d(u, ci) = d(v, c′i) + 1 and |Pi| � 2 for all i, ei ∈ Pi. Note that

wiPicibi−1ci−1 · · · c0u is a shortest wi, u− path avoiding v and w′
iPic

′
ib

′
i−1c

′
i−1 · · · c′0 is a shortest

w′
i, v− path avoiding u and d(wi, u) = d(w′

i, v). Then ei ∈ Ne.

Moreover, ek−i is the (i+1)th edge on Pk−i from the ci end and the (i+2)th edge from c′i
end, which means that ei is the (k− i+1)th edge on Pi from the ci end and the (k− i+2)th

edge from the c′i end. All these edges lie between two parallel lines l1, l2 (see Figure 3) and

all the vertices below (resp. above) l2 (resp. l1) containing those on l2 (resp. l1) are closer

to u (resp. v) than to v (resp. u). Hence, no edges other than e0, e1, . . . , ek belong to Ne.

Thus |Ne| = k + 1.

We now consider the situation that the edge uc0 is substituted by an odd path P of

length (2t1 + 1) and the vertex v (c′0) is substituted by an even path P ′ with length 2t2 (see

Figure 3 (b)).

Similarly, let e′i be the middlemost edge of P ′
i = uPc0 · · · ciPic

′
ic

′
i−1 · · · c′0P ′v for 0 � i � k.

Then e′i is the edge after moving toward u from ei by t1− t2 steps on P ′
i if t1 � t2 and moving

toward v by t2 − t1 steps if t2 > t1.

Then e′i is the (k−i+1−(t1−t2))th edge on Pi from the ci end and the (k−i+2−(t2−t1))th

edge from the c′i end when e′i lies on Pi.

But if e′i lies out of Pi, either the sub-path from e′i to v or the sub-path from e′i to u on

uPc0 · · · ciPic
′
i · · · c′1P ′v is no longer a shortest path. Thus e′i /∈ Ne at this moment.
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First suppose that k � |t1 − t2|. If t1 � t2, e′i lies out of Pi when k− (t1 − t2) + 1 ≤ i ≤ k

(that is, k− i+1− (t1− t2) � 0), which means that (t1− t2) e′is lie out of Pi. Then e′i belongs

to Ne if and only if 0 � i � k−(t1−t2) and they are all the edges between l1 and l2 illustrated

in Figure 3 (b). As above, no other edges belong to Ne. Thus |Ne| = k + 1 − (t1 − t2).

If t2 = t1 + 1, no e′i (0 � i � k) lies out of Pi. And |Ne| = k + 1 = k − (t2 − t1) + 2.

If t2 > t1 + 1, e′i lies out of Pi when k − (t2 − t1) + 2 ≤ i ≤ k, that is, (t2 − t1 − 1) e′is lie

out of Pi. Then |Ne| = k + 2 − (t2 − t1) in this case.

Then suppose that |t2 − t1| > k. We have |Ne| = 1, where the only edge of Ne lies on P

when t1 − t2 > k and on P ′ otherwise.

Let T ′
vuu′(k) be the graph (shown in Figure 4) obtained from Tvuu′(k) by adding the edge

vu′, replacing the two edges uc0 and u′c by two odd paths P , P ′ with lengths 2t1 + 1 and

2t2 +1, respectively, replacing v by a path with length 2t3, and identifying vertices u, u′ and

edges e, e′, respectively.

Lemma 2.3. For graph T ′
vuu′(k) with the edge e = e′ = uv, we have

(1) if t3 = 0,

|Ne| =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2k − (t1 + t2) − �4
3
(k − t1 − t2 − 1)�, if k > t1 + t2,

2k − t1 − t2 + 2, if t1, t2 < k � t1 + t2,

k + 2 − ti, if ti � k � tj, i �= j, i, j ∈ 1, 2,

2, if k � t1, t2;

(2) if t1 = t2 = 0,

|Ne| =

{
�2

3
(k − t3 + 2)�, if k � t3,

1, otherwise.

Proof. (1) Suppose that t3 = 0.

In order to avoid confusion, let N(e) (resp. N(e′)) be the set of edges with equidistance

to the ends of e (resp. e′) in Tvuu′(k) (resp. Tvu′u(k)) and Ne be the set of edges with

equidistance to the ends of e = e′ in T ′
vuu′(k). |N(e)| and |N(e′)| can be computed according

to Lemma 2.2. Our aim is to count |Ne|.
There exists a line l (illustrated in Figure 4 (a) and (b)) bisecting the path uPc0 . . . cP ′u′

such that the vertices on the same bank of l with u (resp. u′) are nearer to u (resp. u′) than

to u′ (resp. u). Then the edges of N(e) on the same side of l with u (containing those on

l) and those of N(e′) on the same side with u′ make up Ne. We need only count the edges

in these two sections. Set N(e) = N(e) \Ne and N(e′) = N(e′) \Ne (the edges of N(e) and

N(e′) are the edges signed with short segments in Figure 4). We consider four cases:

Case 1. k > t1, t2.
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Then k > |t1 − t2| and l passes through the path c0c1b1c2 · · · ckc. Since uPc0c1 · · · ckcP
′u′

is an even path, l passes through some vertex, say w0, of c0c1b1c2 · · · ckc. By Lemma 2.2, the

edges of N(e) and N(e′) rank along two lines l′, l′′, respectively (see Figure 4). Let ci, cj be

the initial points of l′ and l′′ on c0c1b1c2 · · · ckc, respectively.

First suppose that l′ and l′′ intersect at a point on l, say w (that is, i � j). Let

the geometric length of each edge of the hexagons be a unit length. Since the length of

the diagonals of regular hexagons is twice the unit length, the length of line segment wci,

denoted by |wci|, equals the length of the path cibi−1ci−1 · · ·w0. Similarly, |wcj| equals the

length of cjbjcj+1 · · ·w0. Then we have |wci| = |wcj| = i − j by symmetry.

Observe that starting at ci, there are 2 edges of N(e) along every line segment with length

3 on l′ besides the initial one. Thus |N(e)| = �2
3
|wci|� + 1. Similarly, |N(e′)| = |N(e)| =

�2
3
|wcj|� + 1.
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Figure 4. (a), T ′
vuu′(k) with t3 = 0 and t1 = t2 = 1; (b), T ′

vuu′(k) with t3 = 1 and t1 = t2 = 0.

With respect to the co-positions of l and the nearest edges of Ne to l, there are three

kinds of positions marked I, II, III, respectively, in which l can be located (symmetrically,

see the co-positions of them on the left side of l in Figure 4 (a)). The nearest edges of Ne to l

parallel l but not in l when it is in position III for example. At this moment, |wci| = i−j ≡ 0

(mod 3).

If l is in position I, |wci| = i − j ≡ 1 (mod 3). Since the edge of Ne on l counts twice in

(N(e) \ N(e)) ∪ (N(e′) \ N(e′)), one more edge should be subtracted. Then

|Ne| = |N(e)| + |N(e′)| − 2(�2

3
|wci|� + 1) − 1 = |N(e)| + |N(e′)| − (�4

3
|wci|� + 2).

If l is in position II, that is, |wci| = i − j ≡ 2 (mod 3), then

|Ne| = |N(e)| + |N(e′)| − 2(�2

3
|wci|� + 1) = |N(e)| + |N(e′)| − (�4

3
|wci|� + 2).
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If l is in the third position (i.e., |wci| = i − j ≡ 0 (mod 3)), then

|Ne| = |N(e)| + |N(e′)| − 2(�2

3
|wci|� + 1) = |N(e)| + |N(e′)| − (�4

3
|wci|� + 2).

By the proof of Lemma 2.2, we know that i = k− t1, |N(e)| = k +1− t1. Symmetrically,

we have j = t2 + 1 and |N ′(e)| = k + 1 − t2. Thus |wci| = i − j = k − t1 − t2 − 1. Since we

assume that i − j � 0, we have k − t1 − t2 − 1 � 0, that is, k > t1 + t2. Then

|Ne| = |N(e)| + |N ′(e)| − (�4

3
|wci|� + 2) = 2k − (t1 + t2) − �4

3
(k − t1 − t2 − 1)�.

Particularly, i − j = k − 1 and |Ne| = 2k − �4
3
(k − 1)� when t1 = t2 = 0.

Suppose that l′ dose not intersect l′′, which means that k − t1 < t2 + 1 (i.e. k � t1 + t2).

Then |Ne| = |N(e)| + |N(e′)| = 2k + 2 − t1 − t2 at this moment.

Case 2. t2 � k � t1.

Then k � t1 + t2 and l′ dose not intersect l′′. Thus N(e′) ⊆ Ne and Ne contains the only

edge of N(e) that lies on P . Hence, |Ne| = |N(e′)| + 1 = k + 2 − t2.

Case 3. t1 � k � t2.

Symmetrically, we have |Ne| = |N(e)| + 1 = k + 2 − t1.

Case 4. k � t1, t2.

|Ne| = 2 and the only two edges lie on P and P ′, respectively.

(2) Suppose that t1 = t2 = 0 (see Figure 4 (b)).

Let T ′
0(k) be the graph T ′

vuu′(k) with t1 = t2 = t3 = 0. Denote the set of equidistance

edges to the two ends of e in T ′
0(k) by N ′

e. Then |N ′
e| = 2k − �4

3
(k − 1)� by (1). Since

t1 = t2 = 0, l passes through v in T ′
0(k). Let T ′

t3
(k) be obtained from T ′

0(k) by replacing v

by a path P ′′ with length 2t3 (t3 > 0) and Ne be the set of equidistance edges to the two

ends of e in T ′
t3
(k). We need to compute |Ne|.

Since T ′
t3
(k) is obtained from T ′

0(k) by replacing v by P ′′, each edge of N ′
e on the left side

of l should move upward t3 steps along the LDP , to which it belongs, to become a member

of Ne, except that it moves to the other side of l. The symmetric operation is done for the

right side. Since then, we should count the number of edges of N ′
e that move to the other side

of l, i.e., those no longer belong to Ne. Set m = |N ′
e|−|Ne|. Then |Ne| = 2k−�4

3
(k−1)�−m.

Note that each edge of N ′
e goes half a step nearer to l in the horizontal direction when

it moves one step upward on the LDP (or RDP) containing it. If l is in position I with

respect to N ′
e, the nearest edges of N ′

e (on l) need 1 step to move to the other side of l and

the second nearest ones need 4 steps and so on. There will be 2� t3−1
3

� + 1 edges on the two

sides moving to the other side of l. They do not belong to Ne and should be subtracted.

Similarly, 2� t3−2
3

� + 2 and 2� t3
3
� edges move to the other side of l when l is in positions II
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and III with respect to N ′
e, respectively. In the following, we use I, II, III shortly for the

meaning that l is in the three positions with respect to N ′
e, respectively.

Case 1. t3 ≡ 0 (mod 3).

I: Observe that the obtained nearest two edges of Ne to l on both sides coincide on l

after the moving of the edges of N ′
e, which implies that we should eliminate one more edge.

Hence, m = 2� t3−1
3

� + 1 + 1 = 2t3
3

. II: m = 2� t3−2
3

� + 2 = 2t3
3

. III: m = 2� t3
3
� = 2t3

3
.

Case 2. t3 ≡ 1 (mod 3).

I: m = 2� t3−1
3

� + 1 = 2t3
3

+ 1
3
. II: m = 2� t3−2

3
� + 2 + 1 = 2t3

3
+ 1

3
, where one more edge is

eliminated for the same reason as in Case 1. III: m = 2� t3
3
� = 2t3

3
− 2

3
.

Case 3. t3 ≡ 2 (mod 3).

I: m = 2� t3−1
3

�+ 1 = 2t3
3
− 1

3
. II: m = 2� t3−2

3
�+ 2 = 2t3

3
+ 2

3
. III: m = 2� t3

3
�+ 1 = 2t3

3
− 1

3
,

where one more edge is eliminated.

Then we compute |Ne| in the nine cases with respect to the values of t3 and the positions

of l in T ′
0(k). By (1), when k − 1 − t1 − t2 = k − 1 ≡ 1, 2, 0 (mod 3), l is in I, II, III,

respectively. The values of |Ne| of the nine cases are computed in the following tabular:

I (k − 1 ≡ 1 (mod 3)) II (k − 1 ≡ 2 (mod 3)) III (k − 1 ≡ 0 (mod 3))

t3 ≡ 0(mod3) 2
3(k − t3 + 2) + 1

3
2
3(k − t3 + 2) + 2

3
2
3(k − t3 + 2)

t3 ≡ 1(mod3) 2
3(k − t3 + 2) 2

3(k − t3 + 2) + 1
3

2
3(k − t3 + 2) + 2

3

t3 ≡ 2(mod3) 2
3(k − t3 + 2) + 2

3
2
3(k − t3 + 2) 2

3(k − t3 + 2) + 1
3

For example, when t3 ≡ 1 (mod 3) and l is in position I (k − 1 ≡ 1 (mod 3)), |Ne| =

2k − �4
3
(k − 1)� − m = 2k − �4

3
(k − 1)� − (2t3

3
+ 1

3
) = 2k

3
− 2t3

3
+ 2 = 2

3
(k − t3 + 2).

We can summarize the nine cases in the tabular to the formula |Ne| = �2
3
(k − t3 + 2)�.

If k < t3, then |Ne| = 1 and the only edge of Ne lies on P ′′.

3 A formula for PI index of H(p, q)

Ye and Zhang [16] showed that, for any two edges e = u1u2, e
′ = v1v2 ∈ Mi (i = 1, 2, 3),

there is an automorphism ϕ of H(p, q) mapping e to e′. Since automorphisms preserve

distances, it can be seen that nu1(e)+nu2(e) = nϕ(u1)(e
′)+nϕ(u2)(e

′), where {ϕ(u1), ϕ(u2)} =

{v1, v2}. Thus |Ne| = |Ne′|. Hence, we need only compute |Ne| for one edge e in each of M1,

M2 and M3 in H(p, q). Moreover, |M1| = |M2| = |M3| = pq.

Lemma 3.1. PI(H(1, 1)) = 0.

Proof. H(1, 1) can be drawn in another way as in Figure 5 (b). Hence, PI(H(1, 1)) = 0.
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Figure 5. (a), H(1, 1); (b), a graph isomorphic to H(1, 1).

Lemma 3.2.

PI(H(p, 1)) = PI(H(1, p)) =

{
9p(p − 1), if p is odd;

9p2 − 10p, otherwise.
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Figure 6. (a), H(5, 1); (b), H(1, 5); (c), a graph isomorphic to H(5, 1) ∼= H(1, 5); (d), a graph

isomorphic to H(p, 1) ∼= H(1, p).

Proof. It can be seen, from Figure 6, that H(p, 1) ∼= H(1, p) is isomorphic to the graph of

Figure 6 (d).

Case 1. p is odd.

|Ne| = 3 for each edge e of H(p, 1) ∼= H(1, p). For example, Ne=v1v2 consists of the 2

multiple edges of v1v2 and edge vp+1vp+2 since d(v2, vp+1) = d(vp+2, v1) = p − 1. Thus

PI(H(p, 1)) = PI(H(1, p)) =
∑
e∈E

(|E| − |Ne|) = 3p(3p − 3) = 9p(p − 1).
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Case 2. p is even.

|Ne| =

{
4, if e = v2k+1v2(k+1) for k = 0, 1, . . . , p − 1;

2, if e = v2kv2k+1 for k = 1, . . . , p − 1 or e = v2pv1.

Thus

PI(H(p, 1)) = PI(H(1, p)) =
∑
e∈E

(|E| − |Ne|) = 2p(3p − 4) + p(3p − 2) = 9p2 − 10p.

Then we assume that p, q � 2 in the following.

Lemma 3.3. Let e be a left slant edge of H(p, q). Then

|Ne| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(p) · q + 4q − 2, if p � 2q − 1;

θ(p)(p − 1 − q) + 8q − 2p − 2(�4
3
(2q − p − 2)�

+�2
3
(2q − p − 2)�) − 8, if q < p < 2q − 1;

q + 2�2
3
(q + 1)� − 2, if p = q;

θ(q)(q − p − 1) + 8p − 2q − 2(�4
3
(2p − q − 2)�

+�2
3
(2p − q − 2)�) − 8, if p < q < 2p − 1;

θ(q) · p + 4p − 2, otherwise.

Proof. Let e = wb (= w′b′) be the left slant edge lying in the middle of the first row of

the p × q-parallelogram used to present H(p, q) by usual torus boundary identification (see

Figure 7). We divide H(p, q) into three subgraphs A, B and C, where A is the union of

T ′
bw′w (Tb for short) and T ′

w′bb′ (Tw′ for short) defined in Lemma 2.3, C consists of the parallel

edges of e in the same columns with wb and w′b′ outside A, and B is B(m, n), defined in

Lemma 2.1, containing the leaving edges. The division is illustrated in Figure 7.

Note that A ∪ B ∪ C covers all the edges of H(p, q) and e = A ∩ B ∩ C. Then the

equidistance edges of e in each of the three subgraphs make up of Ne in H(p, q).
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Figure 7. Division of the edges of H(p, q) into three parts A, B, C.
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If H ⊆ H(p, q), set Ne[H] = Ne

⋂
E(H). Then |Ne[A]| = |Ne[Tb]| + |Ne[Tw′ ]| − |Ne[Tb] ∩

Ne[Tw′ ]|. Observe that in both of A and B, the distance between any vertex and e is equal to

their distance in H(p, q). Hence, we can compute |Ne[A]| and |Ne[B]| according to Lemmas

2.1, 2.2 and 2.3.

As e ∈ Ne[A] ∩ Ne[B] ∩ Ne[C], we count e in Ne[C].

To compute |Ne[C]|, note that only the parallel edges in the same column with b′w′ below

l1 and the parallel edges of bw above l2 belong to Ne[C] when p � q, where l1 and l2 are the

bisecting lines of Tb and Tw′ , respectively, defined in the proof Lemma 2.3. Moreover, each

LDP of Tb ∪ Tw′ between l1 and l2 contains an edge of Ne[A] as well as an edge of Ne[C].

Hence, |Ne[C]| equals the number of edges of Ne[A] below l1 and above l2 when p � q, which

is 2|N(e′) \ N(e′)| − 1 by the proof of Lemma 2.3. Similarly, |Ne[C]| equals the number of

edges of Ne[A] above l1 or below l2 when q > p. That is 2|N(e) \ N(e)| − 1. See Figure 8

(b) and (d) respectively. To compute |Ne|, five cases are distinguished.
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Figure 8. Illustration for the proof of Lemma 3.3: Ne consists of all the edges in bold.

Case 1. p � 2q − 1 (see Figure 8 (a)).

By Lemma 2.3 (1), since t3 = t2 = 0 and t1 = p − q − 1 � q > k = q − 1, |Ne[Tb]| =
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|Ne[Tw′ ]| = k + 2 − t1 = q − 1 + 2 = q + 1. Thus

|Ne[A]| = |Ne[Tb]| + |Ne[Tw′ ]| − 2 = 2q

for Ne[Tb] and Ne[Tw′ ] have two edges in common on their common boundary.

|Ne[C]| equals the number of edges of Ne[A] below l1 and above l2. Since t1 � k, all the

edges of Ne[A] except the one in the first row lying between l1 and l2. Thus

|Ne[C]| = |Ne[A]| − 1 = 2q − 1.

For B, note in this case that Ne[B] and the edge of Ne[A] lying in the same (the first)

row with e form a column of right slant edges when p is odd or form a column of LDP

otherwise. Then

|Ne[B] ∪ Ne[A]| = θ(p) · q + |Ne[A]| − 1 = θ(p) · q + 2q − 1.

Hence,

|Ne| = |Ne[B] ∪ Ne[A]| + |Ne[C]| = θ(p) · q + 4q − 2.

Case 2. q < p < 2q − 1 (see Figure 8 (b)).

Using Lemma 2.3 (1), t3 = 0, k = q − 1, t1 + t2 = p − q in Tb and Tw′ . Then

|Ne[Tb]| = |Ne[Tw′ ]| = 2(q − 1) − (p − q) − �4

3
(2q − p − 2)�

= 3q − p − 2 − �4

3
(2q − p − 2)�.

Still, |Ne[Tb] ∩ Ne[Tw′ ]| = 2. Hence,

|Ne[A]| = 2(3q − p − 2 − �4

3
(2q − p − 2)�) − 2.

By the proof of Lemma 2.3, |N(e′) \ N(e′)| = (k + 1 − t2) − (�2
3
(2q − p − 2)� + 1) =

q − �2
3
(2q − p − 2)� − 1. Then

|Ne[C]| = 2(q − �2

3
(2q − p − 2)� − 1) − 1.

At last, by Lemma 2.1, we have

|Ne[B]| = θ(p) · (p − 1 − q) + 1

for min{m,n} = min{p − q − 1, q} = p − q − 1 and m + n − 1 = p − 2 ≡ p (mod 2).

Then

|Ne| = |Ne[A]| + |Ne[B]| + |Ne[C]|
= θ(p)(p − 1 − q) + 8q − 2p − 2(�4

3
(2q − p − 2)� + �2

3
(2q − p − 2)�) − 8.
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Case 3. p = q (see Figure 8 (c)).

In this case, B consists of only the edge e. Hence |Ne[B]| = 0 since we count e in Ne[C].

By Lemma 2.3 and |Ne[Tb] ∩ Ne[Tw′ ]| = 2,

|Ne[A]| = 2�2

3
(q + 1)� − 2.

|Ne[C]| = q for the edges of Ne[Tb] above l1 and those of Ne[Tw′ ] below l2 form a whole

column of edges parallel e. Thus

|Ne| = q + 2�2

3
(q + 1)� − 2.

Case 4. p < q < 2p − 1 (see Figure 8 (d)). The calculation is symmetric to that of Case

2.

As in Case 2, by Lemma 2.3 (1), since t3 = 0, k = p− 1 and t1 + t2 = q− p < k in Tb and

Tw′ ,

|Ne[A]| = 2(3p − q − 2 − �4

3
(2p − q − 2)�) − 2.

Since q > p, only the edges of C above l1 or below l2 belong to Ne. By the proof of

Lemma 2.3 and |Ne[C]| = 2|N(e) \ N(e)| − 1,

|Ne[C]| = 2(p − �2

3
(2p − q − 2)� − 1) − 1.

By Lemma 2.1,

|Ne[B]| = θ(q) · (q − p − 1) + 1.

The summation of |Ne[A]|, |Ne[B]| and |Ne[C]| comes up to the expression in the Lemma.

Case 5. q � 2p − 1 (see Figure 8 (e)).

By Lemma 2.3,

|Ne[A]| = 2(p − 1 + 2) − 2 = 2p

since |Ne[Tb] ∩ Ne[Tw′ ]| = 2.

As before, each edge of Ne[A] corresponds to an edge of Ne[C] except the one on the

LDP from b to w′. Then we have

|Ne[C]| = 2p − 1.

Analogy to Case 1, Ne[B] together with the edge of Ne[A] on the LDP from b to w′ form

a row of vertical edges when q is odd or form a row of edges consisting of left slant edges

and right slant edges alternatively otherwise. Then

|Ne[B] ∪ Ne[A]| = θ(q) · p + |Ne[A]| − 1

= θ(q) · p + 2p − 1.

Finally, |Ne| = |Ne[B] ∪ Ne[A]| + 2p − 1 = θ(q) · p + 4p − 2 in this case.
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Figure 8 (a) gives an example in which the edges in bold are all the edges of Ne and the

number is 34, which coincides with θ(q) · p + 4p − 2 = 2 × 6 + 4 × 6 − 2 = 34. We will do

the jobs for right slant edges and vertical edges in a similar way. So the calculations will be

done with less explanations.

Lemma 3.4. For any right slant edge e of H(p, q),

|Ne| =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ(p − 1) · q + q, if p � 2q − 1;

θ(p − 1)(p − q) + q + 2�2
3
(2q − p + 1)� − 2, if q < p < 2q − 1;

q + 2�2
3
(q + 1)� − 2, if p = q;

θ(q)(q − p) + 6p − q − 2�4
3
(2p − q − 2)� − 6, if p < q < 2p − 1;

θ(q) · p + 4p − 2, otherwise.

Proof. As in the case of left slant edges, we choose the right slant edge e = wb (= w′b′) in the

middle of the first row of the p× q-parallelogram. We still divide the edge set of H(p, q) into

three subgraphs: A is the union of T ′
bw′w (Tb for short) and T ′

w′bb′ (Tw′ for short); C contains

the parallel edges of wb and w′b in the same columns with them outside A; And B is B(m,n)

containing the leaving edges. l1, l2 are the bisecting lines of Tb and Tw′ , respectively. The

division is illustrated in Figure 9. Similarly, we distinguish five cases.
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Figure 9. Illustration for the proof of Lemma 3.4: Ne consists of all the edges in bold.
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Case 1. p � 2q − 1 (see Figure 9 (a)).

By Lemma 2.3, t1 = t2 = 0, t3 > k. Thus |Ne[A]| = 1.

However, Ne[A]∪Ne[B] is a column of right slant edges when p− 1 is odd (illustrated in

Figure 9 (a)) or a column of LDP otherwise. Thus

|Ne[A] ∪ Ne[B]| = θ(p − 1) · q.

For C, note that all the edges of C below l1 or above l2 belong to Ne[C]. Since l1, l2 also

bisect the LDP s from w to w′ and from b to b′, respectively, they coincide. Thus

|Ne[C]| = q.

At last,

|Ne| = θ(p − 1) · q + q.

Case 2. q < p < 2q − 1 (see Figure 9 (b)).

Using Lemma 2.3, since k = q − 1, t1 = t2 = 0, t3 = p − q when q < p < 2q − 1,

|Ne[A]| = 2�2

3
(2q − p + 1)� − 1

for Ne[Tb] and Ne[Tw′ ] have an edge in common on the first row.

As above,

|Ne[C]| = q.

Using Lemma 2.1, since min{m,n} =min{p − q, q} = p − q and m + n − 1 = p − 1,

|Ne[B]| = θ(p − 1) · (p − q) + 1.

Since |Ne[A] ∩ Ne[B]| = 2, we have

|Ne| = θ(p − 1)(p − q) + q + 2�2

3
(2q − p + 1)� − 2.

Case 3. p = q (see Figure 9 (c)).

As the Case 3 in Lemma 3.3, |Ne[B]| = 0 and

|Ne[A]| = 2�2

3
(q + 1)� − 2.

Moreover, |Ne[C]| = q. Thus

|Ne| = q + 2�2

3
(q + 1)� − 2.
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Case 4. p < q < 2p − 1 (see Figure 9 (d)).

By Lemma 2.3 (1), since t3 = 0, k = p − 1 and t1 + t2 = q − p in Tb and Tw′ ,

|Ne[A]| = 2(2(p − 1) − (q − p) − �4

3
(p − 1 − (q − p) − 1)�) − 1

= 2(3p − q − 2 − �4

3
(2p − q − 2)�) − 1.

Since only the edges of C above l1 or below l2 belong to Ne and l1, l2 coincide,

|Ne[C]| = q.

At last,

|Ne[B]| = θ(q)(q − p) + 1.

Since |Ne[A] ∩ Ne[B]| = 2,

|Ne| = θ(q)(q − p) + 6p − q − 2�4

3
(2p − q − 2)� − 6.

Case 5. q � 2p − 1 (see Figure 9 (e)).

Since t2 � k + t1, by Lemma 2.3, |Ne[Tb]| = p + 1. Thus

|Ne[A]| = 2p + 1

for |Ne[Tb] ∩ Ne[Tw′ ]| = 1.

Each edge of Ne[A] corresponds to an edge of Ne[C] except the two edges on the two

LDP s from w to w′ and from b to b′, respectively. Then

|Ne[C]| = |Ne[A]| − 2 = 2p − 1.

However, Ne[B] and the two edges of Ne[A] on the two LDPs from b to b′ and from w to

w′, respectively, form a whole row of vertical edges when q is odd. And they form a whole

row of edges consisting of left and right slant edges alternatively when q is even. Thus

|Ne| = |Ne[B] ∪ Ne[A]| + 2p − 1

= θ(q) · p + |Ne[A]| − 2 + 2p − 1

= θ(q) · p + 4p − 2.

Lemma 3.5. For any vertical edge e of H(p, q),

|Ne| =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ(p) · q + 4q − 2, if p � 2q − 1;

θ(p)(p − q) + 6q − p − 2�4
3
(2q − p − 2)� − 6, if q < p < 2q − 1;

q + 2�2
3
(q + 1)� − 2, if p = q;

θ(q − 1)(q − p) + p + 2�2
3
(2p − q + 1)� − 2, if p < q < 2p − 1;

θ(q − 1) · p + p, otherwise.
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Proof. Choose a vertical edge, say e = wb = w′b′, in H(p, q) as in Figure 10. Similarly, we

divide the edges of H(p, q) into three parts: A is the union of T ′
wbb′ = Tw and T ′

b′ww′ = Tb′ ;

C consists of all the parallel edges of wb in the same row with it; B is B(m,n) containing

the leaving edges.
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Figure 10. Illustration for the proof of Lemma 3.5: Ne consists of all the edges in bold.

Case 1. p � 2q − 1 (see Figure 10 (a)).

|Ne[A]| = 2(q + 1) − 1 = 2q + 1

for |Ne[Tb′ ] ∩ Ne[Tw]| = 1.

For C, only the parallel edges of bw on the right hand of l1 (the bisector line of Tb′) and

the parallel edges of b′w′ on the left hand of l2 (the bisector line of Tw) belong to Ne[C].

As before, each edge of Ne[C] corresponds to an edge of Ne[A] between l1 and l2. Since

p � 2q − 1,

|Ne[C]| = |Ne[A]| − 2 = 2q − 1.

Now, the whole column of right slant edges containing Ne[B] belong to Ne when p is odd.

And the edges of the whole column of LDP containing Ne[B] belong to Ne when p is even,
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where they contain two of Ne[A] and one of C that has not been counted in Ne[C]. Then

|Ne| = (|Ne[B] ∪ Ne[A]| + 1) + 2q − 1

= (θ(p) · q + |Ne[A]| − 2) + 2q − 1

= θ(p) · q + 4q − 2.

Case 2. q < p < 2q − 1 (see Figure 10 (b)).

|Ne[A]| = 2(3q − p − 2 − �4

3
(2q − p − 2)�) − 1

for |Ne[Tb′ ] ∩ Ne[Tw]| = 1.

Using Lemma 2.1, min{m, n} = min{p − q, q − 1} = p − q and m + n − 1 = p − 2 ≡ p

(mod 2). Then

|Ne[B]| = θ(p) · (p − q) + 1.

Note that l1 and l2 coincide under the identifying of the top and bottom side of the

p × q-parallelogram. Hence the parallel edges of bw on the right hand of l1 and the parallel

edges of b′w′ on the left hand of l2 form a whole row of vertical edges. Thus

|Ne[C]| = p.

In fact, |Ne[C]| = p for the following three cases by the same reason.

Since |Ne[A] ∩ Ne[B]| = 2,

|Ne| = |Ne[A]| + |Ne[B]| + |Ne[C]| − 2

= θ(p)(p − q) + 6q − p − 2�4

3
(2q − p − 2)� − 6.

Case 3. p = q (see Figure 10 (c)).

As before, |Ne[B]| = 0 and

|Ne[A]| = 2�2

3
(q + 1)� − 2.

Thus

|Ne| = q + 2�2

3
(q + 1)� − 2

for |Ne[C]| = q.

Case 4. p < q < 2p − 1 (see Figure 10 (d)).

As before, using Lemma 2.3 (2), since t1 = t2 = 0, t3 = q − p and k = p − 1,

|Ne[A]| = 2�2

3
(2p − q + 1)� − 1.
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And by Lemma 2.1,

|Ne[B]| = θ(q − 1) · (q − p) + 1.

Since |Ne[A] ∩ Ne[B]| = 2 and |Ne[C]| = p,

|Ne| = θ(q − 1)(q − p) + p + 2�2

3
(2p − q + 1)� − 2.

Case 5. q � 2p − 1 (see Figure 10 (e)).

|Ne[A]| = 1

for t3 � p > k = p − 1 in Lemma 2.3. And the only edge of Ne[A] lies on the LDP from w

to w′.

However, the only edge of Ne[A] together with Ne[B] forms a row of vertical edges when

(q − 1) is odd and they form a row of edges consisting of left slant edges and right slant

edges alternatively when (q − 1) is even. Thus

|Ne[A] ∪ Ne[B]| = θ(q − 1) · p.

Finally, |Ne| = θ(q − 1) · p + p since |Ne[C]| = p.

Theorem 3.6. The PI index of the toroidal polyhex H(p, q) (p, q � 2) can be expressed as:

PI(H(p, q)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9p2q2 − pq[θ(p) · q + 12q − 4], if p � 2q − 1;

9p2q2 − pq[θ(p) · (p − q − 1) + 12q−
4�4

3
(2q − p − 2)� − 2�2

3
(2q − p − 2)�

+2�2
3
(2q − p + 1)� − 16], if q < p < 2q − 1;

9p2q2 − 3pq(q + 2�2
3
(q + 1)� − 2), if p = q;

9p2q2 − pq[θ(q) · (q − p − 1) + 12p−
4�4

3
(2p − q − 2)� − 2�2

3
(2p − q − 2)�+

2�2
3
(2p − q + 1)� − 16], if p < q < 2p − 1;

9p2q2 − pq[θ(q) · p + 12p − 4], otherwise,

where θ(X) = 3
2

+ (−1)X

2
.

Proof. The calculation of PI(H(p, q)) can be obtained following the above three Lemmas.

PI(H(p, q)) =
∑
e∈E

(|E| − |Ne|)

=
3∑

i=1

|Mi| · (|E| − |Nei
|)

= |E|2 −
3∑

i=1

|Mi| · |Nei
|,
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where ei ∈ Mi for i = 1, 2, 3.

Since |M1| = |M2| = |M3| = pq, |E| = 3pq and θ(X) + θ(X − 1) = 3, the PI index of

H(p, q) is then obtained by substituting |Nei
| (i = 1, 2, 3) into the above equation.

Remark: The formula of PI(H(p, q)) obtained in this paper is highly symmetric with

respect to the above five cases. The symmetric property reflected from the formula consists

with the structure property of toroidal polyhexes [12].

Besides providing the formula for PI(H(p, q)), one of the main aims of the paper is to

present a way for computing the PI index of all the toroidal polyhexes with torsion t �= 0.
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