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Abstract 

The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index, which reflects 
certain structural features of organic molecules. In this paper, we study the maximum PI 
indices and the minimum PI indices for trees and unicyclic graphs respectively. 
 
 

INTRODUCTION 
 

   The Wiener index (W) and the Szeged index (Sz) were introduced to reflect 

certain structural features of organic molecules [1-6]. The papers [7, 8] introduced 

another index, called Padmaker-Ivan (PI) index. PI index is a useful number in 

chemistry, as demonstrated in literature [8-16]. In [8] the authors studied the 

applications of the PI index to QSRP/QSAR. It turned out that the PI index has a 

similar discriminating power as the Wiener and Szeged indices, sometimes it gives 

better results. Hence, the PI index as a topological index is worth studying. In [9] the 

authors pointed out that the PI index is superior to 0X, 2X and logP indices for 

modeling Tadpole narcosis. In [10] the authors reported quantitative structure

toxicity relationship (QSTR) study by using the PI index. They have used 41 

monosubstituted nitrobenzene for this purpose. The results have shown that the PI 

index alone is not an appropriate index for modeling toxicity of nitrobenzene 
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derivatives. Combining the PI index with other distance-based topological indices 

resulted in statistically significant models and excellent results were obtained in 

pentaparametric models. For the previous results about the PI index see [17–26].  

   Let G be a simple connected graph. The PI index of the graph G is defined as 

follows: 

 PI(G) = ∑[neu(e|G) + nev(e|G)], 

where for edge e = uv neu(e|G) is the number of edges of G lying closer to u than v, 

nev(e|G) is the number of edges of G lying closer to v than u. The summation goes 

over all edges of G. The edges which are equidistant from u and v are not considered 

for the calculation of PI index [18]. In the following we write neu instead of neu(e|G).  

 

PRELIMINARIES 
 

For further details see [27, 28].  

Definition 2.1. Let G be a graph on n vertices v1, v2, …, vn. We define G* with 

parameters p1, p2, …, pn as follows: attaching the end vertices of new paths Pi1, Pi2, …, 

Pit to the vertex vi of G, let  

pi = t + |(E( Pi1)| + |E(Pi2)| + … + |E(Pit )|, 

where i = 1, 2, …, n. If w V(G*) V(G), we call w an attached vertex of G*. 

 

Definition 2.2. Let vi V G define  

mi =|{uv E(G)| d(u, vi) = d(v, vi)}|. 

 

Lemma 2.3[8]. Let T be a tree with n vertices, n ≥ 2, we have  

PI(T) = (n – 1)(n – 2). 

 

Lemma 2.4[8]. (1). Let C2n+1 be an odd cycle, n ≥ 1, we have  

PI(C2n+1) = 2n(2n + 1). 

(2). Let C2n be an even cycle, n ≥ 2, we have  

PI(C2n) = 4n(n – 1). 
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MAIN RESULTS 
 

By Lemma 2.3 we have 

Theorem 3.1. Any tree T with n vertices is an extremal graph for PI index. 

Theorem 3.2. Let G be a connected unicyclic graph with n vertices, G≠Cn, G≠Cn-1
*. 

(1). When n is even, we have 

PI(Cn)  PI(G)  PI(Cn-1
*); 

(2). When n is odd, we have 

PI(Cn-1
*)  PI(G)  PI(Cn), 

where Cn-1
* is defined in Definition 2.1 when G is Cn-1, that is, Cn-1

* is formed by 

attaching one new vertex of degree one to one vertex of Cn-1. 

Proof. Claim 1: Let y = p1 + p2 + … + pn, we have 

PI(G*) = PI(G) + y(2|E(G)| + y 1) – (m1p1 + … + mnpn), 

where mi is defined in Definition 2.2.  

In fact, let x = |E(G*)| = |E(G)| + y, uv E(G*) E(G). By the definition of PI index 

we have  

neu + nev = x – 1. 

 Hence, the total contributions of edges in E(G*) E(G) to PI (G*) are y(x – 1). 

Similarly, by the definition of PI index the total contributions of edges in E(G) to 

PI(G*) are 

y|E(G)| + PI(G)  (m1p1 + … + mnpn). 

Hence, we have 

PI(G*) = PI(G) + y(2|E(G)| + y 1) – (m1p1 + … + mnpn). 

Claim 1 follows. 

Claim 2: Let G = C2k
* and y = p1 + p2 + … + p2k, we have 

PI(C2k
*) = 4k(k-1) + y(4k + y -1). 

In fact, Let uv E(C2k) and vi V C2k . Let P1 and P2 be the shortest paths from u to 

vi and v to vi respectively, and let z V(P1)∩V(P2) be the first vertex from u to vi 

along P1. If |E(P1)| = |E(P2)| we have 
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|E(P1(u, z)| = |E(P2(v, z)|. 

Hence, we have an odd cycle 

C = P1(u, z) P2(v, z) {uv}, 

which is a contradiction. Thus, we have mi = 0, i = 1, 2, …, 2k. By Claim 1 and 

Lemma 2.4 Claim 2 follows.  

Claim 3: Let G = C2k+1
*, k ≥ 1, y = p1 + p2 + … + p2k+1, we have  

PI(C2k+1
*) = 2k(2k + 1) + y(4k + y). 

In fact, obviously, mi = 1, i = 1, 2, …, 2k + 1. By Claim 1 and Lemma 2.4 Claim 3 

follows. 

Case 1. n = 2k. 

 By Lemma 2.4 we have 

PI(C2k) = 4k(k  1). 

By Claim 3 we have 

PI(C2k-1
*) = 4k2  2k  1. 

 When G = C2x
*, where x  k,by Claim 2 we have 

PI(C2x
*) = 4x(x-1) + y(4x + y -1). 

 Since |E(T)| = |V(T)|  1, where T is a tree, we have y = 2k  2x. 

Thus, we have 

PI(C2x
*) = 4k2  2k  2x. 

Similarly, when G = C2x+1
*, where x  k  1,by Claim 3 we have 

PI(C2x+1
*) = 2x(2x+1) + y(4x + y ). 

 Since |E(T)| = |V(T)|  1, where T is a tree, we have y = 2k  2x  1. 

Thus, we have 

PI(C2x+1
*) = 4k2  4k + 2x + 1. 

Hence, the first part of Theorem 3.2 follows. 

Case 2. n = 2k + 1. 

 By Lemma 2.4 we have  

PI(C2k+1) = 2k(2k + 1). 

 By Claim 2 we have 

PI(C2k
*) = 4k2. 
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 When G = C2x
*, where x < k. Similarly, we have y = 2k  2x + 1. By Claim 2 we 

have 

PI(C2x
*) = 4k2 + 2k – 2x. 

 When G = C2x+1
*, where x < k. Similarly, we have y = 2k  2x. By Claim 3 we 

have  

PI(C2x+1
*) = 4k2 + 2x. 

Hence, the second part of the theorem follows. 
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