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Abstract: Gutman had determined the trees on n vertices with the smallest and
the greatest hyper-Wiener index (i.e., the star and path). In this paper, we identify the
second up to seventh smallest hyper-Wiener indices of trees on n > 17 vertices and the
second up to fifteenth greatest hyper-Wiener indices of trees on n > 20 vertices.

1 Introduction

Throughout this paper, we only concern with connected, undirected simple graphs. If
G = (V,E) with |V| = n and |E| = m, then we refer to G as an (n,m) graph. Let
N(u) be the first neighbor vertex set of u, then d(u) = |N(u)| is called the degree of w.
Specially, A = A(G) is called the mazimum degree of vertices of G. As usual, P, and
K ;-1 denotes the path and star of order n, respectively.

The distance d(u,v) between the vertices w and v of the graph G is equal to the
length of (number of edges in) the shortest path that connects v and v. Sometimes we
write dg(u,v) in place of d(u,v) in order to indicate the dependence on G. Let v(G, k)

denote the number of vertex pairs of G, the distance of which is equal to k. There are
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two important graph-based structure-descriptors, called Wiener index and hyper-Wiener
index, based on distances in a graph. The Wiener indez W (G) is denoted by [1]

W(G) = Z dG(“v U) = Zk"/(G7 k)

{u,v}CV(Q) k>1

and the hyper- Wiener index WW (G) is defined as [2]

WW(G) = %W(G) + % > da(u,v) = %Z k(k+ 1)v(G, k).

{u,v}CV(G) k>1

It is well-known that the Wiener index is introduced long time ago [1], whereas the
hyper-Wiener index is conceived somewhat later [2]. But it rapidly gained popularity and
numerous results on it were raised [3-7]. The mathematical properties of hyper-Wiener
index and its applications in chemistry can be referred to [5-10] and the references cited
therein.

Gutman et al. firstly gave a partial order to Wiener index among the starlike trees in
[11]. After then, the first up to fifteenth smallest and the first up to seventeenth greatest
Wiener indices among trees of order n are identified in [12] and [13], respectively. Also,
Gutman considered the similar order of hyper-Wiener index among trees of order n, and
he had determined the trees on n vertices with the smallest and greatest hyper-Wiener
index (i.e., the star and path) in [14]. Recently, among all connected graphs of order n
(n > 2k), the first up to (k + 1)-th smallest Wiener indices and the first up to (k + 1)-
th smallest hyper-Wiener indices are determined in [15], respectively. In this paper, we
identify the second up to seventh smallest hyper-Wiener indices of trees on n > 17 vertices

and the second up to fifteenth greatest hyper-Wiener indices of trees on n > 20 vertices.

2 Some preliminaries

Given a simple and undirected graph G = (V, E). Let G — u (resp. G — uv) denote the
graph obtained from G by deleting the vertex u € V(G) (resp. the edge uv € F(G)).
Similarly, G + uv is a graph obtained from G by adding an edge uwv ¢ E(G), where
u,v € V(G).

Suppose v is a vertex of graph G. As shown in Fig. 1, let Gy; (I > k > 1) be
the graph obtained from G by attaching two new paths P: v(= vg)vivg--- v and Q:
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v(= ug)usug- - -y of length k and [, respectively, at v, where vy, vq, ..., vp and uy, ug, ...,

w; are distinct new vertices. Let Gi_1 41 = Giy — Vp—1Uk + Wy

/ Vk—1
Ul-." vy
R, v L
@Lul Up—1 U G Uy Up—1 U Vg
—1,1+1
Gy Gr_1y

Fig. 1.

Lemma 2.1 Suppose G is a connected graph on n > 2 vertices, or an isolated vertex. If
1>k >1, then W(Gp,) < W(Gg-1,441), the equality holds if and only if G is an isolated

vertezx.

Proof. It is easy to see that

W(Gk—l,l+1) - W(Gk,l) = Z de 1i41 w Uk Z del w, Uk (1)

wEV (Gr—1,141) weV (G1)

Let Vi = V(G) \ {v}, then V(G)\ Vi = V(Gi-1,41) \ V1. Let Vo = V(Gy,) \ V3. Clearly,

Z deLT,ULk Zdel'UJ’Uk +ZdG“ka (2)

weV (G,1) weVy weVs
§ : de 1,041 w vk § :de 1,041 w Uk E de71,l+1(w7vk)' (3)
weV (Gr—1,141) weVy weVa

Note that the subgraph of Gy, induced by V5 is a path of length k +1{, which is isomorphic
to the subgraph of G141 induced by V5, thus
Z de,,(w, vg) = Z de—l,H»l(w?Uk)' (4)
weVy weVz
Therefore, by combining equalities (1)-(4), we have

W(qu,l“) sz Z dc.A 141 w Uk Z de,, (U),Uk)

weVy weV

= Z (de—l.H»l (w7 'Uk) - de,z(wv Uk)) (5)

weVy

If G is an isolated vertex, then V; = @. By equality (5), it follows that W(Gj_1,41) =
W(Gu) If G is not an isolated vertex, since [ > k, then dg,_, ., (w,v) > dg,, (w, vg)

holds for every w € V;. Thus, the result follows from equality (5). |
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Proposition 2.1 Suppose G is a connected graph onn > 2 vertices, or an isolated vertez.
Ifl > k> 1, then WW(Gry) < WW(Gr-1,41), the equality holds if and only if G is an

isolated vertex.

Proof. As in the proof of Lemma 2.1, let Vi = V(G) \ {v}, Vo = V(Gy,) \ Vi. It can be
proved analogously with Lemma 2.1 that

Z de—l,l+1 (U’7 w)2 - Z de,z (U’v w)2

{u,w}CV(Gr—1,141) {u,w}CV (G )

= E : de 1,041 w vk - E del w vk)

weV (Gr—1,141) weV (Gr,1)

E de 1z+1ka E d(‘kzka + E dGA lle’Uk E dpklka

weVy weVy weVs weVa

= Z (de—l,L+1 (’LU, /Uk)Q - de,z(wv Uk)Z)' (6)

wevi

If G is not an isolated vertex, since [ > k, then dg,_, ., (w,v:)* > dg,,(w,vp)? holds
for every w € Vi. Recall that WW(Gyy) = sW(Gry) + éz{u,w}gv(cm)dc‘m (u, w)?,
and WW(Gj_1,41) = éW(Gk,UH) + % Z{u,w}QV(qu,m) dgy_y .0 (u, w)?, then the result

follows from Lemma 2.1 and equality (6). |
L )
@TZ T @ TR e
]\/[L,t#rs Mt+1,t+s
Fig. 2.
Suppose v; is a vertex of graph G, and va, ..., U145, ug are distinct new vertices (not in

G). Let G’ be the graph obtained from G by attaching a new path P: vjvg--v;45. Let
Myvs = G+ vug and My iy = G’ + viqiug, where 1 <@ < s. For instance, My, and

Myi1445 are depicted in Fig. 2.

Lemma 2.2 Suppose G is a connected graph on n > 2 vertices, or an isolated vertex. If
t > s> 1, then W(Mys) < W(Mpi1,45). Moreover, the equality holds if and only if

t = s and G is an isolated verter.
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Proof. For convenience, sometimes we write M5 as M, and M4 as M’ in the
proof of this lemma. Let Vi = V(G) \ {v1}, then V(M ,15) \ Vi = V(M11,45) \ Vi. Let
Vo =V (My44s) \ Vi. Thus,

W (Mp14s) = W(Myygs) = Z Ay (w, ug) Z dar(w, ug)

weV (M') weV (M)

= Z (dar (w, ug) — dar(w, ug)) + Z v (w, up) — Z dar(w,ug). (7)

weVy weVs weVs
Note that dyp(w,ug) > dar(w,ug) holds for every w € V4, and
Z Ay (w, ug) — Z dy(w,ug) =t+1—(s+1)=t—s>0.
weVs weVa

Thus, the result follows by equality (7). |

Lemma 2.3 suppose G is a connected graph on n > 2 vertices, or an isolated vertex. If
t>s>1, then WW (Mg yis) < WW(Myi1e4s). Moreover, the equality holds if and only

ift =s and G is an isolated vertex.

Proof. As in the proof of Lemma 2.2, sometimes we write M; ;. as M, and M1, as
M’ for convenience. Let Vi = V(G) \ {v1}, and V5 = V(M,,45) \ V1. By Lemma 2.2 and

the definition of hyper-Wiener index, we only need to show that

oo dw(uwo)? = > du(uv)’ (8)

{u,w}CV (M) {u,0}CV (M)
Clearly, Z dar (u,v)? — Z dar(u, v)?
{uw}CV (M) {uw}CV (M)
Z d]ur ’LU UO Z d]\[ ’LU U[)
weV (M’) weV (M)
= z (dar (w Uo) — dp(w, uo )+ Z dpp (w uo) — Z dar(w, ug) 24 9)
weVy weVs weVa

Note that day(w, ug)? > dys(w, up)? holds for every w € V4, and
Z d[wl(’LlJ,’U/o)2 - Z dM(w7uo)2 - (t + 1)2 - (8 + 1)2 2 0.
weVa weVa
Thus, inequality (8) follows by equality (9). This completes the proof. |

By Lemma 2.3, we obtain the next result immediately.
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Proposition 2.2 Suppose G is a connected graph onn > 2 vertices, or an isolated vertex.

Ift > s> 1, then WW (M ys) < WW (Mypi44s), where 1 <i <s.

Recall that a vertex u of a tree T is called a branching point of T if d(u) > 3. Further-
more, u is said to be an out-branching point if at most one of the components of 7' — u is
not a path; otherwise, u is an in-branching point of T'.

For convenience, we introduce a transfer operation: 7' — Ty — Tp — T¢, as shown
in Fig. 3, where T is a tree of order n, u is an out-branching point of 7', d(u) = m, and

all the components T, T5, ... T,, of T'— u except T are paths.

T z
T T Ty
Z
AAAAAA . .
TB T(
Fig. 3.

Lemma 2.4 [13] Let u be an out-branching point of a tree T of order n, d(u) = m

(m > 3), and let all components Ty, Ts, ..., T, of T — u except Ty be paths. Then,
W(T) < W(Ty) <W(Tg) < W(Te),

and W(T) = W(Ta) (or W(Tg)) if and only if T = T4 (or Tg).

Proposition 2.3 Let u be an oul-branching point of a tree T of order n, d(u) = m

(m > 3), and let all components Ty, Ty, ..., Tr, of T — u except Ty be paths. Then,
WW/(T) < WW/(T4) < WW(Ts) < WIV(T2),
and WW(T) = WW (Ta) (or WW(Tg)) if and only if T = Ta (or Tp).

Proof. By Proposition 2.1, it is easy to see that WW (T') < WW (T4) with the equality
holding if and only if 77 = T4. Moreover, Proposition 2.1 implies that WW (Tg) <
WW(Te). Next we shall prove that WW (Tx) < WW (Tg) with the equality holding if
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and only if 74y = T. By Lemma 2.4 and the definition of hyper-Wiener index, we only

need to prove that

Z dry (w,v)? > Z dr, (w,v)?, (10)

{ww}CV(TB) {ww}CV(Ta)
where the equality holds if and only if 74 = Ts. Once this is proved, we are done.
Let T, denote the component of T4 — y, which contains u. Set Vi = V(T,) U {y}.
Then, V(T4) \ Vi = V(T) \ Vi. Let Vo = V(T4) \ V4. It is easy to see that

Z dTB(’LU,U)2 - Z dTA(w’U)Z

{w,w}CV(Tp) {ww}CV(Ta)

= Z dry, (w0, 2)* — z dp,(w,2)?

weV(Tr) weV (Ta)

= Z dTB (wv 2)2 - Z dTA(w7 Z)Z + Z (dTB (IU, 2)2 - dTA (w, 2)2) (11)

wev wevi weVa
Note that Y7, oy, dry (w, 2)* > 37 v, dry (w, 2)?, and dpy, (w, 2)*> > dr, (w, 2)? holds for
every w € Vi, then inequality (10) holds by equality (11), and the equality holds in
inequality (10) if and only if T4 = Ts. This completes the proof. |

3 The ordering of the greatest hyper-Wiener indices
of trees

Let T'(n;n1,ng, ..., ny) denote the starlike tree of order n obtained by inserting ny — 1,
., My — 1 vertices into m edges of the star K, of order m + 1 respectively, where
ni+---+n, =n—1. Note that any tree with only one branching point is a starlike tree.

If T is a tree of order n with exactly two branching points u; and wug, with d(ui) =r

and d(ug) = t. The orders of r — 1 components, which are paths, of T'—u; are py, ..., pr_1,

the order of the component which is not a path of T'—wy isp,=n—p; — - —p,—1 — L.
The orders of ¢ — 1 components, which are paths, of T"— us are ¢, ..., ¢;_1, the order of
the component which is not a path of T'—us is ¢ =n—q — -+ — q-1 — 1. We denote

this tree by T(n; p1, ooy Dr—1; 1y s Gi—1), Where 7 <, py > -+ > p_yand ¢ > -+ > 1.

By an elementary computation, we have
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L(n*+2n% —n? — 2n),

3,1,1)) = %(n +2n3 — 13n% + 10n + 72),

4,2,1))

47 17 1)1))

W(T(n;1,1;2,1)) =

2,2)) =

T(n;1,1;n—5,1)) =

W(T(n;1,1;3,1)) =

2 (n? + 2n® — 2502 + 46n + 192),

W(T(n;1,1;1, 1)):2&(71 +2n® — 2502 + 22n + 168),
3,1) =

L(n* +2n® — 37n? + 106n + 360),
27 (n" + 2n® — 37n% + 82n + 168),
L(n* + 203 — 37n2 + 58n + 312),

(n* + 2n® — 49n2 + 190n + 576),

ﬁ\H

51 (n* +2n® — 49n% + 142n + 480),

.&‘“

2(n' +2n® — 49n? + 142n + 312),
2(n* +2n® — 49n? 4 118n + 504),

WW(T(n;2,1;2,1)) = 2= (n* + 2n3 — 49n? + 94n + 480),

(

(T(

(T

(7

(T (n;

(T

(7
W (T (n;n —6,4,1)) =

(T (n;

(7

(T(

(7(
WW(T(n;1,1;1,1,1)) = & (n* + 2n® — 490 + 94n + 312),
WW(T(n;n —17,5,1)) = & (n* + 2n® — 61n? + 298n + 840),
WW(T(n;1,1;n — 6,1)) = 4 (n* + 2n® — 610 + 2260 + 504).

Thus, we have

Lemma 3.1 Ifn > 20, then WW (T'(n;n—3,1,1)) > WW(T(n;n—4,2,1)) > WW(T'(n; 1,

1;1,1)) > WW(T'(n;n —

5,3,1)) > WW(T(n;n —4,1,1,1)) > WW(T(n;1,1;2,1)) >

WW(T(n;n—6,4,1)) > WW (T (n;n—>5,2,2)) > WW(T(n;1,1;n-5,1)) > WW(T(n; 1, 1;
3,1)) > WW(T(n:2,1;2,1)) > WW(T(n: 1,11, 1,1)) > WW(T(n;n—7,5,1)) > WW(T(

n;1,1;n—6,1)).

By an elementary computation, we have

WW(T(n;1,1;4,1)) = L(n" + 2n® — 61n* + 202n + 744),
W(T(n;n—5,2,1,1)) = 5(n" + 2n* — 61n? + 202n + 312),

WW(T(n;2,1;3,1)) = 5:(n* + 2n® — 61n? + 154n + 696),

WW(T(n;1,1;2,2)) = 5 (n* + 2n3 — 61n? + 154n + 648),
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WW(T(n;2,1;1,1,1)) = & (n* + 2n® — 61n? + 130n + 504),
W(T(n;n —8,6,1)) = 5 (n* 4 2n® — 73n? + 430n + 1152),

WW(T(n;1,1;n —7,1)) = & (n? + 2n® — 73n? + 334n + 744),

W(T(n;n—5,1,1,1,1)) = 55 (n* + 2n® — 73n* + 262n + 168),

(

(

(

W(T(n;n —6,3,2)) = 5(n" + 2n* — 73n? + 286n + 864),

(

WW(T(n;1,1;n — 6,2)) = & (n* + 2n® — 85n% + 346n + 648),
(

WW (T (n;n —6,1;1,1,1)) = 5 (n* + 2n% — 8502 + 346n + 312),

WW(T(n;n—17,1;1,1,1)) = & (n* + 2n3 — 97n? + 454n + 504).

The next lemma can be obtained directly from the above equalities.

Lemma 3.2 Ifn > 20, then
(1) WW(T(n;1,1;n — 6,1)) > WW(T(n;1,1;4,1)) > WW(T(n;n — 5,2,1,1)) >
WW(T(n;2,1;3,1)) > WW(T(n;1,1;2,2)) > WW(T(n;2,1;1,1,1));
(2) WW(T(n;1,1;n —6,1)) > WW(T(n;n — 8,6,1)) > WW(T(n;1,1;n —7,1)) >
WW(T(n;n—6,3,2)) > WW(T(n;n—5,1,1,1,1)) > WW(T(n; 1,1;n—6,2)) > WW (T (n;
—6,1;1,1,1)) > WW(T(n;n — 7,1; 1,1, 1)).

(
)

Lemma 3.3 Ifn > 20 and T is a tree with exactly one branching point of degree m > 5,
then WW(T) < WW(T'(n;n —5,1,1,1,1)) < WW(T(n;1,1;n — 6,1)).

Proof. By hypothesis, T = T(n;ny,n2,...,nm). Without loss of generality, assume
ny > Mng > -+ > ny,. We prove the lemma by induction on m.

If m = 5, by Proposition 2.1 and Lemma 3.2 it follows that WW (T') = WW (T'(n; ny, na,
nz, ng,ns)) < WW(T (n;ni+ns—1,n2,n3,n4, 1)) < WW (T (n; n1+ng+ns—2,ns,n3,1,1)) <
WW (T (n; ni+nz+ng+ns—3,n2,1,1,1)) < WW (T (n;n—5,1,1,1,1)) < WW(T(n;1,1;n—
6,1)). Thus, this lemma holds for m = 5.

If m > 6, by Proposition 2.1, Lemma 3.2 and the induction hypothesis it follows that
WW(T) = WW (T (n;ni,na, ..., ny)) < WW(T(n;n1410m, 02y ooy N—1)) < WW (T (n; n—
51,1,1,1)) < WW(T(n;1,1;n — 6,1)). |

Lemma 3.4 Suppose n > 20, and T is a tree with only one branching point. If T &
{T(n;n—3,1,1),T(n;n—4,2,1),T(n;n—>5,3,1),T(n;n—4,1,1,1), T(n;n—6,4, 1), T'(n; n—
5,2,2),T(n;n—17,5,1)}, then WW(T) < WW(T(n;1,1;n — 6,1)).
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Proof. Suppose the degree of the unique branching point is m, then 7" = T'(n; n1, ..., Ny, ).
Without loss of generality, assume ny; > --+ > n,,. If m > 5, then the conclusion follows
from Lemma 3.3. We consider the next two cases.

Case 1. m = 3.

If ng > 2, since T # T(n;n — 5,2,2), then ny > 3. By Proposition 2.1 and Lemma
3.2 it follows that WW (T (n;ny,na,ng)) < WW(T(n;ny +ng —2,n9,2)) < WW(T (n;n—
6,3,2)) < WW(T(n;1,1;n —6,1)).

If ng = 1, since T ¢ {T(n;n —3,1,1),T(n;n — 4,2,1),T(n;n — 5,3,1),T(n;n —
6,4,1),T(n;n —7,5,1)}, then ny > ny > 6. By Lemma 3.2 and Proposition 2.1 it follows
that WW/(T) < WW(T(n;n —8,6,1)) < WW(T(n;1,1;n—6,1)).

Case 2. m = 4. Since T' # T'(n;n—4,1,1,1), then ny > ny > 2. By Proposition 2.1 and
Lemma 3.2 it follows that WW (T'(n; ny, na, nz,ng)) < WW(T (n;ny+ng—1,n2,n3,1)) <
WW (T (n;ni+nsz+ng—2,n2,1,1)) < WW(T(n;n—5,2,1,1)) < WW(T'(n;1,1;n—6,1)).

This completes the proof of this lemma. [ |

Lemma 3.5 Suppose n > 20, and T = T(n;p1, e, Dr—1;q1s ooy t—1)-  If t > 5, then
WW(T) < WW(T(n:n — 5,1,1,1,1)) < WW(T(n:1,1;n — 6, 1)).

Proof. By Proposition 2.3, Lemmas 3.2-3.3 it follows that WW/(T') < WW (T'(n; q1, ...,
G,mn—q = —q1— 1) <WW(T(n;n—5,1,1,1,1)) < WW(T(n;1,1;n - 6,1)).

Lemma 3.6 Suppose n > 20, and T = T(n;p1, ..o, Dr1; Q1 ooy @t—1)- If t =1 = 4, then
WW(T) < WW(T(n;1,1;n —6,1)).

Proof. By hypothesis, T = T'(n; p1, p2, P3; ¢1, G2, q3). Without loss of generality, suppose
that p; + po + ps > @1 + ¢2 + g3. We consider the next cases.

Case 1. p1+pa+ps > 4. By Proposition 2.1 we have WW (T') < WW (T (n; p1, pa, 3, n—
pr—p2—p3—1)) S WW(T'(n;p1+ps—1,p2, 1, n—p1—p2—p3—1)) < WW(T'(n; p1+pa+ps—
2,1,1,n—p1—pa—p3—1)). Note that p1+ps+p3—2 > 2and n—pi1—p2—ps—1 > q1+g2+q3 >
2, then WW(T(n;pr+pa+p3s—2,1,1,n—p1—pa—p3—1)) <WW(T(n;n—5,2,1,1)) <
WW(T(n;1,1;n —6,1)) follows from Proposition 2.1 and Lemma 3.2.

Case 2. p; + p2 + p3 = 3. Then, ¢; + ¢2 + g3 = 3. By Proposition 2.1 and Lemma 3.2
it follows that WW(T') < WW (T'(n;2,1;1,1,1)) < WW(T'(n;1,1;n — 6, 1)). |
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Lemma 3.7 Suppose n > 20, and T = T(n;p1, o, Pr—15Qus ooy Gt—1) with t =4, r = 3. If
T #T(n;1,1;1,1,1), then WW(T) < WW(T(n;1,1;n—6,1)).

Proof. By hypothesis, T" = T'(n;p1, pa2; ¢1,G2,q3). Two cases should be considered as
follows.

Case 1. ¢1+q2+¢q3 > 4. By Proposition 2.1, we have WW (T') < WW(T'(n; q1, g2, g3, n—
G—@—g—1) <WW(Tnqa+aeg—1¢ln—qg-—q@-—g-1) < WWT(nqa+
G+q3—2,1,1,n—q — g —q3s — 1)). Note that n —¢q; — g2 — ¢35 — 1 > p1 +p2 > 2 and
1+ G2+ g3 —2 > 2, by Proposition 2.1 and Lemma 3.2 it follows that WW (T (n; g1 + g2 +
-2l n—qg—qg—qg—1) <WW([T(yn—->5,2,1,1) < WW(T(n;1,1;n —6,1)).

Case 2. ¢1 +q2+¢3 = 3. Since T # T(n;1,1;1,1,1), then 3 < p; +p, < n —5. We
divide the proof into four subcases.

Subcase 1. 3 < p; + p2 < 6. By Proposition 2.1, it follows that WW(T) <
WW (T (n; pa+p1—1,1;1,1,1)). Recall that n > 20, by Propositions 2.2 and Lemma 3.2 we
have WW (T'(n; po+p1—1,1;1,1,1)) < WW(T'(n; 2,1;1,1,1)) < WW(T(n;1,1;n—6,1)).

Subcase 2. 7 < p; +py < n—7. This implies that n —p; —ps —1 > 6. By Proposition
2.1 and Lemma 3.2 it follows that WW(T) < WW(T(n;p1,p2,n — p1 — p2 — 1)) <
WW (T (n;patp1—1, 1, n—p1—pa—1)) < WW(T(n;n—8,6,1)) < WW(T(n;1,1;n—6,1)).

Subcase 3. p; + pa = n — 6. By Proposition 2.1 and Lemma 3.2 it follows that
WW(T) <WW(T(n;n—7,1;1,1,1)) < WW(T(n;1,1;n — 6,1)).

Subcase 4. p; + pa = n — 5. By Proposition 2.1 and Lemma 3.2 it follows that
WW(T) < WW(T(n;n—6,1;1,1,1)) < WW(T(n;1,1;n — 6,1)).

By combining the above arguments, the result follows. [ |

Lemma 3.8 Suppose n > 20, and T = T(n;p1, ooy Dr—15 Q1 -y Gi—1) with t =3, r = 3. If
T&{T(n;1,1;1,1),T(n;1,1;2,1), T(n;1,1;2—5,1),T(n;1,1;3,1), T(n;2,1;2,1), T(n; 1, 1;
n—6,1)}, then WW(T) < WW(T(n;1,1;n —6,1)).

Proof. By hypothesis, T = T'(n; p1, p2; ¢1, q2). Without loss of generality, suppose ¢; +
Go > p1+po. Since T € {T(n;1,1;1,1),T(n;1,1;2,1), T(n;2,1;2,1)}, then 4 < g1 + g2 <
n — 4. We consider the next cases.

Case 1. ¢1 + @2 = 4. Then, 2 < p; + py < 4. Two subcases occur as follows.

Subcase 1. p; +p2 = 2. Since T # T'(n;1,1;3,1), then T =T(n;1,1;2,2). By Lemma
3.2, WW(T(n;1,1;2,2)) < WW(T(n;1,1;n — 6,1)).
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Subcase 2. 3 < p; + py < 4. By Propositions 2.1-2.2 and Lemma 3.2, we have
WW(T) < WW (T (n;p1,p2:3,1)) < WW(T'(n;2,1;3,1)) < WW(T(n;1,1;n — 6,1)).

Case 2. 5 < ¢ + ¢ < 6. By Propositions 2.1-2.3 and Lemma 3.2, it follows that
WW(T) < WW(T(n;1,1;q1,q2)) < WW(T(n; 1,1, 1+q2—1,1)) < WW(T(n;1,1;4,1)) <
WW(T(n;1,1;n — 6,1)).

Case 3. 7T< qg1+q <n—7. Then, n — ¢ — g2 — 1 > 6. By Proposition 2.1 and
Lemma 3.2 it follows that WW (T) < WW/(T'(n;q1,q2,n—q1 — g2 — 1)) < WW(T(n; 1 +
G—1L1n—qg—q@p-—1) <WW([T(nn-_8,6,1) < WW(T(n;1,1;n—6,1)).

Case 4. ¢ + g2 = n — 6. By Proposition 2.1, Proposition 2.3 and Lemma 3.2
it follows that WW/(T) < WW(T(n;p1,p2;n — 7,1)) < WW(T(n;1,1;n — 7,1)) <
WW(T(n;1,1;n —6,1)).

Case 5. ¢1+¢2 = n—5. By Proposition 2.1, it follows that WW/(T') < WW (T (n; p1, pa;n
—6,1)). Since T' # T'(n; 1, 1;n—6, 1), by Proposition 2.3 we have WW (T') < WW(T'(n; 1, 1;
n—06,1)).

Case 6. q1 + ¢ = n — 4. This implies that p; = p, = 1. Since T # T(n;1,1;n —
5,1), then ¢ > ¢2 > 2. By Proposition 2.1 and Lemma 3.2, we have WW(T) =
WW(T(n;1,1;q1,q2)) < WW(T(n;1,1;n —6,2)) < WW(T(n;1,1;n — 6,1)).

This completes the proof. |

Lemma 3.9 Suppose n > 20, and T is a tree of order n with exactly three branching

points, then WW (T) < WW (T (n;1,1;n —6,1)).

Proof. Let wu;, us, uz be the three branching points of 7. Let u; be an in-branching
point and g, uz be two out-branching points. Now suppose d(u;) = m, T1, ..., T,, be the
components of T'— u; and let they be paths except T,,_1, T),, where the order of T; is n;
for 1 < i < m. By the definition of 7" it follows that us € V(T},,_1) and uz € V(T,,), which
implies that n,,_; > 3 and n,, > 3. Without loss of generality, we suppose n,,_1 > n,,.
The next cases should be taken into account.

Case 1. ny +ng + -+ +ny_o > 2. Note that n,,—1 > n, > 3, by Proposition
2.1 and Lemma 3.2 it follows that WW/(T) < WW (T (n; Nun—1, n, N1 + =+ - + Nup—2)) <
WW(T(n;n—6,3,2)) < WW(T(n;1,1;n —6,1)).

Case 2. ny+ng+ -+ n,,_o = 1. Then, m = 3 and n; = 1. Four subcases should be

considered.
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Subcase 1. ng > 6. Thus, ny > 6. By Proposition 2.1 and Lemma 3.2 it follows that
WW(T) < WW(T(n;ng,ns, 1)) < WW(T(n;n —8,6,1)) < WW(T(n;1,1;n —6,1)).

Subcase 2. n3 = 5. Then, ny = n—n;—n3—1=n—"7. By Proposition 2.3 and Lemma
3.2 it follows that WW/(T) < WW(T'(n;1,1;n—7,1)) < WW(T(n;1,1;n — 6,1)).

Subcase 3. ng = 4. Then, ny =n—n; —ng — 1 =n — 6. By Proposition 2.3 it follows
that WW(T) < WW(T(n;1,1;n —6,1)).

Subcase 4. n3 = 3. By Proposition 2.3 it follows that WW(T) < WW (7)), which
is shown in Fig. 4. By an elementary computation, we have WW (Tp) = 2 (n* 4 2n® —
61n? + 154n + 480). Thus, WW (Tp) < WW (T(n;1,1;n — 6,1)).

The result follows by combining the above arguments. [ |

=

Fig. 4.

Lemma 3.10 Suppose n > 20, and T is a tree of order n with k branching points. If
k>3, then WW(T) < WW(T(n;1,1;n —6,1)).

Proof. We prove the lemma by induction on k. By Lemma 3.9, it is true for & = 3.

Let £ > 4, and T be a tree of order n with & branching points. Then 7" must have an
out-branching point, and by Proposition 2.3, WW(T) < WW (T¢), where T¢ has k — 1
branching points. Thus, WW (T¢) < WW(T'(n;1,1;n — 6, 1)) follows from the induction
hypothesis. This completes the proof. [ |

Lemma 3.11 [14] Let T be a tree of order n, then WW(T) < WW (P,). Moreover, the
equality holds if and only if T' = P,.

Let 7 (n) be the set of trees of order n. By combining Lemmas 3.1-3.11, we can conclude

that

Theorem 3.1 Supposen > 20 andT € T (n) \{P,,T(n;n—3,1,1),T(n;n—4,2,1),T(n; 1,
1;1,1),T(n;n—>5,3,1), T(n;n—4,1,1,1), T(n; 1,1;2,1), T(n; n—6,4, 1), T'(n; n—>5,2,2), T(n;

1,1;,n—5,1),T(n;1,1;3,1),T(n; 2,1;2,1),T(n; 1,1; 1,1, 1), T(n; n—7,5,1), T(n; 1, 1; n—6,

1)}, then WW(P,) > WW(T(n;n—3,1,1)) > WW(T(n;n—4,2,1)) > WW(T(n;1,1;1,1))
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> WW(T(n;n—5,3,1)) > WW(T(n;n—4,1,1,1)) > WW(T(n; 1,1;2,1)) > WW(T(n; n—
6,4,1)) > WW(T(n;n —5,2,2)) > WW(T'(n;1,1;n — 5,1)) > WW(T(n;1,1;3,1)) >
WW(T(n:2,1;2,1)) > WW(T(n:1,1;1,1,1)) > WW (T(n;n—7,5,1)) > WW (T(n: 1, 1;n—
6,1)) > WW(T).

4 The ordering of the smallest hyper-Wiener indices
of trees

The first Zagreb index M;(G) is defined as [16]:
My(G) = d(v)?,
veV
it is also an important topological index and has been closely correlated with many chem-

ical and mathematical properties [17-19]. In [19], it has been proved that

Lemma 4.1 [19] Let G be a connected (n,m) graph, then M;(G) < m-max{d(v)+m(v) :
v eV}, where m(v) = > d(u)/d(v).
)

ueN (v

With the help of Lemma 4.1, we have

Lemma 4.2 Let T be a tree of order n, then

n—1 (n—1)(n+3)

M (T) < max{(n —1)(A+ X ), 5 T

Proof. By Lemma 4.1, we only need to prove that max{d(v) + m(v) : v € V} <
max{A + % 24+ =1} Suppose max{d(v) + m(v) : v € V} occurs at the vertex u. Two
cases arise d(u) =1, or 2 < d(u) < A.

Case 1. d(u) = 1. Suppose that N(u) = w. Since m(u) = d(w) < A, thus d(u) +
m(u) <1T+A <A+ %7 the result follows.

Case 2. 2 < d(u) < A. If n <4, the conclusion clearly follows. If n > 5, note that

n—1
mi) = 3 d(e)/d(w < o

veEN (u)

then d(u) +m(u) < d(u) + Z(—j). Let f(z) =z + %, where = € [2, A].
It is casy to see that f'(z) = 1 — 23! Let @ = n — 1. We consider the next two

subcases.
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Subcase 1. 2 < /a < A. Then, f'(z) < 0 for z € [2,y/a], and f'(z) > 0 for
x € [ya,A]. Thus, f(z) < max{f(2), f(A)} for z € [2,A].

Subcase 2. y/a > A. When z € [2,A], since f'(z) <0, then f(z) < f(2).

Recall that 2 < d(u) < A, thus

1 n—1
2+ ——1.

n—1 n—
A 2

d(u)
By combining the above discussion, this completes the proof. |

In [9], a relation between WW (G) and M;(G) is reported as follows

d(u) +m(u) < d(u) + < max{A +

Lemma 4.3 [9] Let G be a connected (n,m) graph, which does not contain triangles

and/or quadrangles. Then, WW(G) > 3n(n — 1) — 3M,(G) — 2m.
D T5< :

T

> T
: ><T7
Fig. 5. The trees Ty, ..., T7.

Let T1 = Kj -1, and Ty, ..., T be the trees of order n > 17 as shown in Fig. 5. By an
directly calculation, we have WW (Ty) = 1(3n% — Tn +4), WW(Tz) = 1(3n? — n — 14),
WW(T3) = 1(3n*+5n—44), WW(Ty) = 1(3n*+5n—30), WW (T5) = $(3n*+ 11n —86),
WW(Ts) = 1(3n* + 11n — 58), WW (T7) = 1(3n% + 11n — 44).

As shown in the next theorem, 71, ..., T is the trees with the first up to seventh smallest

hyper-Wiener indices among 7 (n), where n > 17.

Theorem 4.1 Supposen > 17 and T € T (n)\{11, T2, T3, T4, T5, 16, Tz}, then WW(T') >
WW(T3) > WW(Ts) > WW(Ty) > WW(Ty) > WW(T3) > WW(Ty) > WW(Ty).

The proof of Theorem 4.1 needs the following Lemmas

Lemma 4.4 If T is a tree of ordern (n > 17) with A < n—"7, then WW(T) > WW (T~).
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Proof. Let f(z) = » + =L

z

conclude that f(2) < max{n — 7+ 2=1 2 + =1} Recall that 2 < A < n — 7, then by

n—"7

where 2 € [2,n — 7]. By the proof of Lemma 4.2, we can

Lemma 4.2 it follows that

(n—12 (n—1)(n+3)
n—"7" 2

M(T) <max{(n—1)(n—7)+ }

Bearing Lemma 2.4 and n > 17 in mind, we have

C 3n? 4+ 14n — 17 3(n—1)%2 9n? —26n + 17 3n? + 11n — 44
> — =7 .
WW(T) > min{ 5 =7 n > 5 WW (Tr)
This completes the proof of this lemma. |

A graph G' = (V', E') is called an induced subgraph of G = (V,E) if V! C V and
wv € E' if and only if uv € E. Suppose n > 17 and T is a tree of order n with A > n —6,
let ug denote the center of the unique star Ky o of T (K a is an induced subgraph of T'),
and £(T) = max{d(ug,v), v € V(T)}. Clearly, x(T) = 1 if and only if T = K ,_;.

Let H; and F} be the trees of order ¢ as shown in Fig. 6.

:: Up H, Vo :: Ug F Vo

Fig. 6. The trees H; and F;.
Lemma 4.5 IfT is a tree of order n (n > 17) with A = n—6, then WW(T') > WW (17).

Proof. We divide the proof in to the next two cases.

Case 1. x(T) > 3. Then T contains H,,_3 as an induced subgraph. Let {vy, v, v3} =
V(T)\V (H,—3), and vy be the vertex such that d(ug,vy) = 3 in H,_3 (see Fig. 6). It
is easy to see that v(7',1) = n — 1. Note that d(v;,ug) > 2, and either d(ug,v;) > 3 or
d(vg,v;) > 3 holds for 1 < ¢ < 3, then

WW(T) = %; s(s + V)T, s)

2n—1+6~(3(n—7)+3)+%Zs(s+l)’y(Hn,3,s)

5>2

=nfl+3(2+(n;6>)+6(4n724)+10(n77)

_ 3n® + 31n — 292
— e
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3n? + 1ln — 44
2
Case 2. K(T) = 2. Then T contains F,,_4 as an induced subgraph. Let {v1,vq,v3,v4} =
V(T)\V(F,-4), and vy be the vertex such that d(ug,ve) = 2 in F,—4 (see Fig. 6). It is
easy to see that v(7,1) = n — 1. Note that d(v;, ug) = 2, and d(v;,v9) > 2 holds for

1 <i < 4. Moreover, bearing in mind that d(v;, v;) > 2 holds for 1 <14 < j <4, then

WW(T) = %Zs(s + 1)y(T, )

s>1
1
2n71+3-(4+4+6)+6~4(n77)+525(5+1)7(Fn,4,s)
5>2
n—=6
=n—14+3(15+ 9 )+6-5(n—7)
_ 3n? + 23n — 206
B 2
3n% 4 11n — 44
2
By combining the above discussion, the result follows. |

Lemma 4.6 IfT is a tree of order n (n > 17) with A = n—>5, then WW(T') > WW (17).

Proof. We consider the next two cases.
Case 1. K(T) > 3. Then T contains H,,_» as an induced subgraph. Clearly, (7, 1) =
n—1. Let {v1,v9} = V(T)\V(H,_2). Note that d(v;,ug) > 2 holds for 1 <i < 2, then

WW(T) = % > s(s+1)Y(T,s)

s>1

1
Zn—1+3~2+6~2(n—6)+§Zs(s+l)'y(Hn,2,s)

5>2

:n71+3(4+(71;5>)+6(3n717)+10(n76)

3n? + 250 — 212
- 2
3n% + 11n — 44
2
= WW(T).



- 168 -

Case 2. K(T) = 2. Then T contains F),_3 as an induced subgraph. Let {vy, ve,v3} =
V(T)\V (F,-3), and vg be the vertex such that d(ug,v9) = 2 in F,_3 (see Fig. 6). It is
easy to see that v(7,1) = n — 1. Note that d(v;,ug) = 2, and d(v;,v9) > 2 holds for
1 <4 < 3. Moreover, bearing in mind that d(v;,v;) > 2 holds for 1 <i < j < 3, then

WW(T) = % > s(s+1)y(Ts)

s>1

1
>n— 1+3~(3+3+3)+6~3(n—6)+§Zs(s+1)'y(Fn,3,s)
5>2
—_ R

=n—1+3(10+ ("2 °))+6~4(n—6)
30?4+ 17n — 140
B 2

3n?+11n — 44
> e —

2
=WWwW(Tr).
By combining the above arguments, the result follows. |

Lemma 4.7 Let T be a tree of order n (n > 17) with A =n —4. If T & {T5,Ts, T},
then WW (T) > WW (T%).

Proof. Note that T5, T, 17 are the all trees with A = n — 4 and K = 2, since T &
{T5,T5, T}, then (T) > 3. This implies that T contain H,,_; as an induced subgraph. It
is easy to see that y(7,1) =n — 1. Let {v1} = V(T)\V(H,,—1). Note that d(vy,ug) > 2,
then

WW(T) = % 3 s(s + DT, s)

s>1

%

1
nf1+3-1+6-(nf5)+525(5+1)7(Hn,175)

n71+3(3+(n;4>)+6(2n79)+10(n75)

3n% 4+ 19n — 132
2

3n? 4+ 11n — 44
2

=WW(T%).

This completes the proof of this lemma. [ |
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Lemma 4.8 Let T be a tree of order n (n > 17) with A =n — 3. If T & {T3, T4}, then
WW(T) > WW(Tr).

Proof. Note that T3, T, are the all trees with A =n — 3 and k = 2, since T' & {T3, T4},

then x(7") = 3. This implies that 7' = H,,. By directly computation, we have

_ 3n24+13n—70  3n®+11n —44

WW(T) = WW (H,) 5 > 5

This completes the proof of this lemma. [ |

Lemma 4.9 [14] Let T be a tree of order n, then WW(T) > WW (Ty). Moreover, the
equality holds if and only if T' = T.

Proof for Theorem 4.1. By the values of WW (T5), WW (13), - - -, WW (T7) and n > 17,
it is easy to see that WW (Ty) <WW (T3) < --- < WW(T%). Recall that Ty and Ty are

the all trees of order n with n — 2 < A <n — 1, then Theorem 4.1 follows from Lemmas

4.4-4.9. |
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