ISSN 0340 - 6253

Trees with the seven smallest and fifteen greatest hyper-Wiener indices *

Mu-huo Liu $^{1,2},$ Bolian Liu 2

 $^{\rm 1}$ Department of Applied Mathematics, South China Agricultural University,

Guangzhou, P. R. China, 510642

² School of Mathematic Science, South China Normal University,

Guangzhou, P. R. China, 510631

(Received November 19, 2008, extended January 12, 2009)

Abstract: Gutman had determined the trees on n vertices with the smallest and the greatest hyper-Wiener index (i.e., the star and path). In this paper, we identify the second up to seventh smallest hyper-Wiener indices of trees on $n \ge 17$ vertices and the second up to fifteenth greatest hyper-Wiener indices of trees on $n \ge 20$ vertices.

1 Introduction

Throughout this paper, we only concern with connected, undirected simple graphs. If G = (V, E) with |V| = n and |E| = m, then we refer to G as an (n, m) graph. Let N(u) be the first neighbor vertex set of u, then d(u) = |N(u)| is called the degree of u. Specially, $\Delta = \Delta(G)$ is called the *maximum degree* of vertices of G. As usual, P_n and $K_{1,n-1}$ denotes the path and star of order n, respectively.

The distance d(u, v) between the vertices u and v of the graph G is equal to the length of (number of edges in) the shortest path that connects u and v. Sometimes we write $d_G(u, v)$ in place of d(u, v) in order to indicate the dependence on G. Let $\gamma(G, k)$ denote the number of vertex pairs of G, the distance of which is equal to k. There are

^{*}The first author is supported by the fund of South China Agricultural University (No. 2008K012); The second author is the corresponding author who is supported by NNSF of China (No. 10771080) and SRFDP of China (No. 20070574006). E-mail address: liubl@scnu.edu.cn

two important graph-based structure-descriptors, called Wiener index and hyper-Wiener index, based on distances in a graph. The Wiener index W(G) is denoted by [1]

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d_G(u,v) = \sum_{k \ge 1} k\gamma(G,k),$$

and the hyper-Wiener index WW(G) is defined as [2]

$$WW(G) = \frac{1}{2}W(G) + \frac{1}{2}\sum_{\{u,v\} \subseteq V(G)} d_G(u,v)^2 = \frac{1}{2}\sum_{k \ge 1} k(k+1)\gamma(G,k).$$

It is well-known that the Wiener index is introduced long time ago [1], whereas the hyper-Wiener index is conceived somewhat later [2]. But it rapidly gained popularity and numerous results on it were raised [3-7]. The mathematical properties of hyper-Wiener index and its applications in chemistry can be referred to [5-10] and the references cited therein.

Gutman et al. firstly gave a partial order to Wiener index among the starlike trees in [11]. After then, the first up to fifteenth smallest and the first up to seventeenth greatest Wiener indices among trees of order n are identified in [12] and [13], respectively. Also, Gutman considered the similar order of hyper-Wiener index among trees of order n, and he had determined the trees on n vertices with the smallest and greatest hyper-Wiener index (i.e., the star and path) in [14]. Recently, among all connected graphs of order n (n > 2k), the first up to (k + 1)-th smallest Wiener indices and the first up to (k + 1)-th smallest hyper-Wiener indices are determined in [15], respectively. In this paper, we identify the second up to seventh smallest hyper-Wiener indices of trees on $n \ge 17$ vertices and the second up to fifteenth greatest hyper-Wiener indices of trees on $n \ge 20$ vertices.

2 Some preliminaries

Given a simple and undirected graph G=(V,E). Let G-u (resp. G-uv) denote the graph obtained from G by deleting the vertex $u \in V(G)$ (resp. the edge $uv \in E(G)$). Similarly, G+uv is a graph obtained from G by adding an edge $uv \notin E(G)$, where $u,v \in V(G)$.

Suppose v is a vertex of graph G. As shown in Fig. 1, let $G_{k,l}$ $(l \ge k \ge 1)$ be the graph obtained from G by attaching two new paths P: $v(=v_0)v_1v_2\cdots v_k$ and Q:

 $v(=u_0)u_1u_2\cdots u_l$ of length k and l, respectively, at v, where $v_1,\,v_2,\,...,\,v_k$ and $u_1,\,u_2,\,...,\,u_l$ are distinct new vertices. Let $G_{k-1,l+1}=G_{k,l}-v_{k-1}v_k+u_lv_k$.

Fig. 1.

Lemma 2.1 Suppose G is a connected graph on $n \geq 2$ vertices, or an isolated vertex. If $l \geq k \geq 1$, then $W(G_{k,l}) \leq W(G_{k-1,l+1})$, the equality holds if and only if G is an isolated vertex.

Proof. It is easy to see that

$$W(G_{k-1,l+1}) - W(G_{k,l}) = \sum_{w \in V(G_{k-1,l+1})} d_{G_{k-1,l+1}}(w, v_k) - \sum_{w \in V(G_{k,l})} d_{G_{k,l}}(w, v_k).$$
(1)

Let $V_1 = V(G) \setminus \{v\}$, then $V(G_{k,l}) \setminus V_1 = V(G_{k-1,l+1}) \setminus V_1$. Let $V_2 = V(G_{k,l}) \setminus V_1$. Clearly,

$$\sum_{w \in V(G_{k,l})} d_{G_{k,l}}(w, v_k) = \sum_{w \in V_1} d_{G_{k,l}}(w, v_k) + \sum_{w \in V_2} d_{G_{k,l}}(w, v_k). \tag{2}$$

$$\sum_{w \in V(G_{k-1,l+1})} d_{G_{k-1,l+1}}(w, v_k) = \sum_{w \in V_1} d_{G_{k-1,l+1}}(w, v_k) + \sum_{w \in V_2} d_{G_{k-1,l+1}}(w, v_k).$$
(3)

Note that the subgraph of $G_{k,l}$ induced by V_2 is a path of length k+l, which is isomorphic to the subgraph of $G_{k-1,l+1}$ induced by V_2 , thus

$$\sum_{w \in V_2} d_{G_{k,l}}(w, v_k) = \sum_{w \in V_2} d_{G_{k-1,l+1}}(w, v_k). \tag{4}$$

Therefore, by combining equalities (1)-(4), we have

$$W(G_{k-1,l+1}) - W(G_{k,l}) = \sum_{w \in V_1} d_{G_{k-1,l+1}}(w, v_k) - \sum_{w \in V_1} d_{G_{k,l}}(w, v_k)$$
$$= \sum_{w \in V_1} (d_{G_{k-1,l+1}}(w, v_k) - d_{G_{k,l}}(w, v_k)). \tag{5}$$

If G is an isolated vertex, then $V_1 = \emptyset$. By equality (5), it follows that $W(G_{k-1,l+1}) = W(G_{k,l})$. If G is not an isolated vertex, since $l \geq k$, then $d_{G_{k-1,l+1}}(w,v_k) > d_{G_{k,l}}(w,v_k)$ holds for every $w \in V_1$. Thus, the result follows from equality (5).

Proposition 2.1 Suppose G is a connected graph on $n \geq 2$ vertices, or an isolated vertex. If $l \geq k \geq 1$, then $WW(G_{k,l}) \leq WW(G_{k-1,l+1})$, the equality holds if and only if G is an isolated vertex.

Proof. As in the proof of Lemma 2.1, let $V_1 = V(G) \setminus \{v\}$, $V_2 = V(G_{k,l}) \setminus V_1$. It can be proved analogously with Lemma 2.1 that

$$\sum_{\{u,w\}\subseteq V(G_{k-1,l+1})} d_{G_{k-1,l+1}}(u,w)^2 - \sum_{\{u,w\}\subseteq V(G_{k,l})} d_{G_{k,l}}(u,w)^2$$

$$= \sum_{w\in V(G_{k-1,l+1})} d_{G_{k-1,l+1}}(w,v_k)^2 - \sum_{w\in V(G_{k,l})} d_{G_{k,l}}(w,v_k)^2$$

$$= \sum_{w\in V_1} d_{G_{k-1,l+1}}(w,v_k)^2 - \sum_{w\in V_1} d_{G_{k,l}}(w,v_k)^2 + \sum_{w\in V_2} d_{G_{k-1,l+1}}(w,v_k)^2 - \sum_{w\in V_2} d_{G_{k,l}}(w,v_k)^2$$

$$= \sum_{w\in V_1} (d_{G_{k-1,l+1}}(w,v_k)^2 - d_{G_{k,l}}(w,v_k)^2). \tag{6}$$

If G is not an isolated vertex, since $l \geq k$, then $d_{G_{k-1,l+1}}(w,v_k)^2 > d_{G_{k,l}}(w,v_k)^2$ holds for every $w \in V_1$. Recall that $WW(G_{k,l}) = \frac{1}{2}W(G_{k,l}) + \frac{1}{2}\sum_{\{u,w\}\subseteq V(G_{k,l})}d_{G_{k,l}}(u,w)^2$, and $WW(G_{k-1,l+1}) = \frac{1}{2}W(G_{k-1,l+1}) + \frac{1}{2}\sum_{\{u,w\}\subseteq V(G_{k-1,l+1})}d_{G_{k-1,l+1}}(u,w)^2$, then the result follows from Lemma 2.1 and equality (6).

Suppose v_1 is a vertex of graph G, and v_2 , ..., v_{t+s} , u_0 are distinct new vertices (not in G). Let G' be the graph obtained from G by attaching a new path P: $v_1v_2\cdots v_{t+s}$. Let $M_{t,t+s}=G'+v_tu_0$ and $M_{t+i,t+s}=G'+v_{t+i}u_0$, where $1\leq i\leq s$. For instance, $M_{t,t+s}$ and $M_{t+1,t+s}$ are depicted in Fig. 2.

Lemma 2.2 Suppose G is a connected graph on $n \ge 2$ vertices, or an isolated vertex. If $t \ge s \ge 1$, then $W(M_{t,t+s}) \le W(M_{t+1,t+s})$. Moreover, the equality holds if and only if t = s and G is an isolated vertex.

Proof. For convenience, sometimes we write $M_{t,t+s}$ as M, and $M_{t+1,t+s}$ as M' in the proof of this lemma. Let $V_1 = V(G) \setminus \{v_1\}$, then $V(M_{t,t+s}) \setminus V_1 = V(M_{t+1,t+s}) \setminus V_1$. Let $V_2 = V(M_{t,t+s}) \setminus V_1$. Thus,

$$W(M_{t+1,t+s}) - W(M_{t,t+s}) = \sum_{w \in V(M')} d_{M'}(w,u_0) - \sum_{w \in V(M)} d_{M}(w,u_0)$$

$$= \sum_{w \in V_1} (d_{M'}(w, u_0) - d_M(w, u_0)) + \sum_{w \in V_2} d_{M'}(w, u_0) - \sum_{w \in V_2} d_M(w, u_0).$$
 (7)

Note that $d_{M'}(w, u_0) > d_M(w, u_0)$ holds for every $w \in V_1$, and

$$\sum_{w \in V_2} d_{M'}(w, u_0) - \sum_{w \in V_2} d_M(w, u_0) = t + 1 - (s + 1) = t - s \ge 0.$$

Thus, the result follows by equality (7).

Lemma 2.3 suppose G is a connected graph on $n \geq 2$ vertices, or an isolated vertex. If $t \geq s \geq 1$, then $WW(M_{t,t+s}) \leq WW(M_{t+1,t+s})$. Moreover, the equality holds if and only if t = s and G is an isolated vertex.

Proof. As in the proof of Lemma 2.2, sometimes we write $M_{t,t+s}$ as M, and $M_{t+1,t+s}$ as M' for convenience. Let $V_1 = V(G) \setminus \{v_1\}$, and $V_2 = V(M_{t,t+s}) \setminus V_1$. By Lemma 2.2 and the definition of hyper-Wiener index, we only need to show that

$$\sum_{\{u,v\}\subseteq V(M')} d_{M'}(u,v)^2 \ge \sum_{\{u,v\}\subseteq V(M)} d_M(u,v)^2.$$
(8)

Clearly, $\sum_{\{u,v\}\subseteq V(M')} d_{M'}(u,v)^2 - \sum_{\{u,v\}\subseteq V(M)} d_{M}(u,v)^2$

$$= \sum_{w \in V(M')} d_{M'}(w, u_0)^2 - \sum_{w \in V(M)} d_{M}(w, u_0)^2$$

$$= \sum_{w \in V_1} (d_{M'}(w, u_0)^2 - d_M(w, u_0)^2) + \sum_{w \in V_2} d_{M'}(w, u_0)^2 - \sum_{w \in V_2} d_M(w, u_0)^2.$$
 (9)

Note that $d_{M'}(w, u_0)^2 > d_M(w, u_0)^2$ holds for every $w \in V_1$, and

$$\sum_{w \in V_2} d_{M'}(w, u_0)^2 - \sum_{w \in V_2} d_M(w, u_0)^2 = (t+1)^2 - (s+1)^2 \ge 0.$$

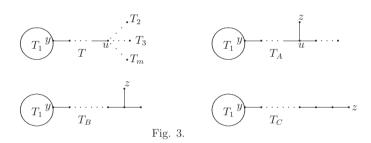
Thus, inequality (8) follows by equality (9). This completes the proof.

By Lemma 2.3, we obtain the next result immediately.

Proposition 2.2 Suppose G is a connected graph on $n \ge 2$ vertices, or an isolated vertex. If $t \ge s \ge 1$, then $WW(M_{t,t+s}) \le WW(M_{t+i,t+s})$, where $1 \le i \le s$.

Recall that a vertex u of a tree T is called a branching point of T if $d(u) \geq 3$. Furthermore, u is said to be an out-branching point if at most one of the components of T - u is not a path; otherwise, u is an in-branching point of T.

For convenience, we introduce a transfer operation: $T \to T_A \to T_B \to T_C$, as shown in Fig. 3, where T is a tree of order n, u is an out-branching point of T, d(u) = m, and all the components T_1 , T_2 , ... T_m of T - u except T_1 are paths.



Lemma 2.4 [13] Let u be an out-branching point of a tree T of order n, d(u) = m $(m \ge 3)$, and let all components $T_1, T_2, ..., T_m$ of T - u except T_1 be paths. Then,

$$W(T) \le W(T_A) \le W(T_B) < W(T_C),$$

and $W(T) = W(T_A)$ (or $W(T_B)$) if and only if $T = T_A$ (or T_B).

Proposition 2.3 Let u be an out-branching point of a tree T of order n, d(u) = m $(m \ge 3)$, and let all components $T_1, T_2, ..., T_m$ of T - u except T_1 be paths. Then,

$$WW(T) \le WW(T_A) \le WW(T_B) < WW(T_C),$$

and $WW(T) = WW(T_A)$ (or $WW(T_B)$) if and only if $T = T_A$ (or T_B).

Proof. By Proposition 2.1, it is easy to see that $WW(T) \leq WW(T_A)$ with the equality holding if and only if $T = T_A$. Moreover, Proposition 2.1 implies that $WW(T_B) < WW(T_C)$. Next we shall prove that $WW(T_A) \leq WW(T_B)$ with the equality holding if

and only if $T_A = T_B$. By Lemma 2.4 and the definition of hyper-Wiener index, we only need to prove that

$$\sum_{\{w,v\}\subseteq V(T_A)} d_{T_B}(w,v)^2 \ge \sum_{\{w,v\}\subseteq V(T_A)} d_{T_A}(w,v)^2, \tag{10}$$

where the equality holds if and only if $T_A = T_B$. Once this is proved, we are done.

Let T_u denote the component of $T_A - y$, which contains u. Set $V_1 = V(T_u) \cup \{y\}$. Then, $V(T_A) \setminus V_1 = V(T_B) \setminus V_1$. Let $V_2 = V(T_A) \setminus V_1$. It is easy to see that

$$\sum_{\{w,v\}\subseteq V(T_B)} d_{T_B}(w,v)^2 - \sum_{\{w,v\}\subseteq V(T_A)} d_{T_A}(w,v)^2$$

$$= \sum_{w \in V(T_B)} d_{T_B}(w, z)^2 - \sum_{w \in V(T_A)} d_{T_A}(w, z)^2$$

$$= \sum_{w \in V_1} d_{T_B}(w, z)^2 - \sum_{w \in V_1} d_{T_A}(w, z)^2 + \sum_{w \in V_2} (d_{T_B}(w, z)^2 - d_{T_A}(w, z)^2).$$
 (11)

Note that $\sum_{w \in V_1} d_{T_B}(w, z)^2 \ge \sum_{w \in V_1} d_{T_A}(w, z)^2$, and $d_{T_B}(w, z)^2 \ge d_{T_A}(w, z)^2$ holds for every $w \in V_2$, then inequality (10) holds by equality (11), and the equality holds in inequality (10) if and only if $T_A = T_B$. This completes the proof.

3 The ordering of the greatest hyper-Wiener indices of trees

Let $T(n; n_1, n_2, ..., n_m)$ denote the starlike tree of order n obtained by inserting $n_1 - 1$, ..., $n_m - 1$ vertices into m edges of the star $K_{1,m}$ of order m + 1 respectively, where $n_1 + \cdots + n_m = n - 1$. Note that any tree with only one branching point is a starlike tree.

If T is a tree of order n with exactly two branching points u_1 and u_2 , with $d(u_1) = r$ and $d(u_2) = t$. The orders of r-1 components, which are paths, of $T-u_1$ are $p_1, ..., p_{r-1}$, the order of the component which is not a path of $T-u_1$ is $p_r = n-p_1-\cdots-p_{r-1}-1$. The orders of t-1 components, which are paths, of $T-u_2$ are $q_1, ..., q_{t-1}$, the order of the component which is not a path of $T-u_2$ is $q_t = n-q_1-\cdots-q_{t-1}-1$. We denote this tree by $T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$, where $r \leq t, p_1 \geq \cdots \geq p_{r-1}$ and $q_1 \geq \cdots \geq q_{t-1}$.

By an elementary computation, we have

$$WW(P_n) = \frac{1}{24}(n^4 + 2n^3 - n^2 - 2n),$$

$$WW(T(n; n - 3, 1, 1)) = \frac{1}{24}(n^4 + 2n^3 - 13n^2 + 10n + 72),$$

$$WW(T(n; n - 4, 2, 1)) = \frac{1}{24}(n^4 + 2n^3 - 25n^2 + 46n + 192),$$

$$WW(T(n; 1, 1; 1, 1)) = \frac{1}{24}(n^4 + 2n^3 - 25n^2 + 22n + 168),$$

$$WW(T(n; n - 5, 3, 1)) = \frac{1}{24}(n^4 + 2n^3 - 37n^2 + 106n + 360),$$

$$WW(T(n; n - 4, 1, 1, 1)) = \frac{1}{24}(n^4 + 2n^3 - 37n^2 + 82n + 168),$$

$$WW(T(n; 1, 1; 2, 1)) = \frac{1}{24}(n^4 + 2n^3 - 37n^2 + 58n + 312),$$

$$WW(T(n; n - 6, 4, 1)) = \frac{1}{24}(n^4 + 2n^3 - 49n^2 + 190n + 576),$$

$$WW(T(n; n - 5, 2, 2)) = \frac{1}{24}(n^4 + 2n^3 - 49n^2 + 142n + 480),$$

$$WW(T(n; 1, 1; n - 5, 1)) = \frac{1}{24}(n^4 + 2n^3 - 49n^2 + 142n + 312),$$

$$WW(T(n; 1, 1; 3, 1)) = \frac{1}{24}(n^4 + 2n^3 - 49n^2 + 118n + 504),$$

$$WW(T(n; 2, 1; 2, 1)) = \frac{1}{24}(n^4 + 2n^3 - 49n^2 + 94n + 480),$$

$$WW(T(n; 1, 1; 1, 1, 1)) = \frac{1}{24}(n^4 + 2n^3 - 49n^2 + 94n + 312),$$

$$WW(T(n; 1, 1; 1, 1, 1)) = \frac{1}{24}(n^4 + 2n^3 - 49n^2 + 94n + 312),$$

$$WW(T(n; 1, 1; 1, 1, 1)) = \frac{1}{24}(n^4 + 2n^3 - 61n^2 + 298n + 840),$$

$$WW(T(n; 1, 1; n - 6, 1)) = \frac{1}{24}(n^4 + 2n^3 - 61n^2 + 226n + 504).$$
Thus, we have

By an elementary computation, we have

$$\begin{split} WW(T(n;1,1;4,1)) &= \tfrac{1}{24}(n^4 + 2n^3 - 61n^2 + 202n + 744), \\ WW(T(n;n-5,2,1,1)) &= \tfrac{1}{24}(n^4 + 2n^3 - 61n^2 + 202n + 312), \\ WW(T(n;2,1;3,1)) &= \tfrac{1}{24}(n^4 + 2n^3 - 61n^2 + 154n + 696), \\ WW(T(n;1,1;2,2)) &= \tfrac{1}{24}(n^4 + 2n^3 - 61n^2 + 154n + 648), \end{split}$$

$$\begin{split} WW(T(n;2,1;1,1,1)) &= \tfrac{1}{24}(n^4 + 2n^3 - 61n^2 + 130n + 504), \\ WW(T(n;n-8,6,1)) &= \tfrac{1}{24}(n^4 + 2n^3 - 73n^2 + 430n + 1152), \\ WW(T(n;1,1;n-7,1)) &= \tfrac{1}{24}(n^4 + 2n^3 - 73n^2 + 334n + 744), \\ WW(T(n;n-6,3,2)) &= \tfrac{1}{24}(n^4 + 2n^3 - 73n^2 + 286n + 864), \\ WW(T(n;n-5,1,1,1,1)) &= \tfrac{1}{24}(n^4 + 2n^3 - 73n^2 + 262n + 168), \\ WW(T(n;1,1;n-6,2)) &= \tfrac{1}{24}(n^4 + 2n^3 - 85n^2 + 346n + 648), \\ WW(T(n;n-6,1;1,1,1)) &= \tfrac{1}{24}(n^4 + 2n^3 - 85n^2 + 346n + 312), \\ WW(T(n;n-7,1;1,1,1)) &= \tfrac{1}{24}(n^4 + 2n^3 - 97n^2 + 454n + 504). \end{split}$$

The next lemma can be obtained directly from the above equalities.

Lemma 3.2 If n > 20, then

- (1) WW(T(n; 1, 1; n 6, 1)) > WW(T(n; 1, 1; 4, 1)) > WW(T(n; n 5, 2, 1, 1)) > WW(T(n; 2, 1; 3, 1)) > WW(T(n; 1, 1; 2, 2)) > WW(T(n; 2, 1; 1, 1, 1));
- $$\begin{split} &(2)\ WW(T(n;1,1;n-6,1)) > WW(T(n;n-8,6,1)) > WW(T(n;1,1;n-7,1)) > \\ &WW(T(n;n-6,3,2)) > WW(T(n;n-5,1,1,1,1)) > WW(T(n;1,1;n-6,2)) > WW(T(n;n-6,1;1,1,1)) > WW(T(n;n-7,1;1,1,1)). \end{split}$$

Lemma 3.3 If $n \ge 20$ and T is a tree with exactly one branching point of degree $m \ge 5$, then $WW(T) \le WW(T(n; n - 5, 1, 1, 1, 1)) < WW(T(n; 1, 1; n - 6, 1))$.

Proof. By hypothesis, $T = T(n; n_1, n_2, ..., n_m)$. Without loss of generality, assume $n_1 \geq n_2 \geq \cdots \geq n_m$. We prove the lemma by induction on m.

If m = 5, by Proposition 2.1 and Lemma 3.2 it follows that $WW(T) = WW(T(n; n_1, n_2, n_3, n_4, n_5)) \le WW(T(n; n_1 + n_5 - 1, n_2, n_3, n_4, 1)) \le WW(T(n; n_1 + n_4 + n_5 - 2, n_2, n_3, 1, 1)) \le WW(T(n; n_1 + n_3 + n_4 + n_5 - 3, n_2, 1, 1, 1)) \le WW(T(n; n_1 - 5, 1, 1, 1, 1)) < WW(T(n; 1, 1; n_5 - 6, 1))$. Thus, this lemma holds for m = 5.

If $m \geq 6$, by Proposition 2.1, Lemma 3.2 and the induction hypothesis it follows that $WW(T) = WW(T(n; n_1, n_2, ..., n_m)) < WW(T(n; n_1 + n_m, n_2, ..., n_{m-1})) \leq WW(T(n; n - 5, 1, 1, 1, 1)) < WW(T(n; 1, 1; n - 6, 1)).$

Lemma 3.4 Suppose $n \geq 20$, and T is a tree with only one branching point. If $T \not\in \{T(n; n-3, 1, 1), T(n; n-4, 2, 1), T(n; n-5, 3, 1), T(n; n-4, 1, 1, 1), T(n; n-6, 4, 1), T(n; n-5, 2, 2), T(n; n-7, 5, 1)\}$, then WW(T) < WW(T(n; 1, 1; n-6, 1)).

Proof. Suppose the degree of the unique branching point is m, then $T = T(n; n_1, ..., n_m)$. Without loss of generality, assume $n_1 \ge \cdots \ge n_m$. If $m \ge 5$, then the conclusion follows from Lemma 3.3. We consider the next two cases.

Case 1. m=3.

If $n_3 \geq 2$, since $T \neq T(n; n-5, 2, 2)$, then $n_2 \geq 3$. By Proposition 2.1 and Lemma 3.2 it follows that $WW(T(n; n_1, n_2, n_3)) \leq WW(T(n; n_1 + n_3 - 2, n_2, 2)) \leq WW(T(n; n-6, 3, 2)) < WW(T(n; 1, 1; n-6, 1))$.

If $n_3 = 1$, since $T \notin \{T(n; n - 3, 1, 1), T(n; n - 4, 2, 1), T(n; n - 5, 3, 1), T(n; n - 6, 4, 1), <math>T(n; n - 7, 5, 1)\}$, then $n_1 \ge n_2 \ge 6$. By Lemma 3.2 and Proposition 2.1 it follows that $WW(T) \le WW(T(n; n - 8, 6, 1)) < WW(T(n; 1, 1; n - 6, 1))$.

Case 2. m=4. Since $T \neq T(n; n-4, 1, 1, 1)$, then $n_1 \geq n_2 \geq 2$. By Proposition 2.1 and Lemma 3.2 it follows that $WW(T(n; n_1, n_2, n_3, n_4)) \leq WW(T(n; n_1 + n_4 - 1, n_2, n_3, 1)) \leq WW(T(n; n_1 + n_3 + n_4 - 2, n_2, 1, 1)) \leq WW(T(n; n-5, 2, 1, 1)) < WW(T(n; 1, 1; n-6, 1))$.

This completes the proof of this lemma.

Lemma 3.5 Suppose $n \geq 20$, and $T = T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$. If $t \geq 5$, then WW(T) < WW(T(n; n - 5, 1, 1, 1, 1)) < WW(T(n; 1, 1; n - 6, 1)).

Proof. By Proposition 2.3, Lemmas 3.2-3.3 it follows that $WW(T) < WW(T(n; q_1, ..., q_{t-1}, n - q_1 - \cdots - q_{t-1} - 1)) \le WW(T(n; n - 5, 1, 1, 1, 1)) < WW(T(n; 1, 1; n - 6, 1)).$

Lemma 3.6 Suppose $n \geq 20$, and $T = T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$. If t = r = 4, then WW(T) < WW(T(n; 1, 1; n - 6, 1)).

Proof. By hypothesis, $T = T(n; p_1, p_2, p_3; q_1, q_2, q_3)$. Without loss of generality, suppose that $p_1 + p_2 + p_3 \ge q_1 + q_2 + q_3$. We consider the next cases.

Case 1. $p_1+p_2+p_3 \ge 4$. By Proposition 2.1 we have $WW(T) < WW(T(n; p_1, p_2, p_3, n-p_1-p_2-p_3-1)) \le WW(T(n; p_1+p_3-1, p_2, 1, n-p_1-p_2-p_3-1)) \le WW(T(n; p_1+p_2+p_3-2, 1, 1, n-p_1-p_2-p_3-1))$. Note that $p_1+p_2+p_3-2 \ge 2$ and $n-p_1-p_2-p_3-1 \ge q_1+q_2+q_3 > 2$, then $WW(T(n; p_1+p_2+p_3-2, 1, 1, n-p_1-p_2-p_3-1)) \le WW(T(n; n-5, 2, 1, 1)) < WW(T(n; 1, 1; n-6, 1))$ follows from Proposition 2.1 and Lemma 3.2.

Case 2. $p_1 + p_2 + p_3 = 3$. Then, $q_1 + q_2 + q_3 = 3$. By Proposition 2.1 and Lemma 3.2 it follows that WW(T) < WW(T(n; 2, 1; 1, 1, 1)) < WW(T(n; 1, 1; n - 6, 1)).

Lemma 3.7 Suppose $n \ge 20$, and $T = T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$ with t = 4, r = 3. If $T \ne T(n; 1, 1; 1, 1, 1)$, then WW(T) < WW(T(n; 1, 1; n - 6, 1)).

Proof. By hypothesis, $T = T(n; p_1, p_2; q_1, q_2, q_3)$. Two cases should be considered as follows.

Case 1. $q_1+q_2+q_3 \ge 4$. By Proposition 2.1, we have $WW(T) < WW(T(n; q_1, q_2, q_3, n-q_1-q_2-q_3-1)) \le WW(T(n; q_1+q_3-1, q_2, 1, n-q_1-q_2-q_3-1)) \le WW(T(n; q_1+q_2+q_3-2, 1, 1, n-q_1-q_2-q_3-1))$. Note that $n-q_1-q_2-q_3-1 \ge p_1+p_2 \ge 2$ and $q_1+q_2+q_3-2 \ge 2$, by Proposition 2.1 and Lemma 3.2 it follows that $WW(T(n; q_1+q_2+q_3-2, 1, 1, n-q_1-q_2-q_3-1)) \le WW(T(n; n-5, 2, 1, 1)) < WW(T(n; 1, 1; n-6, 1))$.

Case 2. $q_1 + q_2 + q_3 = 3$. Since $T \neq T(n; 1, 1; 1, 1, 1)$, then $3 \leq p_1 + p_2 \leq n - 5$. We divide the proof into four subcases.

Subcase 1. $3 \le p_1 + p_2 \le 6$. By Proposition 2.1, it follows that $WW(T) \le WW(T(n; p_2+p_1-1, 1; 1, 1, 1))$. Recall that $n \ge 20$, by Propositions 2.2 and Lemma 3.2 we have $WW(T(n; p_2+p_1-1, 1; 1, 1, 1)) \le WW(T(n; 2, 1; 1, 1, 1)) < WW(T(n; 1, 1; n-6, 1))$.

Subcase 2. $7 \le p_1 + p_2 \le n - 7$. This implies that $n - p_1 - p_2 - 1 \ge 6$. By Proposition 2.1 and Lemma 3.2 it follows that $WW(T) < WW(T(n; p_1, p_2, n - p_1 - p_2 - 1)) \le WW(T(n; p_2 + p_1 - 1, 1, n - p_1 - p_2 - 1)) < WW(T(n; n - 8, 6, 1)) < WW(T(n; 1, 1; n - 6, 1))$.

Subcase 3. $p_1 + p_2 = n - 6$. By Proposition 2.1 and Lemma 3.2 it follows that $WW(T) \le WW(T(n; n - 7, 1; 1, 1, 1)) < WW(T(n; 1, 1; n - 6, 1))$.

Subcase 4. $p_1 + p_2 = n - 5$. By Proposition 2.1 and Lemma 3.2 it follows that $WW(T) \le WW(T(n; n - 6, 1; 1, 1, 1)) < WW(T(n; 1, 1; n - 6, 1))$.

By combining the above arguments, the result follows.

Lemma 3.8 Suppose $n \geq 20$, and $T = T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$ with t = 3, r = 3. If $T \notin \{T(n; 1, 1; 1, 1), T(n; 1, 1; 2, 1), T(n; 1, 1; n-5, 1), T(n; 1, 1; 3, 1), T(n; 2, 1; 2, 1), T(n; 1, 1; n-6, 1)\}$, then WW(T) < WW(T(n; 1, 1; n-6, 1)).

Proof. By hypothesis, $T = T(n; p_1, p_2; q_1, q_2)$. Without loss of generality, suppose $q_1 + q_2 \ge p_1 + p_2$. Since $T \notin \{T(n; 1, 1; 1, 1), T(n; 1, 1; 2, 1), T(n; 2, 1; 2, 1)\}$, then $4 \le q_1 + q_2 \le n - 4$. We consider the next cases.

Case 1. $q_1 + q_2 = 4$. Then, $2 \le p_1 + p_2 \le 4$. Two subcases occur as follows.

Subcase 1. $p_1 + p_2 = 2$. Since $T \neq T(n; 1, 1; 3, 1)$, then T = T(n; 1, 1; 2, 2). By Lemma 3.2, WW(T(n; 1, 1; 2, 2)) < WW(T(n; 1, 1; n - 6, 1)).

Subcase 2. $3 \le p_1 + p_2 \le 4$. By Propositions 2.1-2.2 and Lemma 3.2, we have $WW(T) \le WW(T(n; p_1, p_2; 3, 1)) \le WW(T(n; 2, 1; 3, 1)) < WW(T(n; 1, 1; n - 6, 1))$.

Case 2. $5 \le q_1 + q_2 \le 6$. By Propositions 2.1-2.3 and Lemma 3.2, it follows that $WW(T) \le WW(T(n;1,1;q_1,q_2)) \le WW(T(n;1,1;q_1+q_2-1,1)) \le WW(T(n;1,1;4,1)) < WW(T(n;1,1;n-6,1)).$

Case 3. $7 \le q_1 + q_2 \le n - 7$. Then, $n - q_1 - q_2 - 1 \ge 6$. By Proposition 2.1 and Lemma 3.2 it follows that $WW(T) < WW(T(n; q_1, q_2, n - q_1 - q_2 - 1)) \le WW(T(n; q_1 + q_2 - 1, 1, n - q_1 - q_2 - 1)) \le WW(T(n; n - 8, 6, 1)) < WW(T(n; 1, 1; n - 6, 1))$.

Case 4. $q_1 + q_2 = n - 6$. By Proposition 2.1, Proposition 2.3 and Lemma 3.2 it follows that $WW(T) \leq WW(T(n; p_1, p_2; n - 7, 1)) \leq WW(T(n; 1, 1; n - 7, 1)) < WW(T(n; 1, 1; n - 6, 1)).$

Case 5. $q_1+q_2=n-5$. By Proposition 2.1, it follows that $WW(T) \leq WW(T(n;p_1,p_2;n-6,1))$. Since $T \neq T(n;1,1;n-6,1)$, by Proposition 2.3 we have WW(T) < WW(T(n;1,1;n-6,1)).

Case 6. $q_1 + q_2 = n - 4$. This implies that $p_1 = p_2 = 1$. Since $T \neq T(n; 1, 1; n - 5, 1)$, then $q_1 \geq q_2 \geq 2$. By Proposition 2.1 and Lemma 3.2, we have $WW(T) = WW(T(n; 1, 1; q_1, q_2)) \leq WW(T(n; 1, 1; n - 6, 2)) < WW(T(n; 1, 1; n - 6, 1))$.

This completes the proof.

Lemma 3.9 Suppose $n \geq 20$, and T is a tree of order n with exactly three branching points, then WW(T) < WW(T(n; 1, 1; n - 6, 1)).

Proof. Let u_1 , u_2 , u_3 be the three branching points of T. Let u_1 be an in-branching point and u_2 , u_3 be two out-branching points. Now suppose $d(u_1) = m$, T_1 , ..., T_m be the components of $T - u_1$ and let they be paths except T_{m-1} , T_m , where the order of T_i is n_i for $1 \le i \le m$. By the definition of T it follows that $u_2 \in V(T_{m-1})$ and $u_3 \in V(T_m)$, which implies that $n_{m-1} \ge 3$ and $n_m \ge 3$. Without loss of generality, we suppose $n_{m-1} \ge n_m$. The next cases should be taken into account.

Case 1. $n_1 + n_2 + \cdots + n_{m-2} \ge 2$. Note that $n_{m-1} \ge n_m \ge 3$, by Proposition 2.1 and Lemma 3.2 it follows that $WW(T) < WW(T(n; n_{m-1}, n_m, n_1 + \cdots + n_{m-2})) \le WW(T(n; n - 6, 3, 2)) < WW(T(n; 1, 1; n - 6, 1))$.

Case 2. $n_1 + n_2 + \cdots + n_{m-2} = 1$. Then, m = 3 and $n_1 = 1$. Four subcases should be considered.

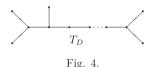
Subcase 1. $n_3 \ge 6$. Thus, $n_2 \ge 6$. By Proposition 2.1 and Lemma 3.2 it follows that $WW(T) < WW(T(n; n_2, n_3, 1)) \le WW(T(n; n_2, n_3, 1)) < WW(T(n; n_3, n_3, 1))$.

Subcase 2. $n_3 = 5$. Then, $n_2 = n - n_1 - n_3 - 1 = n - 7$. By Proposition 2.3 and Lemma 3.2 it follows that WW(T) < WW(T(n; 1, 1; n - 7, 1)) < WW(T(n; 1, 1; n - 6, 1)).

Subcase 3. $n_3 = 4$. Then, $n_2 = n - n_1 - n_3 - 1 = n - 6$. By Proposition 2.3 it follows that WW(T) < WW(T(n; 1, 1; n - 6, 1)).

Subcase 4. $n_3 = 3$. By Proposition 2.3 it follows that $WW(T) \leq WW(T_D)$, which is shown in Fig. 4. By an elementary computation, we have $WW(T_D) = \frac{1}{24}(n^4 + 2n^3 - 61n^2 + 154n + 480)$. Thus, $WW(T_D) < WW(T(n; 1, 1; n - 6, 1))$.

The result follows by combining the above arguments.



Lemma 3.10 Suppose $n \ge 20$, and T is a tree of order n with k branching points. If $k \ge 3$, then WW(T) < WW(T(n; 1, 1; n - 6, 1)).

Proof. We prove the lemma by induction on k. By Lemma 3.9, it is true for k=3.

Let $k \geq 4$, and T be a tree of order n with k branching points. Then T must have an out-branching point, and by Proposition 2.3, $WW(T) < WW(T_C)$, where T_C has k-1 branching points. Thus, $WW(T_C) < WW(T(n;1,1;n-6,1))$ follows from the induction hypothesis. This completes the proof.

Lemma 3.11 [14] Let T be a tree of order n, then $WW(T) \leq WW(P_n)$. Moreover, the equality holds if and only if $T = P_n$.

Let $\mathcal{T}(n)$ be the set of trees of order n. By combining Lemmas 3.1-3.11, we can conclude that

Theorem 3.1 Suppose $n \ge 20$ and $T \in \mathcal{T}(n) \setminus \{P_n, T(n; n-3, 1, 1), T(n; n-4, 2, 1), T(n; 1, 1; 1, 1), T(n; n-5, 3, 1), T(n; n-4, 1, 1, 1), T(n; 1, 1; 2, 1), T(n; n-6, 4, 1), T(n; n-5, 2, 2), T(n; 1, 1; n-5, 1), T(n; 1, 1; 3, 1), T(n; 2, 1; 2, 1), T(n; 1, 1; 1, 1), T(n; n-7, 5, 1), T(n; 1, 1; n-6, 1)\}, then <math>WW(P_n) > WW(T(n; n-3, 1, 1)) > WW(T(n; n-4, 2, 1)) > WW(T(n; 1, 1; 1, 1))$

> WW(T(n;n-5,3,1)) > WW(T(n;n-4,1,1,1)) > WW(T(n;1,1;2,1)) > WW(T(n;n-6,4,1)) > WW(T(n;n-5,2,2)) > WW(T(n;1,1;n-5,1)) > WW(T(n;1,1;3,1)) > WW(T(n;2,1;2,1)) > WW(T(n;1,1;1,1,1)) > WW(T(n;n-7,5,1)) > WW(T(n;1,1;n-6,1)) > WW(T).

4 The ordering of the smallest hyper-Wiener indices of trees

The first Zagreb index $M_1(G)$ is defined as [16]:

$$M_1(G) = \sum_{v \in V} d(v)^2,$$

it is also an important topological index and has been closely correlated with many chemical and mathematical properties [17-19]. In [19], it has been proved that

Lemma 4.1 [19] Let G be a connected (n, m) graph, then $M_1(G) \leq m \cdot max\{d(v) + m(v) : v \in V\}$, where $m(v) = \sum_{u \in N(v)} d(u)/d(v)$.

With the help of Lemma 4.1, we have

Lemma 4.2 Let T be a tree of order n, then

$$M_1(T) \le \max\{(n-1)(\Delta + \frac{n-1}{\Delta}), \frac{(n-1)(n+3)}{2}\}.$$

Proof. By Lemma 4.1, we only need to prove that $\max\{d(v) + m(v) : v \in V\} \le \max\{\Delta + \frac{n-1}{\Delta}, 2 + \frac{n-1}{2}\}$. Suppose $\max\{d(v) + m(v) : v \in V\}$ occurs at the vertex u. Two cases arise d(u) = 1, or $2 \le d(u) \le \Delta$.

Case 1. d(u) = 1. Suppose that N(u) = w. Since $m(u) = d(w) \le \Delta$, thus $d(u) + m(u) \le 1 + \Delta \le \Delta + \frac{n-1}{\Delta}$, the result follows.

Case 2. $2 \le d(u) \le \Delta$. If $n \le 4$, the conclusion clearly follows. If $n \ge 5$, note that

$$m(u) = \sum_{v \in N(u)} d(v)/d(u) \le \frac{n-1}{d(u)},$$

then $d(u) + m(u) \le d(u) + \frac{n-1}{d(u)}$. Let $f(x) = x + \frac{n-1}{x}$, where $x \in [2, \Delta]$.

It is easy to see that $f'(x) = 1 - \frac{n-1}{x^2}$. Let a = n - 1. We consider the next two subcases.

Subcase 1. $2 \leq \sqrt{a} \leq \Delta$. Then, $f'(x) \leq 0$ for $x \in [2, \sqrt{a}]$, and $f'(x) \geq 0$ for $x \in [\sqrt{a}, \Delta]$. Thus, $f(x) \leq \max\{f(2), f(\Delta)\}$ for $x \in [2, \Delta]$.

Subcase 2. $\sqrt{a} > \Delta$. When $x \in [2, \Delta]$, since f'(x) < 0, then $f(x) \le f(2)$.

Recall that $2 \leq d(u) \leq \Delta$, thus

$$d(u)+m(u)\leq d(u)+\frac{n-1}{d(u)}\leq \max\{\Delta+\frac{n-1}{\Delta},2+\frac{n-1}{2}\}.$$

By combining the above discussion, this completes the proof.

In [9], a relation between WW(G) and $M_1(G)$ is reported as follows

Lemma 4.3 [9] Let G be a connected (n,m) graph, which does not contain triangles and/or quadrangles. Then, $WW(G) \ge 3n(n-1) - \frac{3}{2}M_1(G) - 2m$.

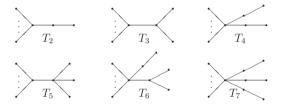


Fig. 5. The trees $T_2, ..., T_7$.

Let $T_1=K_{1,n-1}$, and $T_2,...,T_7$ be the trees of order $n\geq 17$ as shown in Fig. 5. By an directly calculation, we have $WW(T_1)=\frac{1}{2}(3n^2-7n+4),\ WW(T_2)=\frac{1}{2}(3n^2-n-14),$ $WW(T_3)=\frac{1}{2}(3n^2+5n-44),\ WW(T_4)=\frac{1}{2}(3n^2+5n-30),\ WW(T_5)=\frac{1}{2}(3n^2+11n-86),$ $WW(T_6)=\frac{1}{2}(3n^2+11n-58),\ WW(T_7)=\frac{1}{2}(3n^2+11n-44).$

As shown in the next theorem, $T_1, ..., T_7$ is the trees with the first up to seventh smallest hyper-Wiener indices among $\mathcal{T}(n)$, where $n \geq 17$.

Theorem 4.1 Suppose $n \ge 17$ and $T \in \mathcal{T}(n) \setminus \{T_1, T_2, T_3, T_4, T_5, T_6, T_7\}$, then $WW(T) > WW(T_7) > WW(T_6) > WW(T_5) > WW(T_4) > WW(T_3) > WW(T_2) > WW(T_1)$.

The proof of Theorem 4.1 needs the following Lemmas

Lemma 4.4 If T is a tree of order $n \ (n \ge 17)$ with $\Delta \le n-7$, then $WW(T) > WW(T_7)$.

Proof. Let $f(x) = x + \frac{n-1}{x}$, where $x \in [2, n-7]$. By the proof of Lemma 4.2, we can conclude that $f(x) \leq \max\{n-7 + \frac{n-1}{n-7}, 2 + \frac{n-1}{2}\}$. Recall that $2 \leq \Delta \leq n-7$, then by Lemma 4.2 it follows that

$$M_1(T) \le \max\{(n-1)(n-7) + \frac{(n-1)^2}{n-7}, \frac{(n-1)(n+3)}{2}\}.$$

Bearing Lemma 2.4 and $n \ge 17$ in mind, we have

$$WW(T) \geq \min\{\frac{3n^2+14n-17}{2} - \frac{3(n-1)^2}{2(n-7)}, \frac{9n^2-26n+17}{4}\} > \frac{3n^2+11n-44}{2} = WW(T_7).$$

This completes the proof of this lemma.

A graph G'=(V',E') is called an *induced subgraph* of G=(V,E) if $V'\subseteq V$ and $uv\in E'$ if and only if $uv\in E$. Suppose $n\geq 17$ and T is a tree of order n with $\Delta\geq n-6$, let u_0 denote the center of the unique star $K_{1,\Delta}$ of T ($K_{1,\Delta}$ is an induced subgraph of T), and $\kappa(T)=max\{d(u_0,v),\,v\in V(T)\}$. Clearly, $\kappa(T)=1$ if and only if $T=K_{1,n-1}$.

Let H_t and F_t be the trees of order t as shown in Fig. 6.

Fig. 6. The trees H_t and F_t .

Lemma 4.5 If T is a tree of order $n \ (n \ge 17)$ with $\Delta = n - 6$, then $WW(T) > WW(T_7)$.

Proof. We divide the proof in to the next two cases.

Case 1. $\kappa(T) \geq 3$. Then T contains H_{n-3} as an induced subgraph. Let $\{v_1, v_2, v_3\} = V(T) \setminus V(H_{n-3})$, and v_0 be the vertex such that $d(u_0, v_0) = 3$ in H_{n-3} (see Fig. 6). It is easy to see that $\gamma(T, 1) = n - 1$. Note that $d(v_i, u_0) \geq 2$, and either $d(u_0, v_i) \geq 3$ or $d(v_0, v_i) \geq 3$ holds for $1 \leq i \leq 3$, then

$$WW(T) = \frac{1}{2} \sum_{s \ge 1} s(s+1)\gamma(T,s)$$

$$\ge n - 1 + 6 \cdot (3(n-7) + 3) + \frac{1}{2} \sum_{s \ge 2} s(s+1)\gamma(H_{n-3},s)$$

$$= n - 1 + 3(2 + \binom{n-6}{2}) + 6(4n-24) + 10(n-7)$$

$$= \frac{3n^2 + 31n - 292}{2}$$

$$> \frac{3n^2 + 11n - 44}{2}$$

$$= WW(T_7).$$

Case 2. $\kappa(T) = 2$. Then T contains F_{n-4} as an induced subgraph. Let $\{v_1, v_2, v_3, v_4\} = V(T) \setminus V(F_{n-4})$, and v_0 be the vertex such that $d(u_0, v_0) = 2$ in F_{n-4} (see Fig. 6). It is easy to see that $\gamma(T, 1) = n - 1$. Note that $d(v_i, u_0) = 2$, and $d(v_i, v_0) \geq 2$ holds for $1 \leq i \leq 4$. Moreover, bearing in mind that $d(v_i, v_j) \geq 2$ holds for $1 \leq i \leq 4$, then

$$\begin{split} WW(T) &= \frac{1}{2} \sum_{s \geq 1} s(s+1) \gamma(T,s) \\ &\geq n - 1 + 3 \cdot (4 + 4 + 6) + 6 \cdot 4(n-7) + \frac{1}{2} \sum_{s \geq 2} s(s+1) \gamma(F_{n-4},s) \\ &= n - 1 + 3(15 + \binom{n-6}{2}) + 6 \cdot 5(n-7) \\ &= \frac{3n^2 + 23n - 206}{2} \\ &> \frac{3n^2 + 11n - 44}{2} \\ &= WW(T_7). \end{split}$$

By combining the above discussion, the result follows.

Lemma 4.6 If T is a tree of order $n \ (n \ge 17)$ with $\Delta = n - 5$, then $WW(T) > WW(T_7)$.

Proof. We consider the next two cases.

Case 1. $\kappa(T) \geq 3$. Then T contains H_{n-2} as an induced subgraph. Clearly, $\gamma(T,1) = n-1$. Let $\{v_1, v_2\} = V(T) \setminus V(H_{n-2})$. Note that $d(v_i, u_0) \geq 2$ holds for $1 \leq i \leq 2$, then

$$WW(T) = \frac{1}{2} \sum_{s \ge 1} s(s+1)\gamma(T,s)$$

$$\ge n - 1 + 3 \cdot 2 + 6 \cdot 2(n-6) + \frac{1}{2} \sum_{s \ge 2} s(s+1)\gamma(H_{n-2},s)$$

$$= n - 1 + 3(4 + \binom{n-5}{2}) + 6(3n-17) + 10(n-6)$$

$$= \frac{3n^2 + 25n - 212}{2}$$

$$> \frac{3n^2 + 11n - 44}{2}$$

$$= WW(T_7).$$

Case 2. $\kappa(T) = 2$. Then T contains F_{n-3} as an induced subgraph. Let $\{v_1, v_2, v_3\} = V(T) \setminus V(F_{n-3})$, and v_0 be the vertex such that $d(u_0, v_0) = 2$ in F_{n-3} (see Fig. 6). It is easy to see that $\gamma(T, 1) = n - 1$. Note that $d(v_i, u_0) = 2$, and $d(v_i, v_0) \geq 2$ holds for $1 \leq i \leq 3$. Moreover, bearing in mind that $d(v_i, v_j) \geq 2$ holds for $1 \leq i < j \leq 3$, then

$$WW(T) = \frac{1}{2} \sum_{s \ge 1} s(s+1)\gamma(T,s)$$

$$\ge n - 1 + 3 \cdot (3+3+3) + 6 \cdot 3(n-6) + \frac{1}{2} \sum_{s \ge 2} s(s+1)\gamma(F_{n-3},s)$$

$$= n - 1 + 3(10 + \binom{n-5}{2}) + 6 \cdot 4(n-6)$$

$$= \frac{3n^2 + 17n - 140}{2}$$

$$> \frac{3n^2 + 11n - 44}{2}$$

$$= WW(T_7).$$

By combining the above arguments, the result follows.

Lemma 4.7 Let T be a tree of order n $(n \ge 17)$ with $\Delta = n - 4$. If $T \notin \{T_5, T_6, T_7\}$, then $WW(T) > WW(T_7)$.

Proof. Note that T_5, T_6, T_7 are the all trees with $\Delta = n - 4$ and $\kappa = 2$, since $T \not\in \{T_5, T_6, T_7\}$, then $\kappa(T) \geq 3$. This implies that T contain H_{n-1} as an induced subgraph. It is easy to see that $\gamma(T, 1) = n - 1$. Let $\{v_1\} = V(T) \setminus V(H_{n-1})$. Note that $d(v_1, u_0) \geq 2$, then

$$WW(T) = \frac{1}{2} \sum_{s \ge 1} s(s+1)\gamma(T,s)$$

$$\ge n - 1 + 3 \cdot 1 + 6 \cdot (n-5) + \frac{1}{2} \sum_{s \ge 2} s(s+1)\gamma(H_{n-1},s)$$

$$= n - 1 + 3(3 + \binom{n-4}{2}) + 6(2n-9) + 10(n-5)$$

$$= \frac{3n^2 + 19n - 132}{2}$$

$$> \frac{3n^2 + 11n - 44}{2}$$

$$= WW(T_7).$$

This completes the proof of this lemma.

Lemma 4.8 Let T be a tree of order n $(n \ge 17)$ with $\Delta = n - 3$. If $T \notin \{T_3, T_4\}$, then $WW(T) > WW(T_7)$.

Proof. Note that T_3, T_4 are the all trees with $\Delta = n - 3$ and $\kappa = 2$, since $T \notin \{T_3, T_4\}$, then $\kappa(T) = 3$. This implies that $T \cong H_n$. By directly computation, we have

$$WW(T) = WW(H_n) = \frac{3n^2 + 13n - 70}{2} > \frac{3n^2 + 11n - 44}{2} = WW(T_7).$$

This completes the proof of this lemma.

Lemma 4.9 [14] Let T be a tree of order n, then $WW(T) \ge WW(T_1)$. Moreover, the equality holds if and only if $T = T_1$.

Proof for Theorem 4.1. By the values of $WW(T_2)$, $WW(T_3)$, \cdots , $WW(T_7)$ and $n \ge 17$, it is easy to see that $WW(T_2) < WW(T_3) < \cdots < WW(T_7)$. Recall that T_1 and T_2 are the all trees of order n with $n-2 \le \Delta \le n-1$, then Theorem 4.1 follows from Lemmas 4.4-4.9.

References

- H. Wiener, Structrual determination of paraffin boiling points, J. Am. Chem. Soc. 69(1947) 17-20.
- [2] M. Randić, Novel Molecular Descriptor for Structure-Property Studies, Chem. Phys. Lett. 211(1993) 478-483.
- [3] W. Linert, I. Lukovits, Formulas for the Hyper-Wiener and Hyper-Detour Indices of Fused Bicyclic Structures, MATCH Commun. Math. Comput. Chem. 35(1997) 211-249.
- [4] D. J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35(1995) 50-52.
- [5] S. Klavžar, P. Zigert, I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. Chem. 24(2000) 229-233.
- [6] X. Li, A. F. Jalbout, Bond order weighted hyper-Wiener index, J. Mol. Structure (Theochem) 634(2003) 121-125.

- [7] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The hyper-Wiener index of graph operations, Comp. Math. with Appl. 56(2008) 1402-1407.
- [8] I. Gutman, Relation between hyper-Wiener and Wiener index, Chem. Phys. Lett. 364(2002) 352-356.
- [9] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394(2004) 93-95.
- [10] I. Gutman, B. Furtula, Hyper-Wiener index vs. Wiener index-Two highly correlated structure descriptors, Monatsh. Chem. 134 (2003) 975-981.
- [11] I. Gutman, J. Rada, O. Araujo, The Wiener index of starlike trees and a related partial order, MATCH Commun. Math. Comput. Chem. 42(2000) 145-154.
- [12] X. Guo, H. Dong, Ordering trees by their Wiener indices, J. Xiamen Univ. (Nat. Sci.) 44 (2005) 297-298.
- [13] H. Y. Deng, The trees on $n \geq 9$ vertices with the first to seventeenth greastest Wiener indices are chemical trees, *MATCH Commun. Math. Comput. Chem.* 57(2007) 393-402.
- [14] I. Gutman, A property of the Wiener number and its modifications, Indian Journal of Chemistry 36A (1997) 128-132.
- [15] M. H. Liu, X. Z. Tan, The first to (k + 1)-th smallest Wiener (hyper-Wiener) indices of connected graphs, $Kragujevac\ Journal\ of\ Math.$ preprinted.
- [16] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17**(1972) 535-538.
- [17] X. L. Li, I. Gutman, Mathematical Aspects of Randic'-Type Molecular Structure Descriptors, MCM, Kragujevac, 2006.
- [18] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52(2004) 113-118.
- [19] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Disc. Math. 285(2004) 57-66.