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Abstract

The PI, vertex PI and edge Szeged index are three of most important Szeged-

like topological indices introduced very recently. The aim of this paper is to

present some sharp inequalities between PI, Vertex PI, Szeged and edge Szeged

indices of graphs.

1 Introduction

Throughout this paper we only consider finite connected graph. Let G be a graph with

vertex and edge sets V (G) and E(G), respectively. As usual, the distance between

the vertices u and v of G is denoted by dG(u, v) (d(u, v) for short) and it is defined

as the number of edges in a shortest path connecting the vertices u and v.
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Suppose Graph denotes the class of all graphs. A map Top from Graphs into real

numbers is called a topological index, if G ∼= H implies that Top(G) = Top(H). The

Wiener index was the first reported topological index based on graph distances, see

[28]. This index is defined as the sum of all distances between vertices of the graph

under consideration, see for detail [7, 8].

Let e = uv be an edge of the graph G. The number of vertices of G whose

distance to the vertex u is smaller than the distance to the vertex v is denoted by

nu(e). Analogously, nv(e) is the number of vertices of G whose distance to the vertex

v is smaller than the distance to the vertex u. The edge variants of nu(e) and nv(e)

are denoted by mu(v) and mv(e), respectively. We now define four topological indices

of the PI, vertex PI, Szeged and edge Szeged indices of the graph G as follows:

PI(G) =
∑

e=uv

[mu(e) + mv(e)] ([20, 19, 3]),

P Iv(G) =
∑

e=uv

[nu(e) + nv(e)] ([22, 23, 1, 29]),

Sz(G) =
∑

e=uv

[nu(e) · nv(e)] ([12]),

Sze(G) =
∑

e=uv

[mu(e) · mv(e)] ([13, 21, 27]).

These topological indices attracted recently much attention [2, 4, 5, 9, 10, 11, 14, 15,

16, 17, 18, 24, 25].

Define NG(u) to be the set of all vertices adjacent to u. The diameter diam(G)

is the greatest distance between two vertices of G. The complete graph on vertices is

denoted by Kn. Other notations are standard and taken mainly from [6, 26].

2 Main Results

A graph G is called k−regular if degG(v) = k, for all v ∈ V (G); a regular graph is

one that is k−regular for some k. A k−regular graph G is said to be strongly regular

with parameters (v, k, r, s) if |v(G)| = v, any two adjacent vertices of G have exactly

r common neighbors and any two non-adjacent vertices of G have exactly s common

neighbors. In this case, we denote G by Srg(v, k, r, s). It is well-known that if G is

strongly regular with parameters (v, k, r, s) then r > 0. Moreover, strongly regular

graphs have diameter 2.

Theorem 1. Let G = Srg(v, k, r, s) be a connected graph. Then PIv(G) = kv(k−r)
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and Sz(G) = m(k − r)2.

Proof. Let G be a strongly regular graph with parameters (v, k, r, s). It is easy to

see that s = 0 if and only if G is a graph in which its components are complete

graphs with the same vertices. Since G is connected, G ∼= Kv, as desired. Suppose

s ≥ 1 and e = uv is an edge of G. Define Ae to be the set of all vertices which are

equidistant from u and v. Choose a vertex x outside NG(u) ∪ NG(v). Since strongly

regular graphs have diameter 2, d(u, x) = d(v, x) = 2. Thus nu(e) = nv(e) = k − r.

Therefore, PIv(G) = kv(k − r) and Sz(G) = m(k − r)2. �

A chordless cycle C of a graph H is a graph cycle of length at least four such that

the graph cycle is an induced subgraph. A chordal graph is a simple graph possessing

no chordless cycles.

Theorem 2. Suppose G is a graph.

(a) If for every e = uv ∈ E(G), Min{nu(e), nv(e)} = 1 then G is complete or a

chordal graph of diameter 2.

(b) If Min{mu(e),mv(e)} = 1 then G is a cycle of length ≤ 4.

Proof. (a) Suppose G is not chordal. Then there is a chordless cycle C : u1, u2, . . . , un, u1.

Consider the edge e = u2u3 ∈ C. Since d(u1, u2) < d(u1, u3 and d(u3, u4) < d(u3, u1),

Min{nu(e), nv(e)} > 1 lead to a contradiction. So G is chordal. If diam(G) ≥ 3 then

there are vertices u and v such that d(u, v) = 3. Consider the path P : u,w, z, v in G.

Since d(u,w) < d(u, v) and d(z, v) < d(z, u), Min{nu(wz), nv(wz)} > 1 lead again to

a contradiction. So diam(G) = 2 and the proof is complete. The proof of part (b) is

the same as (a). �

Theorem 3. Let G be connected graph with exactly n and m vertices and edges,

respectively. Then the following statements are holds:

(a) PIv(G) ≤ 2Sz(G) with equality if and only if G is a complete graph.

(b) PIv(G) ≥ 4
n
Sz(G) with equality if and only if n is even and G is the complete

bipartite graph Kn
2

, n
2
.

(c) PIv(G)2 > 4Sz(G), PIv(G)2 > (2m+2Sz(G) and Pv(G)2 > PIv(G)+2Sz(G).

(d) If for each edge e = uv ∈ E(G), Min{nu(e), nv(e)} = 1 then PIv(G) > Sz(G).

(e) If for each edge e = uv ∈ E(G), Min{nu(e), nv(e)} > 1 then PIv(G) < Sz(G).

Proof. (a) Since for every edge e = uv, nu(e) + nv(e) ≤ 2nu(e)nv(e), PIv(G) ≤
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2Sz(G). The equality is satisfied if and only if for each edge e = uv, nu(e) = nv(e) =

1 if and only if G is complete. To prove (b), we notice that (nu(e) + nv(e))
2 ≥

4nu(e)nv(e). Thus,

nPIv(G) =
∑

e=uv

n[nu(e) + nv(e)]

≥ ∑
e=uv

[nu(e) + nv(e)]
2

≥ ∑
e=uv

4nu(e)nv(e) = 4Sz(G) .

Obviously, the equality is satisfied if and only if nu(e) = nv(e) = n
2
, for each edge

e = uv, if and only if G is a complete bipartite graph Kn
2

, n
2
. On the other hand,

PIv(g)2 ≥ ∑
e=uv[nu(e) + nv(e)]

2 ≥ 4Sz(G), leads to the proof of (c). Other parts

of (c) are obtained in a similar way. To prove (d), it is enough to notice that if

Min{nu(e), nv(e)} = 1 then nu(e) + nv(e) > nu(e)nv(e). Hence PIv(G) > Sz(G).

The proof of (e) is similar to (d) and it is omitted. �

Theorem 4. Let G be n−vertex connected graph. Then the following statements

are holds:

(a) If Mine=uv∈E(G){mu(e),mv(e)} ≥ 1 then for each edge e = uv ∈ E(G),

Min{mu(e), mv(e)} ≥ 1 then PI(G) ≤ 2Sze(G) with equality if and only if G is

a cycle graph of length ≤ 4.

(b) PI(G) ≥ 4
m−1

Sze(G) with equality if and only if m− 1 is even and G is a tree

with an odd number of vertices or a cycle of odd length.

(c) PI(G)2 > 4Sze(G) and if Mine=uv∈E(G){mu(e),mv(e)} ≥ 1 then PI(G)2 >

(2m + 2Sz(G).

(d) If for each edge e = uv ∈ E(G), Min{mu(e), mv(e)} = 1 then PI(G) >

Sze(G).

(e) If for each edge e = uv ∈ E(G), Min{mu(e),mv(e)} > 1 then PI(G) <

Sze(G).

(f) If for each edge e = uv ∈ E(G), Min{mu(e),mv(e)} = 0 then G is isomorphic

to K2.

Proof. The proof is similar to those of Theorem 3 and is omitted. �
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