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Abstract

The Szeged index of a connected graph G is defined as

Sz(G) =
∑

e∈E(G)

n1(e|G)n2(e|G),

where E(G) is the edge set of G, and for the edge e = uv ∈ E(G), n1(e|G) and n2(e|G)

are respectively the number of vertices of G lying closer to vertex u than to vertex v

and the number of vertices of G lying closer to vertex v than to vertex u. Gutman

has determined the n-vertex unicyclic graphs with the smallest and the largest Szeged

indices. Now we determine the n-vertex unicyclic graphs of cycle length r with the

smallest and the largest Szeged indices for 3 ≤ r ≤ n, the n-vertex unicyclic graphs

with the second, the third and the fourth smallest Szeged indices, and the n-vertex

unicyclic graphs with the kth largest Szeged indices for all k up to n
2

+ 2 if n ≥ 6 is

even, to four if n = 7, to five if n = 9, to n+13
4

if n ≡ 3 (mod 4) with n ≥ 11, and to
n+15

4
if n ≡ 1 (mod 4) with n ≥ 13.
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1. INTRODUCTION

Topological indices are used in theoretical chemistry for design of chemical com-

pounds with given physicochemical properties or given pharmacologic and biological

activities. The Wiener index is one of the oldest and the most thoroughly studied

topological indices [1–5]. The Szeged index is another such topological index which

coincides to the Wiener index on trees [6].

Let G be a simple connected (molecular) graph with vertex set V (G) and edge

set E(G). If e is an edge of G connecting the vertices u and v, then we write e = uv

or e = vu. The number of vertices of G is denoted by |G|.
Let e = uv ∈ E(G). Let n1(e|G) and n2(e|G) be respectively the number of

vertices of G lying closer to vertex u than to vertex v and the number of vertices of G

lying closer to vertex v than to vertex u. The Szeged index of the graph G is defined

as [6]

Sz(G) =
∑

e∈E(G)

n1(e|G)n2(e|G).

It has received much attention for both its mathematical properties and its chemi-

cal applications, see, e.g., [7–21]. In particular, Khadikar et al. [21] described various

applications of Szeged index for modeling physicochemical properties as well as physi-

ological activities of organic compounds acting as drugs or possessing pharmacological

activity.

A unicyclic graph is a connected graph with a unique cycle. Let Cn be the n-vertex

cycle. Let Sn,r be the unicyclic graph obtained by attaching n− r pendent vertices to

a vertex of the cycle Cr, where 3 ≤ r ≤ n. In particular, Sn,n = Cn. Let Qn = Cn if n

is even and Qn = Sn,n−1 if n is odd. The n-vertex unicyclic graphs with the smallest

and the largest Szeged indices have been known [6]: Sn,3 and Qn are respectively the

unique n-vertex unicyclic graphs with the smallest and the largest Szeged indices.

In this paper, we determine the n-vertex unicyclic graphs of cycle length r with the

smallest and the largest Szeged indices for 3 ≤ r ≤ n, the n-vertex unicyclic graphs

with the second, the third and the fourth smallest Szeged indices, and the n-vertex

unicyclic graphs with the kth largest Szeged indices for all k up to n
2

+ 2 if n ≥ 6 is

even, to four if n = 7, to five if n = 9, to n+13
4

if n ≡ 3 (mod 4) with n ≥ 11, and to

n+15
4

if n ≡ 1 (mod 4) with n ≥ 13.
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2. PRELIMINARIES

The distance between the vertices u and v of a connected graph G, denoted by

d(u, v|G), is equal to the length (number of edges) of a shortest path connecting

them. Let D(u|G) =
∑

v∈V (G)

d(u, v|G). Recall that the Wiener index of the graph G

is defined as [3]

W (G) =
∑

{u,v}⊆V (G)

d(u, v|G) =
1

2

∑
u∈V (G)

D(u|G),

and that if G is a tree then W (G) = Sz(G).

Let Cr(T1, T2, . . . , Tr) be the graph constructed as follows. Let the vertices of

the cycle Cr be labelled consecutively by v1, v2, . . . , vr. Let T1, T2, . . . , Tr be vertex–

disjoint trees such that Ti and the cycle Cr have exactly one vertex vi in common for

i = 1, 2, . . . , r. Then any n-vertex unicyclic graph G with a cycle on r vertices is of

the form Cr(T1, T2, . . . , Tr), where
r∑

i=1

|Ti| = n.

Let δ(n) = 0 if n is even and δ(n) = 1 if n is odd. Gutman et al. [13] showed that

Proposition 1. [13] Let G = Cr(T1, T2, . . . , Tr). Then

Sz(G) =
r∑

i=1

W (Ti) +
r∑

i=1

(|G| − |Ti|)D(vi|Ti)

+
r∑

i=1

r∑
j=1

|Ti||Tj|d(vi, vj|Cr) − δ(r)
∑
i<j

|Ti||Tj|.

Let Sn and Pn be respectively the n-vertex star and path.

Lemma 1. [3] Let T be an n-vertex tree different from Sn and Pn. Then (n − 1)2 =

W (Sn) < W (T ) < W (Pn) = n3−n
6

.

The following lemma is obvious.

Lemma 2. [22] Let T be an n-vertex tree with u ∈ V (T ), where n ≥ 3. Let x and y

be the center of the star Sn and a terminal vertex of the path Pn, respectively. Then

n − 1 = D(x|Sn) ≤ D(u|T ) ≤ D(y|Pn) = n(n−1)
2

. Left equality holds exactly when

T = Sn and u = x, and right equality holds exactly when T = Pn and u is a terminal

vertex.
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For n ≥ 5, let S ′
n be the tree formed by attaching a pendent vertex to a pendent

vertex of the star Sn−1, and S ′′
n the tree formed by attaching two pendent vertices to

a pendent vertex of the star Sn−2.

Lemma 3. [22] Among the n-vertex trees with n ≥ 6, S ′
n and S ′′

n are respectively the

unique trees with the second and the third smallest Wiener indices, which are equal

to n2 − n − 2 and n2 − 7, respectively.

We will also use the following lemma.

Lemma 4. [22] Let T be an n-vertex tree with n ≥ 6, u ∈ V (T ), T �= Sn, where u

is not the vertex of maximal degree if T = S′
n. Let x and y be the vertex of maximal

degree in S ′
n and S ′′

n, respectively. Then n = D(x|S ′
n) < D(y|S ′′

n) ≤ D(u|T ).

For the graph G = Cr(T1, T2, . . . , Tr), let dij = d(vi, vj|Cr) and ti = |Ti| for

i = 1, 2, . . . , r.

Let Un,r be the set of n-vertex unicyclic graphs with cycle length r, where 3 ≤
r ≤ n, and Un the set of n-vertex unicyclic graphs, where n ≥ 3.

3. UNICYCLIC GRAPHS WITH SMALL SZEGED INDICES

Proposition 2. Let G ∈ Un,r, where 3 ≤ r ≤ n. Then Sz(G) ≥ Sz(Sn,r) with

equality if and only if G = Sn,r, where

Sz (Sn,r) =

⎧⎨
⎩

(n − 1)(n − r) + r2

4
(2n − r) if r is even,

n(n − 1) + 1
4
(r − 1)2(2n − r) − (n − 1)r if r is odd.

Proof. By the definition of the Szeged index, we have

Sz (Sn,r) = 1 · (n − 1) · (n − r) +
r

2
·
(
n − r

2

)
· r

= (n − 1)(n − r) +
r2

4
(2n − r)

if r is even, and

Sz (Sn,r) = 1 · (n − 1) · (n − r) +
r − 1

2
· r − 1

2

+
r − 1

2
·
(

n − r + 1

2

)
· (r − 1)
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= n(n − 1) +
1

4
(r − 1)2(2n − r) − (n − 1)r

if r is odd.

The cases r = n − 1, n are obvious. Suppose that r ≤ n − 2.

Assume that G = Cr(T1, T2, . . . , Tr) is a graph in Un,r with the smallest Szeged

index. By Proposition 1 and Lemmas 1 and 2, Ti is a star with center vi for i =

1, 2, . . . , r. Then

Sz(G) =
r∑

i=1

(ti − 1)2 +
r∑

i=1

(n − ti)(ti − 1)

+
r∑

i=1

r∑
j=1

titjdij − δ(r)
∑
i<j

titj

= (n − 1)(n − r) +
r∑

i=1

r∑
j=1

titjdij

−δ(r)
∑
i<j

titj.

Let Ns =
∑
i�=s

tidsi. Suppose that there exist k and l with 1 ≤ k < l ≤ r such that

tk, tl ≥ 2.

Case 1. r is even. Assume that Nl ≥ Nk. For a pendent vertex w in Tl, consider

G′ = G − vlw + vkw ∈ Un,r. We have

Sz(G) − Sz(G′)
2

= [tktl − (tk + 1)(tl − 1)] dkl +
∑
i�=k,l

[tkti − (tk + 1)ti] dki

+
∑
i�=k,l

[tlti − (tl − 1)ti] dli

= dkl − Nk + Nl > 0,

which is a contradiction. Thus r − 1 of t1, t2, . . . , tr are equal to 1 and the remaining

one is equal to n − (r − 1), i.e., G = Sn,r.

Case 2. r is odd. Assume that Nl + 1
2
tl ≥ Nk + 1

2
tk. For a pendent vertex w in Tl,

consider G′ = G − vlw + vkw ∈ Un,r. We have

Sz(G) − Sz(G′)
2

= dkl − Nk + Nl − 1

2

[∑
i �=k,l

ti(tk + tl) −
∑
i �=k,l

ti(tk + 1 + tl − 1)

+tktl − (tk + 1)(tl − 1)

]

= dkl − Nk + Nl +
1

2
(−tk + tl − 1)
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= dkl − 1

2
−
(

Nk +
1

2
tk

)
+

(
Nl +

1

2
tl

)
> 0,

which is a contradiction. Thus r − 1 of t1, t2, . . . , tr are equal to 1 and the remaining

one is equal to n − (r − 1), i.e., G = Sn,r.

By combining Cases 1 and 2, the result follows. �

For fixed n, from the expression above, Sz (Sn,r) is increasing for even r and odd r,

respectively, where 3 ≤ r ≤ n. Note that Sz(Sn,4) = n2+3n−12 > Sz(Sn,3) = n2−2n

for n ≥ 4. By Proposition 2, we have: Sn,3 is the unique n-vertex unicyclic graph for

n ≥ 3 with the smallest Szeged index, which is equal to n2 − 2n (see [6]), and Sn,4

is the unique n-vertex bipartite unicyclic graph for n ≥ 4 with the smallest Szeged

index, which is equal to n2 + 3n − 12.

Let Φn =
n⋃

r=4

Un,r. Let Γn be the set of graphs C3(T1, T2, T3) in Un,3 with |T2| =

|T3| = 1. Let Ψn be the set of graphs C3(T1, T2, T3) in Un,3 with |T1| ≥ |T2| ≥
max{|T3|, 2}. Then Un = Φn ∪ Γn ∪ Ψn.

For n ≥ 5, let B′
n be the n-vertex unicyclic graph formed by attaching n − 5

pendent vertices and a path P2 to one vertex of a triangle. For n ≥ 6, let B′′
n be the

n-vertex unicyclic graph formed by attaching n − 6 pendent vertices and the star S3

at its center to one vertex of a triangle. Evidently, B′
n, B′′

n∈ Γn.

Lemma 5. Among the graphs in Γn with n ≥ 6, B′
n and B′′

n are respectively the

unique graphs with the second and the third smallest Szeged indices, which are equal

to n2 − n − 3 and n2 − 8, respectively.

Proof. The result holds trivially for n = 6, 7. Suppose that n ≥ 8. Let G =

C3(T1, T2, T3) ∈ Γn. Note that |T1| = n − 2 ≥ 6 and W (T2) = W (T3) = 0. By

Proposition 1, we have

Sz(G) = W (T1) + 2D(v1|T1) + 2(n − 2) + 1

which, together with Lemmas 3 and 4, implies that B′
n and B′′

n are respectively the

unique graphs in Γn with the second and the third smallest Szeged indices, where

Sz(B′
n) = W (S ′

n−2) + 2(n − 3 + 1) + 2n − 3 = n2 − n − 3,

Sz(B′′
n) = W (S ′′

n−2) + 2(n − 3 + 2) + 2n − 3 = n2 − 8.
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This proves the result. �

Let Sn(a, b, c) be the n-vertex unicyclic graph formed by attaching a−1, b−1 and

c−1 pendent vertices to the three vertices of a triangle, respectively, where a, b, c ≥ 1

and a + b + c = n.

Lemma 6. Among the graphs in Ψn with n ≥ 6, if n = 6 then Sn(n − 3, 2, 1) and

Sn(n−4, 2, 2) are respectively the unique graphs with the first and the second smallest

Szeged indices, which are equal to n2 − n− 4 = 26 and n2 − 9 = 27, respectively, and

if n ≥ 7 then Sn(n−3, 2, 1) and Sn(n−4, 3, 1) are respectively the unique graphs with

the first and the second smallest Szeged indices, which are equal to n2 − n − 4 and

n2 − 10, respectively.

Proof. The case n = 6 may be checked easily. Suppose that n ≥ 7. Let G =

C3(T1, T2, T3) ∈ Ψn with a ≥ b ≥ max{c, 2} and a + b + c = n, where a = |T1|,
b = |T2| and c = |T3|.

Suppose first that G = Sn(a, b, c). Then Sz(G) = n2−4n+3+ab+bc+ca. If c = 1

and (a, b, c) �= (n− 3, 2, 1), (n− 4, 3, 1), then from Sz(G) = n2 − 4n + 3 + ab + n− 1

and a + b = n − 1 we have

Sz(G) > Sz(Sn(n − 4, 3, 1)) = n2 − 10

> Sz(Sn(n − 3, 2, 1)) = n2 − n − 4.

If c ≥ 2, then

Sz(G) = −c2 + nc + n2 − 4n + 3 + ab

≥ −c2 + nc + n2 − 4n + 3 + (n − 2c)c

= −3c2 + 2nc + n2 − 4n + 3

≥ −3 · 22 + 2n · 2 + n2 − 4n + 3

= n2 − 9 > n2 − 10.

If G �= Sn(a, b, c), then by Proposition 1 and Lemmas 1–4, we have either Sz(G) ≥
Sz(C3(S

′
n−3, P2, P1)) = n2−7 > n2−10 for (b, c) = (2, 1) or Sz(G) > Sz(Sn(a, b, c)) ≥

Sz(Sn(n − 4, 3, 1)) = n2 − 10 otherwise. �
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Proposition 3. For n ≥ 6, Sn(n − 2, 1, 1) and Sn(n − 3, 2, 1) are respectively the

unique graphs in Un with the first and the second smallest Szeged indices, which are

equal to n2 − 2n and n2 − n − 4, respectively. Furthermore,

(i) S6(2, 2, 2) and B′
6 are the unique graphs in U6 with the third smallest Szeged

index, which is equal to 27, while B′′
6 is the unique graph in U6 with the fourth

smallest Szeged index, which is equal to 28;

(ii) B′
7 and S7(3, 3, 1) are the unique graphs in U7 with the third smallest Szeged

index, which is equal to 39, while S7(3, 2, 2) is the unique graph in U7 with the

fourth smallest Szeged index, which is equal to 40;

(iii) if n ≥ 8, then B′
n and Sn(n−4, 3, 1) are respectively the unique graphs in Un with

the third and the fourth smallest Szeged indices, which are equal to n2 − n − 3

and n2 − 10, respectively.

Proof. From the discussion above, the Szeged indices of graphs in Φn are at least

min{Sz(Sn,5), Sz(Sn,4)} = n2 + 2n − 15.

By Lemma 5, Sn,3 = Sn(n−2, 1, 1), B′
n and B′′

n are respectively the unique graphs

in Γn with the first, the second and the third smallest Szeged indices, which are equal

to n2 − 2n, n2 − n − 3 and n2 − 8, respectively.

By Lemma 6, for n ≥ 7, Sn(n − 3, 2, 1) and Sn(n − 4, 3, 1) are respectively the

unique graphs in Ψn with the first and the second smallest Szeged indices, which are

equal to n2 − n− 4 and n2 − 10, respectively, while Sn(n− 3, 2, 1) and Sn(n− 4, 2, 2)

are respectively the unique graphs in Ψ6 with the first and the second smallest Szeged

indices, which are equal to n2 − n − 4 = 26 and n2 − 9 = 27, respectively.

Note that Un = Φn ∪ Γn ∪ Ψn. Then the Szeged indices of the graphs in Un may

be ordered as:

Sz (Sn(n − 2, 1, 1)) = n2 − 2n < Sz(Sn(n − 3, 2, 1)) = n2 − n − 4

< Sz(B′
n) = n2 − n − 3

< Sz(Sn(n − 4, 3, 1)) = n2 − 10

< · · ·

for n ≥ 8,

Sz (Sn(n − 2, 1, 1)) = n2 − 2n < Sz(Sn(n − 3, 2, 1)) = n2 − n − 4
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< Sz(B′
n) = n2 − n − 3

= Sz(Sn(n − 4, 3, 1)) = n2 − 10

< · · ·

for n = 7, and

Sz (Sn(n − 2, 1, 1)) = n2 − 2n < Sz(Sn(n − 3, 2, 1)) = n2 − n − 4 = n2 − 10

< Sz(Sn(n − 4, 2, 2)) = n2 − 9

= Sz(B′
n) = n2 − n − 3

< · · ·

for n = 6.

To complete the proof, we need only to determine the graphs in Un for n = 6, 7

with the fourth smallest Szeged indices. As Sz(G) ≥ n2 + 2n − 15 for G ∈ Φn, these

graphs are just the graphs in Un of cycle length 3 for n = 6, 7 with the fourth smallest

Szeged indices, which may be checked directly. �

4. UNICYCLIC GRAPHS WITH LARGE SZEGED INDICES

Let P (r, l, a, b) be the unicyclic graph obtained by attaching a path Pa at one terminal

vertex to v1 and a path Pb at one terminal vertex to vl of the cycle Cr, where l =

1, 2, . . . , � r
2
� + 1. If a = 0 or b = 0, then no path is attached to v1 or vl. Let

Pn,r = P
(
r, r

2
+ 1, �n−r

2
�, �n−r

2
�) if r is even, and Pn,r = P (r, 1, n − r, 0) if r is odd.

Obviously, Pn,r ∈ Un,r, P (r, 1, 1, 1) = Sr+2,r, and if r is odd then P (r, l, n−r, 0) = Pn,r

for any l.

Proposition 4. Let G ∈ Un,r, where 3 ≤ r ≤ n. Then Sz(G) ≤ Sz(Pn,r) with

equality if and only if G = Pn,r, where

Sz(Pn,r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(n−r)(n−r+2)(2n+r−1)
12

+ rn2

4
if n and r are even,

(n−r−1)(n−r+1)(2n+r)
12

+ (r+1)n2−r2+r−1
4

if n is odd and r is even,

(n−r)(n−r+1)(n+2r−1)
6

+ (r−1)2(2n−r)
4

if r is odd.

Proof. By the definition of the Szeged index, we have

Sz (Pn,r) = 2

(n−r)/2∑
i=1

i(n − i) +
rn2

4
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=
(n − r)(n − r + 2)(2n + r − 1)

12
+

rn2

4

if n and r are even,

Sz (Pn,r) = 2

(n−r−1)/2∑
i=1

i(n − i) +
n − r + 1

2

(
n − n − r + 1

2

)
+

r(n2 − 1)

4

=
(n − r − 1)(n − r + 1)(2n + r)

12
+

(r + 1)n2 − r2 + r − 1

4

if n is odd and r is even, and

Sz (Pn,r) =
n−r∑
i=1

i(n − i) + (r − 1)
r − 1

2

(
n − 1 − r − 1

2

)
+

(r − 1)2

4

=
(n − r)(n − r + 1)(n + 2r − 1)

6
+

(r − 1)2(2n − r)

4

if r is odd.

The cases r = n, n − 1 are obvious. Suppose that r ≤ n − 2.

Assume that G = Cr(T1, T2, . . . , Tr) is a graph in Un,r with the largest Szeged

index. By Proposition 1 and Lemmas 1 and 2, Ti is a path with one terminal vertex

vi for i = 1, 2, . . . , r. Then

Sz(G) =
r∑

i=1

1

6

(
t3i − ti

)
+

r∑
i=1

1

2
(n − ti)ti(ti − 1)

+
r∑

i=1

r∑
j=1

titjdij − δ(r)
∑
i<j

titj

= −1

3

r∑
i=1

t3i +
1

2
(n + 1)

r∑
i=1

t2i −
1

2
n2 − 1

6
n

+
r∑

i=1

r∑
j=1

titjdij − δ(r)
∑
i<j

titj.

Let Ns =
∑
i �=s

tidsi. Suppose that there exist distinct k, l,m with 1 ≤ k, l,m ≤ r,

such that tk, tl, tm ≥ 2 and tm ≥ max{tk, tl}.
Case 1. r is even. Assume that t2k +ntl + 2Nl ≤ t2l +ntk + 2Nk. Let G′ be the graph

formed from G by deleting the pendent vertex in Tl and attaching it to the pendent

vertex in Tk. Obviously, G′ ∈ Un,r. Then

Sz(G) − Sz(G′) = −1

3

[
t3k + t3l − (tk + 1)3 − (tl − 1)3

]

+
n + 1

2

[
t2k + t2l − (tk + 1)2 − (tl − 1)2

]
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+2 [tktl − (tk + 1)(tl − 1)] dkl

+2
∑
i �=k,l

[tkti − (tk + 1)ti] dki

+2
∑
i �=k,l

[tlti − (tl − 1)ti] dli

= t2k − ntk − t2l + (n + 2)tl − (n + 1) + 2dkl

−2
∑
i�=k

tidki + 2
∑
i�=l

tidli

= (t2k + ntl + 2Nl) − (t2l + ntk + 2Nk)

+2tl + 2dkl − n − 1.

Note that 2tl +2dkl ≤ tl + tm + r ≤ n+1. If 2tl +2dkl < n+1, then Sz(G) < Sz(G′),

which is a contradiction. Suppose that 2tl + 2dkl = n + 1. Then dkl = r
2
, dml < r

2
and

tm = tl ≥ tk = 2. Assume that t2m +ntl +2Nl ≤ t2l +ntm +2Nm. Let G′′ be the graph

formed from G by deleting the pendent vertex in Tl and attaching it to the pendent

vertex in Tm. Obviously, G′′ ∈ Un,r. Since 2tl + 2dml − n − 1 < 0, we have

Sz(G) − Sz(G′′)

= (t2m + ntl + 2Nl) − (t2l + ntm + 2Nm) + 2tl + 2dml − n − 1 < 0,

and then Sz(G) < Sz(G′′), which is a contradiction again. Thus, r− 2 of t1, t2, . . . , tr

are equal to 1, say ti = 1 for i �= k, l. Let tk = a and tl = b, where a, b ≥ 1. Suppose

without loss of generality that k = 1 and l ≤ r
2

+ 1. We write G = Gl. If l ≤ r
2
, then

by Proposition 1 or the expression for Sz(G) given above, for a, b > 1, we have

Sz(Gl) − Sz(Gl+1)

= 2

[
abd1l − abd1,l+1 + ad1,l+1 − ad1,l + (b − 1)

∑
j �=1,l,l+1

(dlj − dl+1,j)

]

= 2 [abd1l − abd1,l+1 + ad1,l+1 − ad1,l + (b − 1)(d1,l+1 − d1,l)]

= −2(a − 1)(b − 1) < 0,

and then Sz(Gl) < Sz(Gl+1), a contradiction. Thus, if a, b > 1 then l = r
2

+ 1. We

write G = Ga,b, where a, b ≥ 1 and a + b + r − 2 = n. If a + 2 ≤ b, then

Sz (Ga,b) − Sz (Ga+1,b−1)

= a2 + nb + (2a − 2)dlk − b2 − na − (2b − 2)dlk + 2b + 2dlk − n − 1
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= (r − 1 − 2dlk)(b − a − 1) = −(b − a − 1) < 0,

and thus Sz(Ga,b) for a + b = n − r + 2 is maximum if and only if |a − b| ≤ 1. It

follows that G = P
(
r, r

2
+ 1, �n−r

2
�, �n−r

2
�) = Pn,r.

Case 2. r is odd. Assume that t2k + (n + 1)tl + 2Nl ≤ t2l + (n + 1)tk + 2Nk. Let G′

be the graph formed from G by deleting the pendent vertex in Tl and attaching it to

the pendent vertex in Tk. Obviously, G′ ∈ Un,r. Then

Sz(G) − Sz(G′) = (t2k + ntl + 2Nl) − (t2l + ntk + 2Nk)

+2tl + 2dkl − n − 1 + (−tk + tl − 1)

=
[
t2k + (n + 1)tl + 2Nl

]− [
t2l + (n + 1)tk + 2Nk

]

+2tl + 2dkl − n − 2 < 0.

Note that 2tl + 2dkl ≤ tl + tm + r ≤ n + 1. Thus, Sz(G) < Sz(G′), which is a

contradiction. Thus r − 2 of t1, t2, . . . , tr are equal to 1, say ti = 1 for i �= k, l. Let

tk = a and tl = b. We write G = Ga,b, where a, b ≥ 1 and a + b + r − 2 = n. If

a ≥ b ≥ 2, then

Sz(Ga,b) − Sz(Ga+1,b−1) = (r − 1 − 2dlk)(b − a − 1) + b − a − 1

= −(r − 2dlk)(a + 1 − b) < 0,

and thus Sz(Ga,b) is maximum for a + b = n − r + 2 and a ≥ b if and only if

a = n − (r − 1) and b = 1. It follows that G = P (r, 1, n − r, 0) = Pn,r.

By combining Cases 1 and 2, the result follows. �

For odd n ≥ 7, let Hn be the set of graphs Cn−3(T1, T2, . . . , Tn−3) with t1 = tj =

ts = 2, ti = 1 for i �= 1, j, s, and either 1 < j ≤ �n+1
4
� < n−1

2
≤ s ≤ n−5

2
+ j or

n − 2 − s ≥ s − j ≥ j − 1 ≥ �n+1
4
�. In the former case, there are

�(n+1)/4�∑
j=2

(j − 1) =
1

2

⌊
n − 3

4

⌋
·
⌊

n + 1

4

⌋
=

⎧⎨
⎩

(n−3)(n+1)
32

if n ≡ 3 (mod 4)

(n−5)(n−1)
32

if n ≡ 1 (mod 4)

(non-isomorphic) graphs. In the latter case, there are

p

(
n − 3 − 3

⌊
n − 3

4

⌋
, 3

)
=

⎧⎪⎨
⎪⎩

⌊
(n−3)2

192
+ 1

4

⌋
if n ≡ 3 (mod 4)⌊

(n+3)2

192
+ 1

4

⌋
if n ≡ 1 (mod 4)
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(non-isomorphic) graphs, where p(m, 3) is the number of partitions of m into exactly

three parts, and from [23], with A(3,m) = 1 for m ≡ 0 (mod 3) and A(3,m) = 0

otherwise,

p(m, 3) =
2m2 + 12m + 13 + 3(−1)m + 8A(3,m)

24
−
⌊

m + 1

2

⌋
=

⌊
m2 + 3

12

⌋
.

Thus,

|Hn| =

⎧⎪⎨
⎪⎩

(n−3)(n+1)
32

+
⌊

(n−3)2

192
+ 1

4

⌋
if n ≡ 3 (mod 4),

(n−5)(n−1)
32

+
⌊

(n+3)2

192
+ 1

4

⌋
if n ≡ 1 (mod 4).

In particular, |H7| = 1, |H9| = 2 and |H11| = 3.

Lemma 7. For odd n ≥ 7, let G = Cn−3(T1, T2, . . . , Tn−3), where t1 = tj = ts = 2,

ti = 1 for i �= 1, j, s, and 1 < j < s. Then

Sz(G) ≤ n3 − 3n2 + 11n − 9

4

with equality if and only if G is isomorphic to a graph in Hn.

Proof. By the definition of the Szeged index,

Sz(G) ≤ 1 · (n − 1) · 3 +

(
n − 3

2
+ 1

)
·
(

n − 3

2
+ 2

)
· (n − 3)

=
n3 − 3n2 + 11n − 9

4

with equality if and only if for every edge on the cycle, its contribution to Sz(G) is

maximal, which is equal to
(

n−3
2

+ 1
) · (n−3

2
+ 2

)
, i.e., any vertex of v1, vj, vs lies

outside a shortest path connecting the other two vertices in the cycle of G. Suppose

that the equality holds. By possible relabeling vertices on the cycle, we may suppose

that j − 1 ≤ s− j ≤ n− 2− s. Then dG(v1, vj) = j − 1 and dG(vj, vs) = s− j. Since

vj lies outside a shortest path connecting v1 and vs, we have dG(v1, vs) = min{n−2−
s, s− 1} = n− 2− s, and then s ≥ n−1

2
. If s = n−1

2
, then s− j < n− 2− s = n−3

2
. If

s > n−1
2

, then s− j ≤ n−2−s ≤ n−5
2

. In either case, we have s ≤ j + n−5
2

. Now there

are two possibilities: (1) j ≤ �n+1
4
� and then 1 < j ≤ �n+1

4
� < n−1

2
≤ s ≤ n−5

2
+ j,

implying that G ∈ Hn; (2) j − 1 ≥ �n+1
4
� and then obviously G ∈ Hn. Conversely, it

is easily seen that the bound for Sz(G) is attained for any graph G ∈ Hn. �

For even integer r ≥ 4, let S(r, l, 2, 1) be the unicyclic graph obtained by attaching

two pendent vertices to v1 and a pendent vertex to vl of the cycle Cr, where l =

1, 2, . . . , r
2

+ 1.
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Proposition 5. Among graphs in Un with n ≥ 6,

(i) if n is even, then Cn, P
(
n − 2, n

2
, 1, 1

)
and P (n − 2, 1, 2, 0) are respectively

the unique graphs with the first, the second and the third largest Szeged indices,

which are equal to n3

4
, 1

4
(n3−2n2+8n−8) and 1

4
(n3−2n2+8n−12) respectively,

P
(
n − 2, n

2
− (l − 3), 1, 1

)
for l = 4, . . . , n+4

2
, is the unique graph with the lth

largest Szeged index, which is equal to 1
4
(n3 − 2n2 + 8n − 8) − 2(l − 3);

(ii) if n is odd, then Pn,n−1 is the unique graph with the largest Szeged index, which

is equal to 1
4
(n3 − n2 + 3n − 3),

(a) for n = 7, 9, 11, P
(
n − 3, n−1

2
, 2, 1

)
and P (n−3, 1, 3, 0) are respectively the

unique graphs with the second and the third largest Szeged indices, which

are equal to 1
4
(n3−3n2 +15n−21) and 1

4
(n3−3n2 +15n−29) respectively,

for n = 7, P
(
n − 3, n−3

2
, 2, 1

)
, S

(
n − 3, n−1

2
, 2, 1

)
and graphs in H7 are

the unique graphs with the fourth largest Szeged index, which is equal to

1
4
(n3 − 3n2 + 11n − 9), for n = 9, P

(
n − 3, n−3

2
, 2, 1

)
is the unique graph

with the fourth largest Szeged index, which is equal to 1
4
(n3−3n2+15n−37),

while Cn, S
(
n − 3, n−1

2
, 2, 1

)
and graphs in H9 are the unique graphs with

the fifth largest Szeged index, which is equal to 1
4
(n3−3n2+11n−9), and for

n = 11, Cn and P
(
n − 3, n−3

2
, 2, 1

)
are respectively the unique graphs with

the fourth and the fifth largest Szeged indices, which are equal to 1
4
(n3 −

2n2 +n) and 1
4
(n3−3n2 +15n−37), respectively, while P

(
n − 3, n−5

2
, 2, 1

)
,

S
(
n − 3, n−1

2
, 2, 1

)
and graphs in H11 are the unique graphs with the sixth

largest Szeged index, which is equal to 1
4
(n3 − 3n2 + 11n − 9),

(b) for n ≥ 13, Cn, P
(
n − 3, n−1

2
, 2, 1

)
and P (n − 3, 1, 3, 0) are respectively

the unique graphs with the second, the third and the fourth largest Szeged

indices, which are equal to 1
4
(n3 − 2n2 + n), 1

4
(n3 − 3n2 + 15n − 21) and

1
4
(n3 − 3n2 + 15n − 29) respectively, P

(
n − 3, n−1

2
− (l − 4), 2, 1

)
for l =

5, . . . , �n+9
4
� is the unique graph with the lth largest Szeged index, which is

equal to 1
4
(n3−3n2 +15n−21)−4(l−4), for l = n+13

4
with n ≡ 3 (mod 4),

P
(
n − 3, n−1

2
− (l − 4), 2, 1

)
, S

(
n − 3, n−1

2
, 2, 1

)
and graphs in Hn are the

unique graphs with the lth largest Szeged index, which is equal to 1
4
(n3 −
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3n2 + 11n − 9), and for l = n+15
4

with n ≡ 1 (mod 4), S
(
n − 3, n−1

2
, 2, 1

)

and graphs in Hn are the unique graphs with the lth largest Szeged index,

which is equal to 1
4
(n3 − 3n2 + 11n − 9).

Proof. Let f1(r) = Sz(Pn,r) if n and r are even, f2(r) = Sz(Pn,r) if n is odd and r is

even, f3(r) = Sz(Pn,r) if r is odd. For fixed n, taking the derivatives for fi(r) where

i = 1, 2, 3 whose expressions are given in Proposition 4, we get

f ′
1(r) = f ′

2(r) =
r2

4
− r

2
+

1

6
> 0,

f ′
3(r) =

r2

4
− n

2
− 1

12
,

and f ′
3(r) > 0 if and only if r >

√
2n + 1

3
. Hence f1(r) and f2(r) are increasing

for r, f3(r) is decreasing for r <
√

2n + 1
3

and increasing for r >
√

2n + 1
3
, where

3 ≤ r ≤ n. Let G ∈ Un.

Case 1. n is even. Note that 3 <
√

2n + 1
3

< n − 3 for n ≥ 8. If the cycle length of

G is at most n − 3, then by Proposition 4,

Sz(G) ≤ Sz(Pn,r) = f3(3) =
n3 − 7n + 12

6
= 31 < 42 =

n3 − 2n2 + 4n

4

for n = 6, and

Sz(G) ≤ Sz(Pn,r) ≤ max{f1(n − 4), f3(n − 3), f3(3)}
= max

{
n3 − 4n2 + 24n − 40

4
,
n3 − 5n2 + 16n − 8

4
,
n3 − 7n + 12

6

}

<
n3 − 2n2 + 4n

4

for n ≥ 8. Suppose that the cycle length of G is at least n − 2. Then G = Cn and

Sz(G) = n3

4
, or G = Pn,n−1 and Sz(G) = 1

4
(n3 − 3n2 + 4n) < 1

4
(n3 − 2n2 + 4n), or the

cycle length of G is n − 2, then by Propositions 2 and 4,

Sz (P (n − 2, 1, 1, 1)) =
n3 − 2n2 + 4n

4

≤ Sz(G)

≤ Sz
(
P
(
n − 2,

n

2
, 1, 1

))
=

n3 − 2n2 + 8n − 8

4

and from the arguments of Proposition 4, we have

Sz (P (n − 2, l + 1, 1, 1)) − Sz (P (n − 2, l, 1, 1)) = 2
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for l = 2, 3, . . . , n−2
2

. Note that if the cycle length of G is n − 2, then either G =

P (n− 2, l, 1, 1) for l = 1, 2, . . . , n
2

or G = P (n− 2, 1, 2, 0) and Sz (P (n − 2, 1, 2, 0)) =

1
4
(n3 − 2n2 + 8n − 12). Now the result in (i) follows easily.

Case 2. n is odd. If the cycle length of G is at most n − 4, then by Proposition 4,

Sz(G) ≤ Sz(Pn,r) = f3(3) =
n3 − 7n + 12

6
= 51 < 66 =

n3 − 3n2 + 11n − 9

4

for n = 7, and

Sz(G) ≤ Sz(Pn,r) ≤ max{f3(n − 4), f3(3), f2(n − 5)}
= max

{
n3 − 6n2 + 25n − 20

4
,
n3 − 7n + 12

6
,
n3 − 5n2 + 35n − 71

4

}

<
n3 − 3n2 + 11n − 9

4

for n ≥ 9. If the cycle length of G is n − 2, then by Proposition 4,

Sz(G) ≤ Sz (P (n − 2, 1, 2, 0)) =
n3 − 4n2 + 9n − 2

4
<

n3 − 3n2 + 11n − 9

4
.

If the cycle length of G is n or n − 1, then G = Cn and Sz(G) = 1
4
(n3 − 2n2 + n), or

G = Pn,n−1 and Sz(G) = 1
4
(n3 − n2 + 3n − 3). Suppose that the cycle length of G is

n − 3, then by Propositions 2 and 4,

Sz (Sn,n−3) =
n3 − 3n2 + 3n + 15

4

≤ Sz(G)

≤ Sz

(
P

(
n − 3,

n − 1

2
, 2, 1

))
=

n3 − 3n2 + 15n − 21

4
.

It follows that in Un, Pn,n−1 is the unique graph with the largest Szeged index, which

is equal to 1
4
(n3 − n2 + 3n − 3).

To prove (ii), we need to consider the case when the cycle length of G is n − 3 in

more detail. In this case, G may be of five types:

(1) G = P (n − 3, l, 2, 1) for some l = 1, 2, . . . , n−1
2

, and from the arguments of

Proposition 4,

Sz (P (n − 3, l + 1, 2, 1)) − Sz (P (n − 3, l, 2, 1)) = 4 for l = 2, 3, . . . ,
n − 3

2
.

(2) G = S(n − 3, l, 2, 1) for some l = 1, 2, . . . , n−1
2

, and from the arguments of

Proposition 2 with Nl − N1 = l − 1 for l > 1,

Sz(G) = Sz (Sn,n−3) + 4(l − 1)
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≤ n3 − 3n2 + 3n + 15

4
+ 4 · n − 3

2
=

n3 − 3n2 + 11n − 9

4

with equality if and only if l = n−1
2

.

(3) G = P (n − 3, 1, 3, 0), for which

Sz(G) = 1·(n−1)+2·(n−2)+3·(n−3)+
n − 3

2
·n + 3

2
·(n−3) =

n3 − 3n2 + 15n − 29

4
.

(4) G is formed by attaching a star S3 at its center to a cycle of length n− 3, for

which

Sz(G) = 1 · (n − 1) · 2 + 3 · (n − 3) +
n − 3

2
· n + 3

2
· (n − 3)

=
n3 − 3n2 + 11n − 17

4
<

n3 − 3n2 + 11n − 9

4
.

(5) G is formed by attaching three pendent vertices, each to a vertex of the cycle

of length n − 3, say G = Cn−3(T1, T2, . . . , Tn−3), where t1 = tj = ts = 2, ti = 1 for

i �= 1, j, s, and 1 < j < s, and by Lemma 7,

Sz(G) ≤ n3 − 3n2 + 11n − 9

4

with equality if and only if G is isomorphic to a graph in Hn.

It is easily seen that

n3 − 3n2 + 11n − 9

4

≤ n3 − 3n2 + 15n − 37

4
= Sz

(
P

(
n − 3,

n − 3

2
, 2, 1

))

<
n3 − 3n2 + 15n − 29

4
= Sz(P (n − 3, 1, 3, 0))

<
n3 − 3n2 + 15n − 21

4
= Sz

(
P

(
n − 3,

n − 1

2
, 2, 1

))

with equality in the first inequality if and only if n = 7.

First we consider the cases when n = 7, 9, 11. Note that Sz(Cn) = n3−2n2+n
4

and

that

n3 − 2n2 + n

4
<

n3 − 3n2 + 11n − 9

4
=

n3 − 3n2 + 15n − 37

4
if n = 7,

n3 − 2n2 + n

4
=

n3 − 3n2 + 11n − 9

4
<

n3 − 3n2 + 15n − 37

4
if n = 9,

n3 − 3n2 + 11n − 9

4
<

n3 − 3n2 + 15n − 37

4
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<
n3 − 2n2 + n

4
<

n3 − 3n2 + 15n − 29

4
if n = 11.

If n = 7, 9, 11, then P
(
n − 3, n−1

2
, 2, 1

)
and P (n − 3, 1, 3, 0) are respectively the

unique graphs with the second and the third largest Szeged indices, which are equal

to 1
4
(n3 − 3n2 + 15n − 21) and 1

4
(n3 − 3n2 + 15n − 29) respectively. If n = 7, then

P
(
n − 3, n−3

2
, 2, 1

)
, S

(
n − 3, n−1

2
, 2, 1

)
and graphs in H7 are the unique graphs with

the fourth largest Szeged index, which is equal to 1
4
(n3 − 3n2 + 11n − 9). If n = 9,

then P
(
n − 3, n−3

2
, 2, 1

)
is the unique graph with the fourth largest Szeged index,

which is equal to 1
4
(n3 − 3n2 + 15n − 37), while Cn, S

(
n − 3, n−1

2
, 2, 1

)
and graphs

in H9 are the unique graphs with the fifth largest Szeged index, which is equal to

1
4
(n3 −3n2 +11n−9). If n = 11, then Cn and P

(
n − 3, n−3

2
, 2, 1

)
are respectively the

unique graphs with the fourth and the fifth largest Szeged indices, which are equal to

1
4
(n3 − 2n2 + n) and 1

4
(n3 − 3n2 + 15n − 37), respectively, while P

(
n − 3, n−5

2
, 2, 1

)
,

S
(
n − 3, n−1

2
, 2, 1

)
and graphs in H11 are the unique graphs with the sixth largest

Szeged index, which is equal to 1
4
(n3 − 3n2 + 11n − 9).

Now suppose that n ≥ 13. Note that

n3 − 3n2 + 15n − 21

4
< Sz(Cn) =

n3 − 2n2 + n

4

and that

n3 − 3n2 + 15n − 21

4
− 4(l − 4) ≥ n3 − 3n2 + 11n − 9

4
⇔ l ≤ n + 13

4
.

Thus, Cn, P
(
n − 3, n−1

2
, 2, 1

)
and P (n − 3, 1, 3, 0) are respectively the unique graphs

with the second, the third and the fourth largest Szeged indices, which are equal to

1
4
(n3 − 2n2 + n), 1

4
(n3 − 3n2 + 15n − 21) and 1

4
(n3 − 3n2 + 15n − 29) respectively.

Moreover, if n+13
4

is an integer, then P
(
n − 3, n−1

2
− l + 4, 2, 1

)
is the unique graph

with the lth largest Szeged index, which is equal to 1
4
(n3−3n2+15n−21)−4(l−4) for

l = 5, . . . , n+9
4

, and for l = n+13
4

, P
(
n − 3, n−1

2
− l + 4, 2, 1

)
, S

(
n − 3, n−1

2
, 2, 1

)
and

graphs in Hn are the unique graphs with the lth largest Szeged index, which is equal

to 1
4
(n3−3n2+11n−9), while if n+13

4
is not an integer, then P

(
n − 3, n−1

2
− l + 4, 2, 1

)

is the unique graph with the lth largest Szeged index, which is equal to 1
4
(n3 − 3n2 +

15n − 21) − 4(l − 4) for l = 5, . . . , n+11
4

, and for l = n+15
4

, S
(
n − 3, n−1

2
, 2, 1

)
and

graphs in Hn are the unique graphs with the lth largest Szeged index, which is equal

to 1
4
(n3 − 3n2 + 11n − 9). �
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