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Abstract

The Wiener index of a connected graph is defined as the sum of distances be-

tween all unordered pairs of its vertices. We determine the minimum Wiener indices

of trees and unicyclic graphs with given number of vertices and matching number,

respectively. The extremal graphs are characterized.

1. INTRODUCTION

Let G be a simple connected graph with vertex set V (G) and edge set E(G). For

u, v ∈ V (G), let dG(u, v) be the distance between the vertices u and v in G and let

DG(u) be the sum of distances between u and all other vertices of G, i.e., DG(u) =
∑

v∈V (G)

dG(u, v). The Wiener index of G is defined as [1]

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
u∈V (G)

DG(u).
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The Wiener index (often also called the Wiener number) is one of the oldest topo-

logical indices [1, 2]. It has found various applications in chemical research and has

been studied extensively [3–7]. For recent results on Wiener index, see, e.g., [8–13].

A matching M of the graph G is a subset of E(G) such that no two edges in M

share a common vertex. A matching M of G is said to be maximum, if for any other

matching M ′ of G, |M ′| ≤ |M |. The matching number of G is the number of edges

of a maximum matching in G. If M is a matching of a graph G and vertex v ∈ V (G)

is incident with an edge of M , then v is said to be M -saturated, and if every vertex

of G is M -saturated, then M is a perfect matching.

For integers n and m with 1 ≤ m ≤ �n/2�, let T(n,m) be the set of trees with

n vertices and matching number m, and let U(n,m) be the set of unicyclic graphs

with n vertices and matching number m. Obviously, if G ∈ T(n, 1), then G is the

star, and if G ∈ U(n, 1), then G is the triangle. In the following we assume that

2 ≤ m ≤ �n/2�.
In this paper, we determine the minimum Wiener indices of graphs in T(n,m) and

U(n,m), respectively. The extremal graphs are characterized. Recall that Dankel-

mann [14] determined the maximum Wiener index of connected graphs with n ≥ 5

vertices and matching number m ≥ 2, and characterized the unique extremal graph,

which turned out to be a tree. Thus, the maximum Wiener index of trees in T(n,m)

and the unique extremal graph have been known. Zhou and Trinajstić [15] determined

the minimum Wiener index of connected graphs with n ≥ 5 vertices and matching

number m ≥ 2, and characterized the extremal graphs. Some properties of the Wiener

index for trees may be found in [4, 10] and for unicyclic graphs in [13, 16].

2. PRELIMINARIES

For u ∈ V (G), let dG(u) be the degree of u in G, and the eccentricity of u, denoted by

ecc(u), is the maximum distance from u to all other vertices in G. A pendent vertex

is a vertex of degree one. The following lemma is easy.

Lemma 1. Let G ∈ T(2m,m), where m ≥ 2. Then G has a pendent vertex whose

unique neighbor is of degree two.

Lemma 2. [17, 18] Let G ∈ T(n,m), where n > 2m. Then there is a maximum

matching M and a pendent vertex u of G such that u is not M-saturated.
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Let Cn be a cycle with n vertices. For a unicyclic graph G with cycle Cs, the forest

formed from G by deleting the edges of Cs consists of s vertex–disjoint subtrees, each

containing a vertex on Cs, which is called the root of this tree in G. These subtrees

are called the branches of G.

Lemma 3. [19] Let G ∈ U(2m,m), where m ≥ 3, and let T be a branch of G with

root r. If u ∈ V (T ) is a pendent vertex furthest from the root r with dG(u, r) ≥ 2,

then u is adjacent to a vertex of degree two.

Lemma 4. [20] Let G ∈ U(n,m) where n > 2m, and G �∼= Cn. Then there is a

maximum matching M and a pendent vertex u of G such that u is not M-saturated.

Lemma 5. Let G be an n-vertex connected graph with a pendent vertex u being

adjacent to vertex v, and let w be a neighbor of v different from u, where n ≥ 4.

Then

W (G) − W (G − u) ≥ −dG(v) + 3n − 4

with equality if and only if ecc(v) = 2. Moreover, if dG(v) = 2, then

W (G) − W (G − u − v) ≥ −2dG(w) + 7n − 15

with equality if and only if ecc(w) = 2.

Proof. Note that DG(u) − DG(v) = n − 2. We have

W (G) − W (G − u) = DG(u) = DG(v) + n − 2

≥ dG(v) + 2(n − 1 − dG(v)) + n − 2

= −dG(v) + 3n − 4

with equality if and only if ecc(v) = 2.

If dG(v) = 2, then DG(v) − DG(w) = n − 4, and thus

W (G) − W (G − u − v) = DG(u) + DG(v) − 1 = 2DG(w) + 3n − 11

≥ 2[dG(w) + 2(n − 1 − dG(w))] + 3n − 11

= −2dG(w) + 7n − 15

with equality if and only if ecc(w) = 2. �

For 2 ≤ m ≤ �n/2�, let Tn,m be the tree obtained by attaching a pendent vertex

to m − 1 noncentral vertices of the star Sn−m+1, and let Un,m be the unicyclic graph
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obtained by attaching a pendent vertex to m − 2 noncentral vertices and adding

an edge between two other noncentral vertices of the star Sn−m+2; see also Fig. 1.

Obviously, Tn,m ∈ T(n,m) and Un,m ∈ U(n,m). It is easily checked that W (Tn,m) =

n2 + (m − 3)n − 3m + 4 and W (Un,m) = n2 + (m − 4)n − 3m + 6.
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Fig. 1. The graphs Tn,m and Un,m .

3. WIENER INDICES OF TREES

We first consider trees with a perfect matching.

Theorem 1. Let G ∈ T(2m,m), where m ≥ 2. Then

W (G) ≥ 6m2 − 9m + 4

with equality if and only if G = T2m,m.

Proof. Let f(m) = 6m2 − 9m + 4. We prove the result by induction on m. It is

easily checked that G = T4,2 if m = 2.

Suppose that m ≥ 3 and the result holds for trees in T(2m − 2,m − 1). Let

G ∈ T(2m,m) with a perfect matching M . By Lemma 1, there exists a pendent

vertex u in G adjacent to a vertex v of degree two. Then uv ∈ M and G − u − v ∈
T(2m − 2,m − 1). Let w be the neighbor of v different from u. Since |M | = m and

every pendent vertex is M -saturated, we have dG(w) ≤ m. By Lemma 5 and the

induction hypothesis,

W (G) ≥ W (G − u − v) − 2dG(w) + 14m − 15
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≥ f(m − 1) − 2m + 14m − 15 = f(m)

with equalities if and only if G − u − v = T2(m−1),m−1, dG(w) = m and ecc(w) = 2,

i.e., G = T2m,m. �

For trees with given matching number, we have

Theorem 2. Let G ∈ T(n,m), where 2 ≤ m ≤ �n/2�. Then

W (G) ≥ n2 + (m − 3)n − 3m + 4

with equality if and only if G = Tn,m.

Proof. Let f(n,m) = n2 + (m− 3)n− 3m + 4. We prove the result by induction on

n. If n = 2m, then the result follows from Theorem 1.

Suppose that n > 2m and the result holds for trees in T(n − 1,m). Let G ∈
T(n,m). By Lemma 2, there is a maximum matching M and a pendent vertex u of

G such that u is not M -saturated. Then G − u ∈ T(n − 1,m). Let v be the unique

neighbor of u. Since M is a maximum matching, M contains one edge incident with

v. Note that there are n− 1−m edges of G outside M . Then dG(v)− 1 ≤ n− 1−m,

i.e., dG(v) ≤ n − m. By Lemma 5 and the induction hypothesis,

W (G) ≥ W (G − u) − dG(v) + 3n − 4

≥ f(n − 1,m) − (n − m) + 3n − 4 = f(n,m)

with equalities if and only if G − u = Tn−1,m, dG(v) = n − m and ecc(v) = 2, i.e.,

G = Tn,m. �

Let G be a connected graph of order n and matching number m, where 2 ≤ m ≤
�n/2�. Dankelmann [14] showed that W (G) ≤ W (T n,m) with equality if and only if

G = T n,m, where T n,m is the tree formed by attaching respectively
⌈

n+1
2

⌉ − m and⌊
n+1

2

⌋− m pendent vertices to the two end vertices of the path P2m−1. Thus T n,m is

the unique tree with maximum Wiener index in T(n,m).

4. WIENER INDICES OF UNICYCLIC GRAPHS

In this section, we determine the unicyclic graph(s) of a given matching number with

minimum Wiener index.
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Lemma 6. [21] Let G0 be a connected graph with at least three vertices and let u

and v be two distinct vertices of G0. Let Gs,t be the graph obtained from G0 by

attaching s and t pendent vertices to u and v, respectively. If s, t ≥ 1, then W (Gs,t) >

min{W (Gs+t,0),W (G0,s+t)}.

Let Un(k) be the unicyclic graph obtained from Ck = v0v1 . . . vk−1v0 by attaching

a pendent vertex and n − k − 1 pendent vertices to v0 and v1, respectively, where

3 ≤ k ≤ n − 2. Note that W (Ck) = k
2
�k2

4
�. It is easily checked that

W (Un(k)) = W (Ck) + (n − k)

(
k +

⌊
k2

4

⌋)
+ 2

(
n − k

2

)
+ n − k − 1

=
k

2

⌊
k2

4

⌋
+ (n − k)

(
n +

⌊
k2

4

⌋)
− 1.

Lemma 7. Suppose that m + 1 ≤ k ≤ 2m − 2. If m ≥ 5 or (m, k) = (4, 6), then

W (U2m(k)) > 6m2 − 11m + 6.

Proof. Let f(k) = W (U2m(k)) = k
2

⌊
k2

4

⌋
+ (2m − k)

(
2m +

⌊
k2

4

⌋)
− 1 with m + 1 ≤

k ≤ 2m − 2.

Suppose that k is even. If m = 4, then k = 6, and thus f(k) − (6m2 − 11m +

6) = 2 > 0. Suppose that m ≥ 5. Then f(k) = −1
8
k3 + 1

2
mk2 − 2mk + 4m2 − 1,

and thus f ′(k) = −3
8
k2 + mk − 2m. Since f ′(m + 1) = 5

8
m2 − 7

4
m − 3

8
> 0 and

f ′(2m− 2) = 1
2
m2 −m− 3

2
> 0, for m+1 ≤ k ≤ 2m− 2, we have f ′(k) > 0, i.e., f(k)

is increasing on k. Thus, f(k) ≥ f(m+1) = 3
8
(m3 +7m2 −5m−3) > 6m2 −11m+6.

Suppose that k is odd. If m = 5, then k = 7, and thus f(k)− (6m2 − 11m + 6) =

6 > 0. If m ≥ 6, then by similar arguments as above, we have f(k) ≥ f(m + 1) >

6m2 − 11m + 6. �

For integer m ≥ 3, let U1(m) be the set of graphs in U(2m,m) containing a

pendent vertex whose neighbor is of degree two. Let U2(m) = U(2m,m) \ U1(m).

Let H8 be the graph obtained by attaching three pendent vertices to three con-

secutive vertices of C5.

Lemma 8. Let G ∈ U2(m), where m ≥ 4. If G = H8, then W (G) = 6m2 − 11m + 6,

and if G �= H8, then W (G) > 6m2 − 11m + 6.

Proof. If G = H8, then the result follows easily. Suppose that G �= H8. By

Lemma 3, G ∈ U2(m) implies that G = C2m or G is a graph of maximum degree
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three obtained by attaching some pendent vertices to a cycle. If G = C2m, then

W (G) = m3 > 6m2 − 11m + 6. Suppose that G �= C2m. Then G is a graph of

maximum degree three obtained by attaching some pendent vertices to a cycle Ck,

where m ≤ k ≤ 2m − 1.

If k = m, then every vertex on the cycle has degree three, and for any pendent

vertex x and its neighbor y,

W (G) =
1

2
m[DG(x) + DG(y)]

=
1

2
m

[(
2

⌊
m2

4

⌋
+ 3m − 2

)
+

(
2

⌊
m2

4

⌋
+ m

)]

= m

(
2

⌊
m2

4

⌋
+ 2m − 1

)
> 6m2 − 11m + 6.

If m+1 ≤ k ≤ 2m−2, then m ≥ 5 or (m, k) = (4, 6) since G �= H8, and by Lemmas 6

and 7, for some U2m(k), we have W (G) ≥ W (U2m(k)) > 6m2−11m+6. If k = 2m−1,

then it is easily checked that W (G) = m3 − 1
2
m2 + 3

2
m − 1 > 6m2 − 11m + 6. �

In the following, if G is a graph in U1(m) with a perfect matching M , then u is

a pendent vertex whose neighbor v is of degree two in G, and w is the neighbor of v

different from u. Obviously, uv ∈ M . Since |M | = m, we have dG(w) ≤ m + 1.

Let H6 be the graph obtained by attaching a pendent vertex to C5. Let H ′
6 be

the graph obtained by attaching a pendent vertex to every vertex of a triangle. Let

H ′′
6 be the graph obtained by attaching two pendent vertices to two adjacent vertices

of a quadrangle. It may be easily verified that the following lemma holds.

Lemma 9. Among the graphs in U(6, 3), H6 is the unique graph with minimum

Wiener index 26, and H ′
6, H

′′
6 , C6 and U6,3 are the unique graphs with the second

minimum Wiener index 27.

Lemma 10. Let G ∈ U(8, 4). Then W (G) ≥ 58 with equality if and only if G = H8

or U8,4.

Proof. If G ∈ U2(4), then by Lemma 8, W (G) ≥ 58 with equality if and only if

G = H8. Suppose that G ∈ U1(4). Then G − u − v ∈ U(6, 3). If G − u − v �= H6,

then by Lemma 5,

W (G) ≥ W (G − u − v) − 2dG(w) + 41 ≥ 27 − 2 × 5 + 41 = 58

- 107 -



with equalities if and only if G−u−v = H ′
6, H

′′
6 , C6 or U6,3, dG(w) = 5 and ecc(w) = 2,

i.e., G = U8,4. If G − u − v = H6, then dG(w) ≤ 4, and by Lemma 5,

W (G) ≥ W (H6) − 2dG(w) + 41 ≥ 26 − 2 × 4 + 41 = 59 > 58.

The result follows. �

Lemma 11. Let G ∈ U(10, 5). Then W (G) ≥ 101 with equality if and only if

G = U10,5.

Proof. If G ∈ U2(5), then by Lemma 8, W (G) > 101. If G ∈ U1(5), then by Lemmas

5 and 10,

W (G) ≥ W (G − u − v) − 2dG(w) + 55 ≥ 58 − 2 × 6 + 55 = 101

with equalities if and only if G− u− v = H8 or U8,4, dG(w) = 6 and ecc(w) = 2, i.e.,

G = U10,5. �

Theorem 3. Let G ∈ U(2m,m), where m ≥ 2.

(i) If m = 3, then W (G) ≥ 26 with equality if and only if G = H6.

(ii) If m �= 3, then

W (G) ≥ 6m2 − 11m + 6

with equality if and only if G = C4, U4,2 for m = 2, G = H8, U8,4 for m = 4,

and G = U2m,m for m ≥ 5.

Proof. The case m = 2 is obvious since U(4, 2) = {C4, U4,2}. The cases m = 3 and

m = 4 follow from Lemmas 9 and 10, respectively.

Suppose that m ≥ 5. Let g(m) = 6m2−11m+6. We prove the result by induction

on m. If m = 5, then the result follows from Lemma 11.

Suppose that m ≥ 6 and the result holds for graphs in U(2m − 2,m − 1). Let

G ∈ U(2m,m). If G ∈ U2(m), then by Lemma 8, W (G) > g(m). If G ∈ U1(m), then

G − u − v ∈ U(2m − 2,m − 1), and thus by Lemma 5 and the induction hypothesis,

it is easily seen that

W (G) ≥ W (G − u − v) − 2dG(w) + 14m − 15

≥ g(m − 1) − 2(m + 1) + 14m − 15 = g(m)
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with equalities if and only if G−u−v = U2(m−1),m−1, dG(w) = m+1 and ecc(w) = 2,

i.e., G = U2m,m. �

Let H7 be the graph obtained by attaching two pendent vertices to a vertex of C5.

Theorem 4. Let G ∈ U(n,m), where 2 ≤ m ≤ �n/2�.

(i) If (n,m) = (6, 3), then W (G) ≥ 26 with equality if and only if G = H6.

(ii) If (n,m) �= (6, 3), then

W (G) ≥ n2 + (m − 4)n − 3m + 6

with equality if and only if G = Cn, Un,2 for (n,m) = (4, 2), (5, 2), G = H7, U7,3

for (n,m) = (7, 3), G = H8, U8,4 for (n,m) = (8, 4) and G = Un,m otherwise.

Proof. The case (n,m) = (6, 3) follows from Lemma 9. Suppose that (n,m) �= (6, 3).

Let g(n,m) = n2 + (m − 4)n − 3m + 6.

For C7, we have W (C7) > g(7, 3). For Cn with n ≥ 8, we have either n = 2m,

W (Cn) = m3 > g(n,m), or n = 2m + 1, W (Cn) = m3 + 3m2

2
+ m

2
> g(n,m).

If G �= Cn with n > 2m, then by Lemma 4, there exists a pendent vertex x and

a maximum matching M such that x is not M -saturated in G, and thus G − x ∈
U(n − 1,m). Let y be the unique neighbor of x. Since M contains one edge incident

with y, and there are n − m edges of G outside M , we have dG(y) ≤ n − m + 1.

Case 1. m = 2. The result for n = 4 is obvious as in previous theorem. The result

for n = 5 may be checked directly as there are only five possibilities for G. For n ≥ 6,

it is easily checked that Un,2 is the unique unicyclic graph on n vertices with minimum

Wiener index, and thus the unique graph in U(n, 2) with minimum Wiener index.

Case 2. m = 3. If n = 7, then G − x ∈ U(6, 3): if G − x = H6, then dG(y) ≤ 4, and

by Lemma 5,

W (G) ≥ W (H6) − dG(y) + 17 ≥ 26 − 4 + 17 = 39

with equalities if and only if dG(y) = 4 and ecc(y) = 2, i.e., G = H7, while if

G − x �= H6, then by Lemmas 5 and 9,

W (G) ≥ W (G − x) − dG(y) + 17 ≥ 27 − 5 + 17 = 39
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with equalities if and only if G − x = H ′
6, H

′′
6 , C6 or U6,3, dG(y) = 5 and ecc(y) = 2,

i.e., G = U7,3. Thus, for n = 7, we have W (G) ≥ 39 with equality if and only if

G = H7 or U7,3.

For n ≥ 8, we prove the result by induction on n. If n = 8, then G − x ∈ U(7, 3),

and by Lemma 5,

W (G) ≥ W (G − x) − dG(y) + 20 ≥ 39 − 6 + 20 = 53

with equalities if and only if G − x = H7 or U7,3, dG(y) = 6 and ecc(y) = 2, i.e.,

G = U8,3. Suppose that n ≥ 9 and the result holds for graphs in U(n − 1, 3). By

Lemma 5 and the induction hypothesis,

W (G) ≥ W (G − x) − dG(y) + 3n − 4

≥ n2 − 3n − 1 − (n − 2) + 3n − 4 = n2 − n − 3

with equalities if and only if G − x = Un−1,3, dG(y) = n − 2 and ecc(y) = 2, i.e.,

G = Un,3.

Case 3. m = 4. The case n = 8 follows from Lemma 10. For n ≥ 9, we prove the

result by induction on n. If n = 9, then G − x ∈ U(8, 4), and by Lemmas 5 and 10,

W (G) ≥ W (G − x) − dG(y) + 23 ≥ 58 − 6 + 23 = 75

with equalities if and only if G − x = H8 or U8,4, dG(y) = 6 and ecc(y) = 2, i.e.,

G = U9,4. Suppose that n ≥ 10 and the result holds for graphs in U(n − 1, 4). By

Lemma 5 and the induction hypothesis,

W (G) ≥ W (G − x) − dG(y) + 3n − 4

≥ n2 − 2n − 5 − (n − 3) + 3n − 4 = n2 − 6

with equalities if and only if G − x = Un−1,4, dG(y) = n − 3 and ecc(y) = 2, i.e.,

G = Un,4.

Case 4. m ≥ 5. We prove the result by induction on n. If n = 2m, then the result

follows from Theorem 3. Suppose that n > 2m and the result holds for graphs in

U(n − 1,m). Let G ∈ U(n,m). By Lemma 5 and the induction hypothesis,

W (G) ≥ W (G − x) − dG(y) + 3n − 4

≥ g(n − 1,m) − (n − m + 1) + 3n − 4 = g(n,m)
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with equalities if and only if G− x = Un−1,m, dG(y) = n−m + 1 and ecc(y) = 2, i.e.,

G = Un,m. �

Šoltés [22] showed that, of all connected graphs with n vertices and e edges, where

n − 1 ≤ e ≤ n(n−1)
2

, the graph PKn,e has the maximum Wiener index, where PKn,e

is the path–complete graph consisting of a path, an end vertex of which is adjacent

to one or more, but not all, vertices of a complete graph, and it can be easily shown

that there is a unique such path–complete graph for given n and e. Šoltés’s result

was refined by Goddard, Swart and Swart [23], who showed that PKn,e is the only

extremal graph except for e ≥ n(n−1)
2

− (n−1). Thus, for n ≥ 5, the graph Un formed

from the path whose vertices are labeled consecutively by 1, 2, . . . , n by adding an

edge between vertices 1 and 3 is the unique graph with maximum Wiener index in

the class of n-vertex unicyclic graphs. As a consequence, Un is the unique graph in

U
(
n, �n

2
�) with maximum Wiener index, which is equal to 1

6
(n3 − 7n + 12). On the

other hand, it may be easily checked that the graph formed by attaching n−5 pendent

vertices to the neighbor of the pendent vertex of U5 is the unique graph in U (n, 2)

with maximum Wiener index, which is equal to n2 − 8. However, the determination

of the maximum Wiener index and the extremal graphs for the graph class U(n,m),

3 ≤ m ≤ �n
2
� − 1, seems to be difficult and remains a task for the future.
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