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Abstract

In [1], the authors showed that a line distance matrix of size n > 1, associated with
biological sequences, has one positive and n — 1 negative eigenvalues. The energy E(G)
of a graph G is defined as the sum of the absolute values of the eigenvalues of G in [2].
Similarly, we obtain bounds on the energy of line distance matrix. The spread of the

spectrum of line distance matrix is considered.

1 Introduction
Lett = (f,tyr,tu), b < f2 <o~ <ty ti € R, be a given position vector. A line
distance matrix, associated with ¢ is defined as [1]
D = (dij)uxn, where d;; = |t; — t].
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A DNA sequence consists of four nucleotides A, T, G, C. The distances between of
A (or distances between T, G, or C) are represented in a vector f. Then a line distance
matrix is associated with the vector t. Similarly, the line distance matrices associated
with nucleotides T, G and C can be obtained. Then the given DNA sequence can be
partly represented by the four line distance matrices. In [1], the authors reported:

Theorem A [1] Let D € R™" be a line distance matrix, associated with a vector t and let
DYW:=D(1:4,1:1),i=1,2,--+,n, be its principal submatrices. Let

AP <AP < <A <20

be the eigenvalues of the matrix DO. Then A > 0, AY < 0 fori > 1and A" = 0.

Let G be a simple graph with n vertices. The adjacency matrix A(G) of G is a square
matrix of order n, where (i, j)-entry is equal to 1 if the vertices v; and v; are adjacent, and
is equal to 0 otherwise. The eigenvalues A1, A,, ..., A, of G are said to be the eigenvalues

of the graph. The energy of G is defined as [2]
E=EG)=) Al
i=1

Some more recent results on energy and energy-like quantities have been obtained
[3,4,5,6].
Analogy to the graph energy, the line distance energy of D? is defined as

ED) =Y 1A%
j=1

For an #n X n complex matrix M, the spread, denoted by s(M), is defined as the
diameter of its spectrum, s(M) := max;;|A; — Aj|, where A;, A; are the two arbitrary
eigenvalues and the maximum is taken over all pairs of eigenvalues of M. Then the
spread of the line distance matrix D is s(D®?) = /\gi) - /\l(,i).

In the paper [1], G. Jakli¢ et al. studied the eigenvalues of line distance matrices and
reported that their spectrum consists of only one positive and n—1 negative eigenvalues.
Recently, literature on the spread of arbitrary matrix and graphs has received much
attention [7, 8, 9].

In this paper, we obtain some bounds and properties of E(D?) and s(D®). We find

that some properties of s(D®) are similar to the spread of graphs.
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2 Bounds of E(D")
By using the similar ideas of Krattenthaler [10], the authors obtained:
Lemma 2.1. [10] Let DY, i = 1,2,--- ,n, be the principal submatrices of D and detD" the
i1
determinant of D®. Then detD® = (—1)*1212(¢; — #;) H(tf” - ).
=1
Lemma 2.2. Let AV be the largest eigenvalues of D. Then

. T i1 1
A > (= 1) 7 [220 - ) [ [tjer - )]
j=1
Proof. Note that traceD? = Y A;Z) =0. Then A;l) = —/\g) — = A9, 1)
By Theorem A, A(li> >0and 0 < —/\g) <---< —/\f.i).
Using the arithmetic-geometric mean inequality,
0 _ (@) (@)
AV = =AY = A .
1
— (@) O]~
= (-1 [ )<' DAD. /\1‘]
= (i- [ (1)t ”dEtD ]ﬁ

[|d€i‘D ')|]

\%

Then (A")71 > (i — 1)|detD®|7r.
By Lemma 2.1, the result follows. |
Theorem 2.3. Lett = (t,tr,--- ,ty), th <ty < --- < t,, t; € R, be a given position vector.

i-1 1
Then E(D?) = 20 > 2(i — 1) 7 [272(t - 1) H(tm -]
j=1
Proof. By Lemma 2.2 and equality (1),

E(D(i)) — Z;:l |/\(i)| — A(i) _ /\(i) . A(i) — A(i)
> 2(i- 1) 7 [272(t - h) H(t,+1 —t) [

Cauchy’s interlacing theorem [11] as the techmque is used in [1], implies

i-1) (l) (i-1) (@) (i-1) (@)
AP <20 << A8 < AP <A <20,

i—

Corollary 2.4. Let DY and DD be two principal submatrices of D.
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Then E(DW) < E(DV) for i < j. Specially, D has the largest energy among the principal
submatrices of D.

Proof. By Cauchy’s interlacing theorem, /\(‘ <A B << A(lj), fori<j.

Note that E(D®?) = 2A%. Then E(D?) < E(D#*V) < --- < E(D). |
The (k, k)—entry of [DO? is equal to Z digdie = ) (dig? = Y It = .
=) =) =)
Then trac[DP]? —ZZ|tk—t| =2 Z |tk—i.‘]v|2 =M
k=1 j=1 1<k<j<i
Lemma 2.5. Let A" be the largest eigenvalues of DO. Then AV < \[=XM..
Proof. Note that M; = trac[D¥]? Z()\ D)2, )

Observe that x? is a strictly convex function. Then

Y uprs [ A

j=2 j=2

ie,

Z(A(l))Z Z /\(1

j=2

By equality (2), M; — (A") > Z /\(’)
_ L o
= o A

Thus M; > — (1 92 ie, A? < (JEIM,. |
By Theorem 2 3 and Lemma 2.5, we have

Theorem 2.6. Let D be a principal submatrix of D. Then E(D?) < 2 \|=tM; .

Theorem 2.7. Let DY be a principal submatrix of D. Then E(DY) > \/Mi +i(i — 1)(detD)?,
Proof. By the definition of E(D @), then

[ED9)] Z ANy’ = Z (A% +2 Y A01A0)
1<k<I<i
_M,-+2 Y A1)
I<k<ls<i )
=M+ Y APIAY) ®)
k#l
By the arithmetic-geometric mean inequality,
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Ny G L i iﬁ
YA i - v [T nfm)

k#l kil

—z(z—l)(HM(’)F@ )f =i(i=1) [ [ A1 = i(i - 1)@erD®)’.
j=1

By (3), then [E(D' l>)] > M; +i(i — 1)(detDD)? , i.e.,
E(D%) > \/Mi +i(i — 1)(detD)F [ |

3 The spread of D

In [9], D.A. Gregory et al. proved:
Theorem B. If H is a induced subgraph of G, then s(G) > s(H).

Similarly, we have
Theorem 3.1. Let DY and DY be two principal submatrices of D = D™,

Then s(DP) < s(DV) for i < j and D has the largest spread among principal submatrices.
Proof. By Theorem A, note that Agi) > 0and /\(21') <Oforanyi>2.

Cauchy’s interlacing theorem implies

AP <A A0 < <A <D <A <20,

Then s(D%) = AV — A > AUD 2070 5 o5 40 30 = g(pO), ]
Theorem 3.2. Let DY be a principul submatrix of D = D", Then s(D?) < v2M,.
Proof. Note that M; — (A)? — (AV)? = zj;lz()\y))z

1 i-1
> ——() AV
> i_2<; 9)

_ _Z(Agi) +A§i))2' @)
By (4),
(- 1A +2A729 4 (- 1)(AV)2 - (i—2)M; < 0. The quadratic in A" has one positive
and one negative root, and it follows that /\ /\—g) + i_—zM,- - i.z —2i (/\(i))2.
Ti-1 i-1 (i—1)2"1
' ) _ /\(i) -
Thens(D®) = A{ = A < AP+ —4 + \/ %M, = 1)2( A0y

-2 i2
- (i) _ ()y2
1—1A1 \/ M (i— 1)2()\ s
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i i-2 i2 —2i i
Let = ——x+ | M- ——22 (AY = x> 0).
et f(x) i—lx P (i—1)2x (A =x>0)
Considering the first derivative,
i i i— x i i i—
f = Ry - Sy L -
Ti-1 i-1Ni-1 o, i-1 i-1VNi-1 [
M; - 2 s

Let f'(x) =0. Then x = ,[%Mi. By Lemma 2.5, Agi) < #Ml

In the interval [ {/3M;, \/=2M;), f'(x) < 0 and f(x) is a decreasing function on x.

Then s(DY) < f(AY) < f{( /%Mi) = \2M.. [ |
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