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Abstract

We obtain the lower and upper bounds on the largest eigenvalue of the distance
matrix of a connected bipartite graph and characterize those graphs for which these
bounds are best possible.

1 Introduction

Since the distance matrix and related matrices, based on graph-theoretical distances [1], are

rich sources of many graph invariants (topological indices) that have found use in structure-

property-activity modeling [2, 3, 4], it is of interest to study spectra and polynomials of these

matrices [5, 6].

Let G = (V,E) be a simple connected bipartite graph with vertex set V (G) = {1, 2, . . . , n}
and edge set E(G) , where |V (G)| = n and |E(G)| = m . For i ∈ V , di is the degree of the

i-th vertex of G , i = 1, 2, . . . , n . The minimum vertex degree is denoted by δ . The diameter

of a graph is the maximum distance between any two vertices of G. Let d be the diameter of

G. The distance matrix D(G) of G is an n×n matrix (di,j) such that di,j is just the distance

(i.e., the number of edges of a shortest path) between the vertices i and j in G [1].
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Since D(G) is a real symmetric matrix, its all eigenvalues are real. Let λ(G) be the

largest eigenvalue of D(G). Balaban et al. [7] proposed the use of λ(G) as a structure-

descriptor, and it was successfully used to make inferences about the extent of branching

and boiling points of alkanes [7, 8]. Balasubramanian [9] computed the spectrum of its

distance matrix using the Givens-Householder method. In [10], the distance polynomials

(that is, the characteristic polynomials of the distance matrices) were computed for several

graphs. There exists a vast literature that studies the spectral radius of the distance matrix.

We refer the reader to [11, 12, 13, 14] for surveys and more informations.

In this note we report the lower and upper bounds on the largest eigenvalue of the distance

matrix of a connected bipartite graph and characterize those graphs for which these bounds

are best possible.

2 Spectral radius of distance matrix of bipartite graph

It is a result of Perron-Frobenius in matrix theory (see [15], Page no. 66) which states that a

non-negative matrix B always has a non-negative characteristic value r such that the modulii

of all the characteristic values of B do not exceed r. To this ’maximal’ characteristic value

r there corresponds a non-negative characteristic vector

BY = rY (Y ≥ 0, Y �= 0) .

If G is a connected graph then all the eigencomponents corresponding to the largest eigen-

value of D(G) are positive.

Now we give a lower bound on the spectral radius of distance matrix of a bipartite graph.

Theorem 2.1. Let G = (V,E) be a connected bipartite graph of order n with bipartition

V (G) = A ∪ B, |A| = p, |B| = q . Then

λ(G) ≥ n − 2 +
√

n2 − 3pq , (1)

with equality holds if and only if G is a complete bipartite graph Kp,q .

Proof: Since V (G) = A ∪ B and A ∩ B = Φ, |A| = p, |B| = q , we can assume that

A = {1, 2, . . . , p} and B = {p+1, p+2, . . . , p+q} , where p+q = n . Let X = (x1, x2, . . . , xn)T
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be an eigenvector of D(G) corresponding to the largest eigenvalue λ(G) . Then we have

D(G)X = λ(G)X . We can assume that xi = mink∈A xk , and xj = mink∈B xk . For i ∈ A,

λ(G)xi =

p∑
k=1,k 
=i

di,kxk +

p+q∑
k=p+1

di,kxk

≥ 2(p − 1)xi + qxj . (2)

For j ∈ B ,

λ(G)xj =

p∑
k=1

dj,kxk +

p+q∑
k=p+1,k 
=j

dj,kxk

≥ pxi + 2(q − 1)xj . (3)

Since G is a connected graph, xk > 0 for all k ∈ V . From (2) and (3), we get

(λ(G) − 2(p − 1))(λ(G) − 2(q − 1)) ≥ pq as xi, xj > 0 ,

that is,

λ2(G) − 2(p + q − 2)λ(G) + 3pq − 4p − 4q + 4 ≥ 0 .

From this we get the required result (1).

Now suppose that equality holds in (1). Then all inequalities in the above argument must

be equalities. From equality in (2), we get

xk = xj and ik ∈ E(G), for all k ∈ B .

From equality in (3), we get

xk = xi and jk ∈ E(G), for all k ∈ A .

Thus each vertex in each set is adjacent to all the vertices on the other set and vice versa.

Hence G is a complete bipartite graph Kp,q .

Conversely, one can easily to see that (1) holds for complete bipartite graph Kp,q .

Now we give an upper bound on the spectral radius of distance matrix of a bipartite

graph.
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Theorem 2.2. Let G = (V, E) be a connected bipartite graph of order n, diameter d with

bipartition V (G) = A ∪ B, |A| = p, |B| = q . Then

λ(G) ≤ 1

2

(
d(n − 2) +

√
d2n2 − 4pq(2d − 1)

)
(4)

for d even, and

λ(G) ≤ 1

2

(
(d − 1)(n − 2) +

√
(d − 1)2n2 − 4(d − 1)2(pq − δ2) + 4d2pq − 4d(d − 1)δn

)
(5)

for d odd. Moreover, the equality holds in (4) if and only if G is a complete bipartite graph

Kp,q .

Proof: Since V (G) = A ∪ B and A ∩ B = Φ , |A| = p, |B| = q , we can assume that

A = {1, 2, . . . , p} and B = {p+1, p+2, . . . , p+q} , where p+q = n . Let X = (x1, x2, . . . , xn)T

be an eigenvector of D(G) corresponding to the largest eigenvalue λ(G) . Then we have

D(G)X = λ(G)X . We can assume that xi = maxk∈A xk , and xj = maxk∈B xk . For i ∈ A ,

λ(G)xi =

p∑
k=1,k 
=i

di,kxk +

p+q∑
k=p+1

di,kxk . (6)

From (6), we get

λ(G)xi ≤ d(p − 1)xi + (d − 1)qxj for d even, (7)

and λ(G)xi ≤ (d − 1)(p − 1)xi + dixj + d(q − di)xj for d odd, (8)

where di is the degree of the vertex i . For j ∈ B ,

λ(G)xj =

p∑
k=1

dj,kxk +

p+q∑
k=p+1,k 
=j

dj,kxk . (9)

From (9), we get

λ(G)xj ≤ (d − 1)pxi + d(q − 1)xj for d even, (10)

and λ(G)xj ≤ djxi + d(p − dj)xi + (d − 1)(q − 1)xj for d odd, (11)

where dj is the degree of the vertex j. Since G is a connected graph, xk > 0 for all k ∈ V .

From (7) and (10), we get

(λ(G) − d(p − 1))(λ(G) − d(q − 1)) ≤ pq(d − 1)2 as xi, xj > 0 ,
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that is,

λ2(G) − d(p + q − 2)λ(G) + d2 − pq − (p + q)d2 + 2dpq ≤ 0 for d even. (12)

Similarly, from (8) and (11), we get(
λ(G) − (d − 1)(p − 1)

)(
λ(G) − (d − 1)(q − 1)

)
≤
(
dq − (d − 1)di

)(
dp − (d − 1)dj

)
≤
(
dq − (d − 1)δ

)(
dp − (d − 1)δ

)
,

as di, dj ≥ δ, that is,

λ2(G)−(d−1)(n−2)λ(G)+(d−1)2(pq+1−n−δ2)−d2pq+d(d−1)δn ≤ 0 for d odd. (13)

From (12) and (13), we get the required result (4) and (5), respectively.

Now suppose that equality holds in (4). Then the equality holds in (7) and (10). From

equality in (7), we get

d = 2, xk = xj and ik ∈ E(G), for all k ∈ B ,

and

xk = xi, for all k ∈ A .

From equality in (10), we get

d = 2, xk = xi and jk ∈ E(G), for all k ∈ A ,

and

xk = xj, for all k ∈ B .

Thus each vertex in each set is adjacent to all the vertices on the other set and vice versa.

Hence G is a complete bipartite graph Kp,q .

Conversely, one can easily see that (4) holds for complete bipartite graph Kp,q .

Remark 2.3. The lower and upper bounds given by (1) and (4), respectively, are equal when

G is a complete bipartite graph Kp,q and diameter d is even.
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