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Abstract: “The polyphenyl chains” is a graph consisting of n benzene rings B1,

B2, · · · , Bn with the properties that for any 1 ≤ k < j ≤ n− 1, Bk and Bj are linked

by a cut edge if and only if j = k +1, the common vertex of a benzene ring and a cut

edge is a vertex with degree three. Merrifield-Simmons index [1] and Hosoya index

[2] are the two valuable topological indices in chemical graph theory. In this paper,

we discuss the Merrifield-Simmons index and Hosoya index of polyphenyl chains and

obtain some extremal results: among all polyphenyl chains, the Sn and Zn attain the

extremal values of Merrifield-Simmons index and Hosoya index, respectively.

1. Introduction and notations

For this topic, two or more benzene rings are linked by a cut edge consisting of

aromatics called polycyclic aromatic hydrocarbons which is a class of aromatics. A

kind of compounds which two or more benzene rings are directly linked by cut edge

known as the biphenyl compounds. For example: Ortho-terphenyl, Meta-terphenyl

and Pera-terphenyl (see Figure-1).

First, Let us give some basic concepts. The polyphenyl chains is a graph consisting

of n benzene rings B1, B2, · · · , Bn with the properties that for any 1 ≤ k < j ≤
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n− 1, Bk and Bj are linked by a cut edge if and only if j = k +1, the common vertex

of a benzene ring and a cut edge is a vertex with degree three.

The “polyphenyl chains” can be considered as the graph representation of an

important subclass of Linear unbranched polyphenyl simplified skeletons molecules.

We are trying to find the extremal Merrifield-Simmons index and Hosoya index of

polyphenyl chains. This will help study the thermodynamic stability and chemical

structure of biphenyl compounds.

Ortho−terphenyl Meta−terphenyl Pera−terphenyl

Figure 1

Gn denote the set of polyphenyl chains containing n benzene rings. Any element

Gn of Gn can be obtained from an appropriately chosen graph Gn−1 ∈ Gn−1 by linking

a benzene ring to the terminal of Gn−1, where n ≥ 2. There are three non-isomorphic

adding ways Gn−1 → [Gn−1]k = Gn, where k = 1, 2, 3. We call these three adding

ways respectively way-1, way-2, way-3 (see Figure-2). (In fact, way-1
′
isomorphic to

way-1 and way-2
′
isomorphic to way-2.)
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Figure 2
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In particular, if every benzene ring in the polyphenyl chains is added by the way-1,

then denote by Zn; if every benzene ring in the polyphenyl chains is added by the

way-2, then denote by Sn; if every benzene ring in the polyphenyl chains is added by

the way-3, then denote by Ln. Obviously, G1 = {L1} = {Z1} = {S1}, G2 = {L2} =

{Z2} = {S2}, G3 = {L3, Z3, S3}. Graph Ln, Zn and Sn of Gn are shown in Figure-3.

n S n

... ...

L nZ

...

Figure 3

In this paper, we will prove that the Sn and Zn of polyphenyl chains attain the

extremal values of Merrifield-Simmons index and Hosoya index, respectively.

Note that the polyphenyl chains considered by us include both geometrially planar

(e.g., Ln, Zn, and Sn ) and geometrially non-planar (e.g., Ln, Zn and Sn ) species.

Let e and v be an edge and a vertex of a graph G(V, E), respectively. Denote

by G − e and G − v the graph obtained from G by removing e and v, respectively.

Undefined concepts and notations of graph theory are referred to [3].

In chemical terminology, the Merrifield-Simmons index of a molecular graph G is

defined to be the total number of its independent sets (include empty set), where a

independent set is a subset I of the V (G) of G with the property that no two different

vertices of I share a common edge, denote by σ(G). Details of chemical applications

can be found in [1,5,6].

The Hosoya index of a molecular graph G is defined to be the total number of its

matchings (include empty set), where a matching is a subset M of the E(G) of G

with the property that no two different edges of M share a common vertex, denote by

m(G). This index was connected with various physico-chemical properties of alkanes,

for example, boiling point, entropy, heat of vaporization. There is an example showing
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the high correlation between the Hosoya index and the boiling points of acyclic alkanes

in [4]. Details of chemical applications can be found in [5,7,8].

There have been numerous other new results on the Hosoya and Merrifield Sim-

mons indices are referred to [10-16].

2. Some useful results

Among polyphenyl chains with extremal properties on topological indices, Sn and

Zn play important roles. In order to obtain the result about the Hosoya index and

Merrifield-Simmons index,we need some auxiliary lemmas.

Lemma 2.1 [9] Let G be a graph, suppose u ∈ V (G), denote by NG[u] the set

{u}⋃{v|uv ∈ E(G)}
(a) Suppose u ∈ V (G), then σ(G) = σ(G− u) + σ(G−NG[u]) (1)

(b) Suppose uv ∈ E(G), then m(G) = m(G− uv) + m(G− u− v) (2)

Lemma 2.2 [9] Let G be a graph consisting of two components G1 and G2, i.e.,

G = G1 ∪ G2, we have

(a) σ(G) = σ(G1)σ(G2) (3)

(b) m(G) = m(G1)m(G2) (4)

3. Main result and proofs

Let A be a polyphenyl chains with i − 1(i ≥ 2) benzene rings, Bi is attached in

the vertex s of A, and denoted by Gi. Let C be a polyphenyl chains with n− i (n > i)

benzene rings, the graph C is added by way-1, way-2 or way-3 in the i-th benzene

ring Bi, denoted by Gn(i, 1), Gn(i, 2) or Gn(i, 3) respectively (see Figure-4).
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Now we consider to compare the number of independent sets (i.e., the Merrifield-

Simmons index) of Gn(i, 1), Gn(i, 2) and Gn(i, 3). First, we show Lemma 3.1 followed.

Lemma 3.1 σ(Gi − vi) ≤ σ(Gi − yi) ≤ σ(Gi − xi), where the vertices vi, yi and

xi are in the graph Bi (see Figure-4).

Proof: Obviously, σ(G1 − v1) = σ(G1 − y1) = σ(G1 − x1).

Now we suppose that i ≥ 2.

Applying (1) and (3) to (Gi − vi), (Gi − yi) and (Gi − xi), we get

σ(Gi − vi) = σ(Gi − vi − s) + σ(Gi − vi − NGi
[s])

= σ(A − s)σ(P5) + σ(A − NA[s])σ(P4)

= 13σ(A − s) + 8σ(A − NA[s])

σ(Gi − xi) = σ(Gi − xi − s) + σ(Gi − xi − NGi
[s])

= σ(A − s)σ(P5) + σ(A − NA[s])σ(P1)σ(P3)

= 13σ(A − s) + 10σ(A − NA[s])

σ(Gi − yi) = σ(Gi − yi − s) + σ(Gi − yi − NGi
[s])

= σ(A − s)σ(P5) + σ(A − NA[s])σ(P2)σ(P2)

= 13σ(A − s) + 9σ(A − NA[s])

Hence, we have σ(Gi − vi) − σ(Gi − yi) < 0, σ(Gi − yi) − σ(Gi − xi) < 0.

Then σ(Gi − vi) ≤ σ(Gi − yi) ≤ σ(Gi − xi) is obtained. �
Lemma 3.2 σ(Gn(i, 1)) ≤ σ(Gn(i, 3)) ≤ σ(Gn(i, 2)) (see Figure-4).

Proof: It is obvious for n = 1, 2.

Applying (1) and (3) to Gn(i, 1), Gn(i, 2) and Gn(i, 3) for n ≥ 3, we get

σ(Gn(i, 1)) = σ(Gn(i, 1) − t) + σ(Gn(i, 1) − NGn(i,1)[t])

= σ(Gi)σ(C − t) + σ(Gi − vi)σ(C − NC [t])

σ(Gn(i, 2)) = σ(Gn(i, 2) − t) + σ(Gn(i, 2) − NGn(i,2)[t])

= σ(Gi)σ(C − t) + σ(Gi − xi)σ(C − NC [t])

σ(Gn(i, 3)) = σ(Gn(i, 3) − t) + σ(Gn(i, 3) − NGn(i,3)[t])

= σ(Gi)σ(C − t) + σ(Gi − yi)σ(C − NC [t])

By Lemma 3.1, we obtain σ(Gn(i, 1)) ≤ σ(Gn(i, 3)) ≤ σ(Gn(i, 2)). �
Let Gn be a polyphenyl chains, we denote by Gn the polyphenyl chains that a

new benzene ring B is attached to Gn−1 by way-k, where k ∈ {1, 2, 3}. Obviously,

each Gn with n ≥ 3 can be written as [· · · [L2]k2 ]k3 ] · · · ]kn−1 , where ki ∈ {1, 2, 3}
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(i = 2, 3, · · · , n − 1), we set Gn = 3k2k3 · · · kn−1 for short.

Theorem 3.3 For any n ≥ 1 and any Gn ∈ Gn,

(1) If Gn �= Sn, then σ(Gn) < σ(Sn)

(2) If Gn �= Zn, then σ(Zn) < σ(Gn)

Proof: (1) Let Gn ∈ Gn be the polyphenyl chains with the largest number of

independent sets.

When n = 1, 2, Gn = Sn.

When n ≥ 3, suppose Gn �= Sn, let ki be the first element of k2, k3, · · · , kn−1 such

that ki �= 2. That is Gn = 32 · · · 2kiki+1 · · · kn−1, where ki = 1 or 3. Assume, without

loss of generality, that ki = 1.

Let G
′
n = 32 · · · 2ki+1 · · · kn−1. By lemma 3.2, we have σ(Gn) < σ(G

′
n), this is a

contradiction.

(2) Let Gn ∈ Gn be the polyphenyl chains with the smallest number of independent

sets. By a similar proof of Theorem 3.3 (1), we have the proof of Theorem 3.3 (2). �
We complete the proof of Theorem 3.3 and obtain the polyphenyl chains with the

largest number of independent sets and the smallest number of independent sets.

Now we consider to compare the numbers of matchings (i.e., the Hosoya index) of

Gn(i, 1), Gn(i, 2) and Gn(i, 3) respectively.

By a similar argument of lemma 3.1 and lemma 3.2, we have lemma 3.4 and lemma

3.5 followed.

Lemma 3.4 m(Gi − xi) ≤ m(Gi − yi) ≤ m(Gi − vi), where the vertices vi, yi

and xi are in the graph Bi (see Figure-4).

Lemma 3.5 m(Gn(i, 2)) ≤ m(Gn(i, 3)) ≤ m(Gn(i, 1)) (see Figure-4).

Theorem 3.6 For any n ≥ 1 and any Gn ∈ Gn,

(1) If Gn �= Sn, then m(Sn) < m(Gn)

(2) If Gn �= Zn, then m(Gn) < m(Zn)

Proof: By a similar proof of Theorem 3.3, we have the proof of Theorem 3.6. �
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