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Abstract

Let G be a simple graph and α a real number. The quantity sα(G) defined as the

sum of the α-th power of the non-zero Laplacian eigenvalues of G generalizes several

concepts in the literature. The Laplacian Estrada index is a newly introduced graph

invariant based on Laplacian eigenvalues. We establish bounds for sα and Laplacian

Estrada index related to the degree sequences.

1. INTRODUCTION

Let G be a simple graph possessing n vertices. The Laplacian spectrum of G,

consisting of the numbers μ1, μ2, . . . , μn (arranged in non-increasing order), is the

spectrum of the Laplacian matrix of G. It is known that μn = 0 and the multiplicity

of 0 is equal to the number of connected components of G. See [1, 2] for more details

for the properties of the Laplacian spectrum.
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Let α be a real number and let G be a graph with n vertices. Let sα(G) be the

sum of the α-th power of the non-zero Laplacian eigenvalues of G, i.e.,

sα(G) =
h∑

i=1

μα
i ,

where h is the number of non-zero Laplacian eigenvalues of G. The cases α = 0, 1

are trivial as s0(G) = h and s1(G) = 2m, where m is the number of edges of G. For

a nonnegative integer k, tk(G) =
∑n

i=1 μk
i is the k-th Laplacian spectral moment of

G. Obviously, t0(G) = n and tk(G) = sk(G) for k ≥ 1. Properties of s2 and s 1
2

were studied respectively in [3] and [4]. For a connected graph G with n vertices,

ns−1(G) is equal to its Kirchhoff index, denoted by Kf(G), which found applications

in electric circuit, probabilistic theory and chemistry [5, 6]. Some properties of sα

for α �= 0, 1, including further properties of s2 and s 1
2

have been established recently

in [7]. Now we give further properties of sα, that is, bounds related to the degree

sequences of the graphs. As a by-product, a lower bound for the Kirchhoff index is

given.

Note that lots of spectral indices were proposed in [8] recently, and since the

Laplacian eigenvalues are all nonnegative, for α �= 0, sα is equal to the spectral index

SpSumα(L) with L being the Laplacian matrix of the graph.

The Estrada index of a graph G with eigenvalues λ1, λ2, . . . , λn is defined as

EE(G) =
∑n

i=1 eλi . It is a very useful descriptors in a large variety of problems,

including those in biochemistry and in complex networks [9–11], for recent results see

[12–14]. The Laplacian Estrada index of a graph G with n vertices is defined as [15]

LEE(G) =
n∑

i=1

eμi .

We also give bounds for the Laplacian Estrada index related to the degree sequences

of the graphs.

2. PRELIMINARIES

For two non-increasing sequences x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), x

is majorized by y, denoted by x � y, if

j∑
i=1

xi ≤
j∑

i=1

yi for j = 1, 2, . . . , n − 1, and

n∑
i=1

xi =
n∑

i=1

yi.

- 612 -



For a real-valued function f defined on a set in R
n, if f(x) < f(y) whenever x � y

but x �= y, then f is said to be strictly Schur-convex [16].

Lemma 1. Let α be a real number with α �= 0, 1.

(i) For xi ≥ 0, i = 1, 2, . . . , h, f(x) =
∑h

i=1 xα
i is strictly Schur-convex if α > 1,

and f(x) = −∑h
i=1 xα

i is strictly Schur-convex if 0 < α < 1.

(ii) For xi > 0, i = 1, 2, . . . , h, f(x) =
∑h

i=1 xα
i is strictly Schur-convex if α < 0.

Proof. From [16, p. 64, C.1.a] we know that if the real-valued function g defined on

an interval in R is a strictly convex then
∑h

i=1 g(xi) is strictly Schur-convex.

If xi ≥ 0, then xα
i is strictly convex if α > 1 and −xα

i is strictly convex if 0 < α < 1,

and thus (i) follows.

If xi > 0 and α < 0, then xα
i is strictly convex, and thus (ii) follows. �

Let Kn and Sn be respectively the complete graphs and the star with n vertices.

Let Kn − e be the graph with one edge deleted from Kn.

Recall the the degree sequence of a graph G is a list of the degrees of the vertices

in non-increasing order, denoted by (d1, d2, . . . , dn), where n is the number of vertices

of G. Then d1 is the maximum vertex degree of G.

3. BOUNDS FOR sα RELATED TO DEGREE SEQUENCES

We need the following lemmas.

Lemma 2. [17] Let G be a connected graph with n ≥ 2 vertices. Then (d1 +

1, d2, . . . , dn−1, dn − 1) � (μ1, μ2, . . . , μn).

Lemma 3. [7] Let G be a connected graph with n ≥ 2 vertices. Then μ2 = · · · = μn−1

and μ1 = 1 + d1 if and only if G = Kn or G = Sn.

Now we provide bounds for sα using degree sequences.

Proposition 1. Let G be a connected graph with n ≥ 2 vertices. Then

sα(G) ≥ (d1 + 1)α +
n−1∑
i=2

dα
i + (dn − 1)α if α > 1

sα(G) ≤ (d1 + 1)α +
n−1∑
i=2

dα
i + (dn − 1)α if 0 < α < 1

with either equality if and only if G = Sn.
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Proof. If α > 1, then by Lemma 1 (i), f(x) =
∑n

i=1 xα
i is strictly Schur-convex,

which, together with Lemma 2, implies that

sα(G) =
n∑

i=1

μα
i ≥ (d1 + 1)α +

n−1∑
i=2

dα
i + (dn − 1)α

with equality if and only if (μ1, μ2, . . . , μn) = (d1 + 1, d2, . . . , dn−1, dn − 1).

If 0 < α < 1, then by Lemma 1 (i), f(x) = −∑h
i=1 xα

i is strictly Schur-convex,

which, together with Lemma 2, implies that

−sα(G) = −
n∑

i=1

μα
i ≥ −

[
(d1 + 1)α +

n−1∑
i=2

dα
i + (dn − 1)α

]
,

i.e.,

sα(G) =
n∑

i=1

μα
i ≤ (d1 + 1)α +

n−1∑
i=2

dα
i + (dn − 1)α

with equality if and only if (μ1, μ2, . . . , μn) = (d1 + 1, d2, . . . , dn−1, dn − 1).

By Lemma 3, we have (μ1, μ2, . . . , μn) = (d1 + 1, d2, . . . , dn−1, dn − 1) if and only

if G = Sn. �

We note that the result for α = 1
2

has been given in [4].

Proposition 2. Let G be a connected graph with n ≥ 3 vertices. If α < 0, then

sα(G) ≥ (d1 + 1)α +
n−2∑
i=2

dα
i + (dn−1 + dn − 1)α

with equality if and only if G = Sn or G = K3.

Proof. By Lemma 1 (ii), f(x) =
∑n−1

i=1 xα
i is strictly Schur-convex for xi > 0, i =

1, 2, . . . , n− 1. By Lemma 2, (d1 + 1, d2, . . . , dn−2, dn−1 + dn − 1) � (μ1, μ2, . . . , μn−1).

Thus

sα(G) =
n−1∑
i=1

μα
i ≥ (d1 + 1)α +

n−2∑
i=2

dα
i + (dn−1 + dn − 1)α

with equality if and only if (μ1, μ2, . . . , μn−1) = (d1 + 1, d2, . . . , dn−2, dn−1 + dn − 1),

which, by Lemma 3, is equivalent to G = Sn or G = K3. �

Let G be a connected graph with n ≥ 3 vertices. Then by Proposition 2,

Kf(G) ≥ n

(
1

d1 + 1
+

n−2∑
i=2

1

di

+
1

dn−1 + dn − 1

)

with equality if and only if G = Sn or G = K3. Note that we have already shown in

[18] that

Kf(G) ≥ −1 + (n − 1)
n∑

i=1

1

di

.

- 614 -



These two lower bounds are incomparable as for Kn with n ≥ 4 the latter is better

but for Kn − e with n ≥ 7 the former is better.

Remark 1. For the degree sequence (d1, d2, . . . , dn) of a graph, its conjugate sequence

is (d∗
1, d

∗
2, . . . , d

∗
n), where d∗

i is equal to the cardinality of the set {j : dj ≥ i}. Note

that (d1, d2, . . . , dn) � (d∗
1, d

∗
2, . . . , d

∗
n) [1, 19]. It was conjectured in [19] that

(μ1, μ2, . . . , μn) � (d∗
1, d

∗
2, . . . , d

∗
n).

Though still open, it has been proven to be true for a class of graphs including trees

[20]. Let G be a tree with n ≥ 2 vertices. Then d∗
1 = n, d∗

d1+1 = 0, and by similar

arguments as in the proof of Proposition 1, we have

sα(G) ≤
d1∑
i=1

(d∗
i )

α if α > 1 or α < 0

sα(G) ≥
d1∑
i=1

(d∗
i )

α if 0 < α < 1

with either equality if and only if (μ1, μ2, . . . , μn) = (d∗
1, d

∗
2, . . . , d

∗
n), which, is equiva-

lent to G = Sn since if G �= Sn, then d∗
n−1 = 0 but μn−1 > 0.

To end this section, we mention a result of Rodriguez and Petingi concerning the

Laplacian spectral moments in [21]:

Proposition 3. For a graph G with n vertices and any positive integer k, we have

sk(G) ≥
n∑

i=1

di(1 + di)
k−1

and for k ≥ 3, equality occurs if and only if G is a vertex–disjoint union of complete

subgraphs.

4. BOUNDS FOR LAPLACIAN ESTRADA INDEX RELATED TO

DEGREE SEQUENCES

Let G be a graph with n vertices. Obviously,

LEE(G) =
∑
k≥0

tk(G)

k!
= n +

∑
k≥1

sk(G)

k!
.

Thus, properties of the Laplacian moments in previous section may be converted into

properties of the Laplacian Estrada index.
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Proposition 4. Let G be a connected graph with n ≥ 2 vertices. Then

LEE(G) ≥ ed1+1 +
n−1∑
i=2

edi + edn−1

with equality if and only if G = Sn.

Proof. Note that t0(G) = n, t1(G) =
∑n

i=1 di, and tk(G) = sk(G) for k ≥ 1. By

Proposition 1,

tk(G) ≥ (d1 + 1)k +
n−1∑
i=2

dk
i + (dn − 1)k

for k = 0, 1, . . . , with equality for k = 0, 1, and if k ≥ 2 then equality occurs if and

only if G = Sn. Thus

LEE(G) =
∑
k≥0

tk(G)

k!

≥
∑
k≥0

(d1 + 1)k +
∑n−1

i=2 dk
i + (dn − 1)k

k!

= ed1+1 +
n−1∑
i=2

edi + edn−1

with equality if and only if G = Sn. �

Similarly, if G be a tree with n ≥ 2 vertices, Then by similar arguments as in the

proof of Proposition 4, we have

LEE(G) ≤
n∑

i=1

ed∗i = n − d1 +

d1∑
i=1

ed∗i

with equality if and only if G = Sn.

Proposition 5. Let G be a graph with n ≥ 2 vertices. Then

LEE(G) ≥ n +
n∑

i=1

di

1 + di

(
e1+di − 1

)

with equality if and only if G is a vertex–disjoint union of complete subgraphs.

Proof. By Proposition 3,

tk(G) ≥
n∑

i=1

di(1 + di)
k−1
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for k = 1, 2 . . . , and for k ≥ 3 equality occurs if and only if G is a disjoint union of

cliques. The inequality above is an equality for k = 1, 2. Thus

LEE(G) =
∑
k≥0

tk(G)

k!

≥ n +
∑
k≥1

∑n
i=1 di(1 + di)

k−1

k!

= n +
n∑

i=1

di

1 + di

∑
k≥1

(1 + di)
k

k!

= n +
n∑

i=1

di

1 + di

(
e1+di − 1

)

with equality if and only if G is a vertex–disjoint union of complete subgraphs. �

Remark 2. We note that lower bounds on the Laplacian spectral moments in [7]

may also be converted to the bounds of Laplacian Estrada index.

(a) Let G be a connected graph with n ≥ 3 vertices, m edges. Then

LEE(G) ≥ 1 + e1+d1 + (n − 2)e
2m−1−d1

n−2

LEE(G) ≥ 1 + e1+d1 + (n − 2)e

(
tn

1+d1

) 1
n−2

with either equality if and only if G = Kn or G = Sn, where t is the number of

spanning trees in G.

(b) Let G be a graph with n ≥ 2 vertices and m edges. Let G be the complement

of the graph G. By the arithmetic–geometric inequality, we have LEE(G) = 1 +
n−1∑
i=1

eμi ≥ 1 + (n − 1)e
2m
n−1 with equality if and only if μ1 = μ2 = · · · = μn−1, i.e.,

G = Kn or G = Kn [7]. Let m be the number of edges of G . Thus

LEE(G) + LEE(G) ≥ 2 + (n − 1)
(
e

2m
n−1 + e

2m
n−1

)
≥ 2 + 2(n − 1)e

2m+2m
2(n−1)

= 2 + 2(n − 1)e
n
2 ,

and then LEE(G) + LEE(G) > 2 + 2(n − 1)e
n
2 .

(c) Let G be a connected bipartite graph with n ≥ 3 vertices and m edges. Recall

that the first Zagreb index of a graph G, denoted by M1(G), is defined as the sum of

the squares of the degrees of the graph [22–24]. Then

LEE(G) ≥ 1 + e2

√
M1(G)

n + (n − 2)e
2m−2

√
M1(G)

n
n−2
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LEE(G) ≥ 1 + e2

√
M1(G)

n + (n − 2)e

(
tn

√
n

2
√

M1(G)

) 1
n−2

with either equality if and only if n is even and G = Kn
2

, n
2
, where t is the number of

spanning trees in G.
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[12] I. Gutman, E. Estrada, J. A. Rodŕıguez–Velázquez, On a graph–spectrum–based

structure descriptor, Croat. Chem. Acta 80 (2007) 151–154.

[13] B. Zhou, On Estrada index, MATCH Commun. Math. Comput. Chem. 60 (2008)

485–492.

[14] Y. Ginosar, I. Gutman, T. Mansour, M. Schork, Estrada index and Chebyshev

polynomials, Chem. Phys. Lett. 454 (2008) 145–147.

[15] G. H. Fath-Tabar, A. R. Ashrafi, I. Gutman, Note on Estrada and L-Estrada

indices of graphs, Bull. Acad. Serbe. Sci. Arts (Cl. Math. Natur.), to appear.

[16] A. W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Applica-

tions , Academic Press, 1979.

[17] R. Grone, Eigenvalues and degree sequences of graphs, Lin. Multilin. Algebra 39

(1995) 133–136.
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[22] I. Gutman, B. Ruščić, N. Trinajstic, C. F. Wilcox, Graph theory and molecular

orbitals. XII. Acyclic polyenes, J. Phys. Chem. 62 (1975) 3399–3405.

[23] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors , Wiley–VCH,

Weinheim 2000.

[24] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun.

Math. Comput. Chem. 50 (2004) 83–92.

- 619 -


