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Abstract

Let G be a simple graph and « a real number. The quantity s,(G) defined as the
sum of the a-th power of the non-zero Laplacian eigenvalues of G generalizes several
concepts in the literature. The Laplacian Estrada index is a newly introduced graph
invariant based on Laplacian eigenvalues. We establish bounds for s, and Laplacian

Estrada index related to the degree sequences.

1. INTRODUCTION

Let G be a simple graph possessing n vertices. The Laplacian spectrum of G,
consisting of the numbers 1, o, . .., i, (arranged in non-increasing order), is the
spectrum of the Laplacian matrix of G. It is known that u,, = 0 and the multiplicity
of 0 is equal to the number of connected components of G. See [1, 2] for more details

for the properties of the Laplacian spectrum.
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Let a be a real number and let G be a graph with n vertices. Let s,(G) be the

sum of the a-th power of the non-zero Laplacian eigenvalues of G, i.e.,

h
Sa(G) = Z M?v
i=1

where h is the number of non-zero Laplacian eigenvalues of G. The cases a = 0,1
are trivial as so(G) = h and s;(G) = 2m, where m is the number of edges of G. For
a nonnegative integer k, t(G) = >_1 | u¥ is the k-th Laplacian spectral moment of
G. Obviously, to(G) = n and t,(G) = sx(G) for k > 1. Properties of s and 51
were studied respectively in [3] and [4]. For a connected graph G with n vertices,
ns_1(G) is equal to its Kirchhoff index, denoted by K f(G), which found applications
in electric circuit, probabilistic theory and chemistry [5, 6]. Some properties of s,
for a # 0,1, including further properties of s, and 51 have been established recently
in [7]. Now we give further properties of s,, that is, bounds related to the degree
sequences of the graphs. As a by-product, a lower bound for the Kirchhoff index is
given.

Note that lots of spectral indices were proposed in [8] recently, and since the
Laplacian eigenvalues are all nonnegative, for o # 0, s,, is equal to the spectral index
SpSum®(L) with L being the Laplacian matrix of the graph.

The Estrada index of a graph G with eigenvalues A, Ao, ..., \, is defined as
EE(G) = Y i, eY. Tt is a very useful descriptors in a large variety of problems,
including those in biochemistry and in complex networks [9-11], for recent results see

[12-14]. The Laplacian Estrada index of a graph G' with n vertices is defined as [15]
LEE(G) = _e".
=1

We also give bounds for the Laplacian Estrada index related to the degree sequences

of the graphs.

2. PRELIMINARIES

For two non-increasing sequences = (1, xa,...,2,) and ¥ = (y1,Y2, .-, Yn), T

is majorized by vy, denoted by = <y, if
J J
Zz,; < Zyi forj=1,2,...,n—1, and
i=1 i=1

n n
E €Ty = E Yi-
i=1 i=1
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For a real-valued function f defined on a set in R”, if f(z) < f(y) whenever z <y
but & # y, then f is said to be strictly Schur-convex [16].

Lemma 1. Let o be a real number with o # 0, 1.

(i) Forz; >0, i=1,2,....h, f(z) =1, af is strictly Schur-convez if a > 1,
and f(x) = — Zil L& as strictly Schur-conver if 0 < a < 1.

(17) Forx; >0,i=1,2,...,h, f(z)= Zle x$ is strictly Schur-convex if o < 0.

Proof. From [16, p. 64, C.1.a] we know that if the real-valued function ¢ defined on
an interval in R is a strictly convex then Z?:l g(x;) is strictly Schur-convex.

If x; > 0, then z is strictly convex if @ > 1 and —x¢ is strictly convex if 0 < a < 1,
and thus (i) follows.

If ; > 0 and a < 0, then z¢ is strictly convex, and thus (ii) follows. O

Let K, and S, be respectively the complete graphs and the star with n vertices.
Let K, — e be the graph with one edge deleted from K.

Recall the the degree sequence of a graph G is a list of the degrees of the vertices
in non-increasing order, denoted by (dy,ds, ..., d,), where n is the number of vertices

of G. Then d; is the maximum vertex degree of G.

3. BOUNDS FOR s, RELATED TO DEGREE SEQUENCES

We need the following lemmas.

Lemma 2. [17] Let G be a connected graph with n > 2 wvertices. Then (dy +
17d27~" dn 17d _1) (Mhﬂ%"'nu/n)-

Lemma 3. [7] Let G be a connected graph with n > 2 vertices. Then pg = -+ = fip_1
and py =1+ dy if and only if G = K,, or G = S,,.

Now we provide bounds for s, using degree sequences.
Proposition 1. Let G be a connected graph with n > 2 vertices. Then
5a(G) > (dy + 1) Zda +(dp— 1) if a>1
n—1

5a(G) S (d1+ 1)+ df +(d, — 1) if 0<a <1

=2

with either equality if and only if G = S,.
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Proof. If & > 1, then by Lemma 1 (i), f(z) = > i« is strictly Schur-convex,
which, together with Lemma 2, implies that

n—1

ZN (dy+ 1)+ > d¥ + (dn — 1)*

=2
with equality if and only if (u1, pio, ..., pin) = (dv + 1,da, ..., dy_1,d,, — 1).
If 0 < @ < 1, then by Lemma 1 (i), f(z) = — 3.1 2% is strictly Schur-convex,
which, together with Lemma 2, implies that

n n—1

—5a(G) == pf = — [(dy + )"+ de + (dy, — 1)

i=1 =2

sa(G) = Zu <( d1+1)“+2d‘1+(dn—1)“

with equality if and only if (,u,l7 sy fin) = (d1 +1,da, ... dp_v,dy, — 1).
By Lemma 3, we have (1, pta, ..., pn) = (dy + 1,do, ..., dy—1,d,, — 1) if and only
if G=5,. O

We note that the result for o = 1 has been given in [4].

Proposition 2. Let G be a connected graph with n > 3 vertices. If o <0, then

n—2

50(G) = (di+ 1) + 3 df + (dnor +dn — 1)

=2
with equality if and only if G = S, or G = Kj.

Proof. By Lemma 1 (ii), f(z) = Y77 2@ is strictly Schur-convex for z; > 0, i =
1,2,...,n—1. By Lemma 2, (dy + 1,da, ..., dp—2,dn—1 +dp — 1) =< (1, pia, -, fn—1)-
Thus

n—1 n—2
$a(G) = pf = (di+1)*+ Y _d¥ + (dyy + dy — 1)°
i=1 i=2

with equality if and only if (p1, o, ..., pin—1) = (di + 1,da, ..., dyp—2,dp—1 + d, — 1),
which, by Lemma 3, is equivalent to G = 5,, or G = K3. O

Let G be a connected graph with n > 3 vertices. Then by Proposition 2,

n—2
1 1 1
Kf(G) > R R
f( )n<d1+1+7z=2:dz+dnl+dn_1)
with equality if and only if G = S,, or G = K3. Note that we have already shown in
[18] that

Kf(G)>—-1+(n— I)Zdl



-615-

These two lower bounds are incomparable as for K, with n > 4 the latter is better
but for K,, — e with n > 7 the former is better.

Remark 1. For the degree sequence (dy,ds, . .., d,) of a graph, its conjugate sequence
is (di,ds,....d;), where df is equal to the cardinality of the set {j : d; > ¢}. Note
that (dy,ds, ..., dy,) X (di,d5, ..., d5) [1, 19]. Tt was conjectured in [19] that

(/L],/Lg, B nu'n) j (di,d; B '7d;kz)'

Though still open, it has been proven to be true for a class of graphs including trees
[20]. Let G be a tree with n > 2 vertices. Then dj = n, dj |, = 0, and by similar

arguments as in the proof of Proposition 1, we have

M&

$a(G) < (d*) ifa>lora<0

1

Mg

sa(G) > (d*) ifo<a<l1

1

~.
I

with either equality if and only if (py, pa, ..., pn) = (df, ds, ..., d%), which, is equiva-
lent to G = S, since if G # S, then d},_; = 0 but p,_1 > 0.
To end this section, we mention a result of Rodriguez and Petingi concerning the

Laplacian spectral moments in [21]:
Proposition 3. For a graph G with n vertices and any positive integer k, we have
i=1

and for k > 3, equality occurs if and only if G is a vertex—disjoint union of complete

subgraphs.

4. BOUNDS FOR LAPLACIAN ESTRADA INDEX RELATED TO
DEGREE SEQUENCES

Let G be a graph with n vertices. Obviously,

LEE(G) =Y t’“l(f) =n+y "”“li,G)

k>0 k>1

Thus, properties of the Laplacian moments in previous section may be converted into

properties of the Laplacian Estrada index.
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Proposition 4. Let G be a connected graph with n > 2 vertices. Then

n—1

LEE(G) > e t! 4 Z edi 4 edn=1

=2

with equality if and only if G = S,.

Proof. Note that t4(G) = n, t1(G) = >°I, d;, and t,(G) = sx(G) for k > 1. By

Proposition 1,
n—1

te(G) = (dy + )P+ > df + (dn — 1)
i=2
for k =0,1,..., with equality for £k = 0,1, and if £ > 2 then equality occurs if and
only if G = §,,. Thus

LEE(G) = Y (@)

k!
k>0
Z(d1+1) + 3 dE 4 (d, — 1)F
- |
— k!

n—1

e+l + Z edi + edn—1
i=2

with equality if and only if G = S,,. |

Similarly, if G’ be a tree with n > 2 vertices, Then by similar arguments as in the

proof of Proposition 4, we have

n dy
LEE(G) < Zedf =n—d; + Zedt
i=1 i=1

with equality if and only if G = 5,,.

Proposition 5. Let G be a graph with n > 2 vertices. Then
LEE(G) > —— (e -1
(),n+7§:11+d_(e )

with equality if and only if G is a vertez—disjoint union of complete subgraphs.

Proof. By Proposition 3,

>Z(1 +d
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for k =1,2..., and for k > 3 equality occurs if and only if G is a disjoint union of

cliques. The inequality above is an equality for &k = 1,2. Thus

LEEG) = Y t’“](f)

k>0

Y

Yoy di(1+di) !
n + Z = am

k>1

1+(1
- n+zl+d Z

E>1
= n-+ Z 1td '(‘ridi (eHd’ — 1)
i=1

with equality if and only if G is a vertex—disjoint union of complete subgraphs. [

Remark 2. We note that lower bounds on the Laplacian spectral moments in [7]
may also be converted to the bounds of Laplacian Estrada index.
(a) Let G be a connected graph with n > 3 vertices, m edges. Then

2m—1-d;

LEE(G)>1+ eltd 4 (n—2)e =2

1
0 )ﬁ—

LEE(G) > 1+ " 4 (n — 2)e( i
with either equality if and only if G = K,, or G = S,,, where t is the number of
spanning trees in G.

(b) Let G be a graph with n > 2 vertices and m edges. Let G be the complement

of the graph G. By the arithmetic—geometric inequality, we have LEFE(G) = 1 +
n—1
Seti > 14 (n— l)en T with equality if and only if gy, = po = -+ = p,_1, ie.,
=1

G = K, or G = K, [7]. Let m be the number of edges of G'. Thus

LEE(G)+LEEG) > 2+ (n—1) (efm N 6@)
2m+2m

24 2(n — 1)e20-1 Eoay
2+ 2(n —1)e?,

\%

and then LEE(G) + LEE(G) > 2 +2(n — 1)e3.

(¢) Let G be a connected bipartite graph with n > 3 vertices and m edges. Recall
that the first Zagreb index of a graph G, denoted by M;(G), is defined as the sum of
the squares of the degrees of the graph [22-24]. Then

LEE(G)>1+e¢ (n—2)e >
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M1(&)

1
tnym ) =2

LEE(G) >1+ 62\/ + (n _ 2)6(2 M1 (G)

with either equality if and only if n is even and G = Kz =, where ¢ is the number of

spanning trees in G.
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