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Abstract

Let G be a graph on n vertices, and λ1, λ2, · · · , λn its eigenvalues. The
Estrada index of G is a graph invariant, defined as EE(G) =

∑n
i=1 eλi . In

this paper, it is shown that the path Pn and the star Sn have the minimum
and the maximum Estrada indices among n-vertex trees, respectively; and the
path Pn and the complete graph Kn have the minimum and the maximum
Estrada indices among connected graphs of order n, respectively. This proves
a conjecture of de la Pena, Gutman and Rada.

1 Introduction

Let G be a graph with n vertices. The n eigenvalues of the adjacency matrix of G

are said to be the eigenvalues of G and to form the spectrum of G; we denote these

by λ1, λ2, · · · , λn. The basic properties of graph eigenvalues can be found in the book

[1].

A graph-spectrum-based molecular structure descriptor, recently put forward by

Estrada [2-7], is defined as

EE = EE(G) =
n∑

i=1

eλi .

Nowadays, EE is usually referred to as the Estrada index.

Although invented in year 2000, the Estrada index has already found numerous

applications [2-7]. It was shown that EE is particularly suitable for characterizing

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 62 (2009) 599-606  

                          
                                          ISSN 0340 - 6253  

 



the degree of folding of long-chain molecules, especially proteins [2-4]. Estrada and

Rodŕıguez-Velázquez [5,6] showed that EE provides a measure of the centrality of

complex (communication, social, metabolic, etc.) networks. In a recent work [7] a

connection between EE and the concept of extended atomic branching was pointed

out.

Until now only some elementary general mathematical properties of the Estrada

index were established [5,8-11]. One of them is the following [5,9]:

EE(G) =
∑
k≥0

Mk(G)

k!

where Mk = Mk(G) is the kth spectral moment of the graph G. As well known [1],

Mk(G) is equal to the number of self-returning walks of length k of the graph G.

Specifically,

EE(G) =
∑
k≥0

M2k(G)

(2k)!

for a bipartite graph G.

In order to contribute towards the better understanding of the properties of the

Estrada index EE and, in particular, of its dependence on the structure of the graph

G, J. A. de la Peña, I. Gutman and J. Rada [9] established lower and upper bounds

for EE in terms of the number of vertices and number of edges and some inequalities

between EE and the energy of G. Also, they put forward two conjectures:

Conjecture A([9]). Among n-vertex trees, Pn has the minimum and Sn the

maximum Estrada index, i.e.,

EE(Pn) < EE(Tn) < EE(Sn)

where Sn and Pn denote, respectively, the n-vertex star and the n-vertex path, Tn is

any n-vertex tree different from Sn and Pn.

Conjecture B([9]). Among connected graphs of order n, the path Pn has the

minimum Estrada index.

Very recently, H. Zhao and Y. Jia [11] gave some new bounds for EE of bipartite

graphs and proved the last inequality of Conjecture A.

In this paper, we will give the proofs of these conjectures.
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2 The Proof of Conjecture A

Let G = (V, E) be a simple graph with vertex set V and edge set E. A walk in G

is a finite non-null sequence w = v0e1v1e2v2 · · · vk−1ekvk, whose terms are alternately

vertices and edges, such that, for 1 ≤ i ≤ k, the ends of ei are vi−1 and vi. We say

that w is a walk from v0 to vk, or a (v0, vk)-walk. The vertices v0 and vk are called

the initial and final vertices of w, respectively, and v1, · · · , vk−1 its internal vertices.

The integer k is the length of w. If v0 = vk, i.e., its initial and final vertices are the

same, then w is called a self-returning (or closed) walk of length k of v0. Obviously,

there is no any self-returning walk with odd length in a bipartite graph.

If w = v0e1v1e2v2 · · · vk−1ekvk is a walk, then w′ = vkekvk−1 · · · v2e2v1e1v0 ob-

tained by reversing w is the reverse of w, denoted by w−1. A section of a walk

w = v0e1v1e2v2 · · · vk−1ekvk is a walk that is a subsequence viei+1vi+1 · · · ejvj of con-

secutive terms of w; we refer to this subsequence as the (vi, vj)-section of w.

In a simple graph, a walk v0e1v1e2v2 · · · vk−1ekvk is determined by the sequence

v0v1v2 · · · vk−1vk of its vertices; hence a walk in a simple graph can be specified simply

by its vertex sequence.

.....
... ...

(a) Sn

v2

v1

v3

v4

vn

(b) Pn

v1 v2 vt vn

Figure 1. The star Sn and the path Pn.

Lemma 1. Let Sn be the n-vertex star with vertices v1, v2, · · · , vn and center v1,

depicted in Figure 1(a). Then there is an injection ξ1 from W2k(v2) to W2k(v1), and

ξ1 is not surjective for n ≥ 3 and k ≥ 1, where W2k(v1) and W2k(v2) are the sets of

self-returning walks of length 2k of v1 and v2 in Sn, respectively.

Proof. Let ξ1 : W2k(v2) → W2k(v1), ∀w ∈ W2k(v2), if w = v2v1vi1 · · · vi2k−3
v1v2,

then ξ1(w) = v1v2v1vi1 · · · vi2k−3
v1.

For example, in the star S5, ξ1(v2v1v3v1v2v1v4v1v2) = v1v2v1v3v1v2v1v4v1.

Obviously, ξ1 is injective. However, there is no w ∈ W2k(v2) such that

ξ1(w) = v1v3v1v3v1 · · · v3v1 ∈ W2k(v1),
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and ξ1 is not surjective for n ≥ 3 and k ≥ 1.

...
G

u(v2)
v1

v3v4

vn

G1


I .....G

u(v1)

v2v3v4

vn

G2

Figure 2. Transformation I.

Lemma 2. Let u be a non-isolated vertex of a simple graph G. If G1 and G2 are

the graphs obtained from G by identifying a leaf v2 and the center v1 of the n-vertex

star Sn to u, respectively, depicted in Figure 2, then M2k(G1) < M2k(G2) for n ≥ 3

and k ≥ 2.

Proof. Let W2k(G) denote the set of self-returning walks of length 2k of G. Then

W2k(Gi) = W2k(G)∪W2k(Sn)∪Ai is a partition, where Ai is the set of self-returning

walks of length 2k of Gi, each of them contains both at least one edge in E(G) and

at least one edge in E(Sn), i = 1, 2. So, M2k(Gi) = |W2k(G)| + |W2k(Sn)| + |Ai| =

M2k(G) + M2k(Sn) + |Ai|. Obviously, it is enough to show |A1| < |A2|.
Let η1 : A1 → A2, ∀w ∈ A1, η1(w) = (w − w ∩ Sn) ∪ ξ1(w ∩ Sn), i.e., η1(w) is the

self-returning walk of length 2k in A2 obtained from w by replacing its every maximal

(v2, v2)-section in Sn (which is a self-returning walk of v2 in Sn) with its image under

the map ξ1.

For example,

η1(u0u1 · · ·urv2v1v3v1v2u
′
1 · · ·u′

sv2v1v4v1v2v1v5v1v2u
′′
1 · · ·u′′

t u0)
= u0u1 · · ·urv1v2v1v3v1u

′
1 · · ·u′

sv1v2v1v4v1v2v1v5v1u
′′
1 · · ·u′′

t u0

η1(v3v1v2u1 · · ·urv2v1v4v1v2u
′
1 · · ·u′

sv2v1v4v1v3)

= v3v1u1 · · ·urv1v2v1v4v1u
′
1 · · ·u′

sv1v2v1v4v1v3

where u0, u1, · · · , ur, u
′
1, · · · , u′

s, u
′′
1, · · · , u′′

t are vertices in G.

By Lemma 1, ξ1 is injective. It is easily shown that η1 is also injective. However,

there is no w ∈ A1 such that η1(w) ∈ A2 and η1(w) does not pass the edge v1v2 in

G2. So, η1 is not surjective. And |A1| < |A2|, M2k(G1) < M2k(G2).

Lemma 3. Let Pn = v1v2 · · · vn be the n-vertex path, depicted in Figure 1(b).

Then there is an injection ξ2 from W ′
2k(v1) to W ′

2k(vt), and ξ2 is not a surjection for
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n ≥ 3, 1 < t < n and k ≥ 1, where W ′
2k(v1) and W ′

2k(vt) are the sets of self-returning

walks of length 2k of v1 and vt in Pn, respectively.

Proof. First, let f : {v1, v2, · · · , vt} → {v1, v2, · · · , vt}, f(vi) = vt−i+1 for i =

1, 2, · · · , t. Then we can induce a bijection by f from the set of self-returning walks

of length 2k of v1 in the sub-path Pt = v1v2 · · · vt and the set of self-returning walks

of length 2k of vt in Pt.

Secondly, let ξ2 : W ′
2k(v1) → W ′

2k(vt), ∀w ∈ W ′
2k(v1)

(i) If w is a walk of Pt = v1v2 · · · vt, i.e., w does not pass the edge vtvt+1, then

ξ2(w) = f(w);

(ii) If w passes the edge vtvt+1, we can decompose w into w = w1 ∪w2 ∪w3, where

w1 is the first (v1, vt)-section of w, w3 is the last (vt, v1)-section of w, and the rest w2

is the internal maximal (vt, vt)-section of w, i.e., w is a self-returning walk of v1, first

passing the walk w1 from v1 to vt, next passing the walk w2 from vt to vt, and last

passing the walk w3 from vt to v1; then ξ2(w) = w−1
1 ∪ w−1

3 ∪ w2, that is, ξ2(w) is a

self-returning walk vt, first passing the reverse of w1 from vt to v1, next passing the

reverse of w3 from v1 to vt, and last passing the walk w2 from vt to vt.

For example, in the path P6 = v1v2v3v4v5v6, let t = 3, and

w = v1v2v3v2v3v2v1

is a self-returning walk of v1 not passing the edge v3v4 in P6,

w′ = v1v2v3v2v1v2v3v4v5v4v3v2v1v2v3v4v3v2v3v2v1v2v1

is a self-returning walk of v1 passing the edge v3v4 in P6, then

ξ2(w) = v3v2v1v2v1v2v3,

ξ2(w
′) = v3v2v1v2v1v2v3v2v1v2v3v4v5v4v3v2v1v2v3v4v3v2v3.

Obviously, ξ2 is injective. And ξ2 is not surjective since there is no w ∈ W ′
2k(v1)

such that ξ2(w) is a self-returning walk not passing the edge vtvt−1 in Pn of length 2k

of vt.
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u
v1 vt+1vt vn

u
v1 vt vt+1 vn

H H

H2 H1

Figure 3. Transformation II.


II

Lemma 4. Let u be a non-isolated vertex of a simple graph H. If H1 and H2 are

the graphs obtained from H by identifying an end vertex v1 and the internal vertex vt

of n-vertex path Pn to u, respectively, depicted in Figure 3, then M2k(H1) < M2k(H2)

for n ≥ 3 and k ≥ 2.

Proof. Let Bi be the set of self-returning walks of length 2k of Hi, each of them

contains both at least one edge in E(H) and at least one edge in E(Pn), i = 1, 2.

Similarly to the proof of Lemma 2, it is enough to show |B1| < |B2|.
Let η2 : B1 → B2, ∀w ∈ B1, η2(w) = (w − w ∩ Pn) ∪ ξ2(w ∩ Pn), i.e., η2(w) is the

self-returning walk of length 2k in B2 obtained from w by replacing its every section

in Pn (which is a self-returning walk of v1 in Pn) with its image under the map ξ2.

By Lemma 3, ξ2 is injective. It follows that η2 is also injective. But, η2 is not

surjective since there is no w ∈ B1 with η2(w) ∈ B2 not passing the edges vtvt−1 in

H2. So, |B1| < |B2|.
Theorem 5. If Tn is a n-vertex tree different from Sn and Pn, then

EE(Pn) < EE(Tn) < EE(Sn)

i.e., among n-vertex trees, Pn has the minimum and Sn the maximum Estrada index.

Proof. Repeating Transformation I as shown in Figure 2, any n-vertex tree T

can be changed into the n-vertex star Sn. By Lemma 2, we have M2k(T ) < M2k(Sn)

for k ≥ 2. And

EE(T ) =
∑
k≥0

M2k(T )

(2k)!
<
∑
k≥0

M2k(Sn)

(2k)!
= EE(Sn).

On the other hand, repeating Transformation II as shown in Figure 3, any n-

vertex tree T can be changed into the n-vertex path Pn. By Lemma 4, we have
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M2k(T ) > M2k(Pn) for k ≥ 2. And

EE(T ) =
∑
k≥0

M2k(T )

(2k)!
>
∑
k≥0

M2k(Pn)

(2k)!
= EE(Pn).

So, EE(Pn) < EE(Tn) < EE(Sn).

Theorem 5 shows that Conjecture A is true.

3 The Proof of Conjecture B

Let G be a connected graph of order n and e an edge of G. The graph G′ = G− e is

obtained from G by deleting the edge e. Obviously, any self-returning walk of length

k of G′ is also a self-returning walk of length k of G. Thus,

Mk(G
′) ≤ Mk(G) and EE(G′) ≤ EE(G).

Specially, if T is a spanning tree of G, then

Mk(T ) ≤ Mk(G) and EE(T ) ≤ EE(G).

It follows that EE(Pn) ≤ EE(G) from Theorem 5. So, we have

Theorem 6. If G is a simple connected graph of order n different from the

complete graph Kn and the path Pn, then

EE(Pn) < EE(G) < EE(Kn)

i.e., among all simple connected graphs of order n, Pn has the minimum and Kn the

maximum Estrada index.

Theorem 6 shows that Conjecture B is true.
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[6] E. Estrada, J. A. Rodŕıguez-Velázquez, Spectral measures of bipartivity in com-

plex networks, Phys. Rev. E 72 (2005) 046105-1–046105-6.
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