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Abstract

The θ-graph, denoted by θi,j,k, is a graph consisting of two given vertices joined by
three paths whose order is i + 2, j + 2 and k + 2 respectively, with any two of these paths
having only the given vertices in common. It is well-know that the problem of spectral
characterization is related to the Hückel theory from Chemistry. In the paper we will show
that the θ-graphs containing odd cycles and without no 4-cycles and the θ-graphs with
minimal spectral radius are determined by the adjacency spectrum.

1 Introduction

We first introduce the background of the paper. Two non-isomorphic graphs are said

to be cospectral if they have equal spectrum (i.e., equal characteristic polynomial).

A graph G is said to be determined by the spectrum (or G is a DS-graph for short)

if there is no other non-isomorphic graph with the same spectrum.

It is well-known that the theory of graph spectra is related to the Chemistry

through the HMO (Hückel Molecular Orbital) Theory (see [12], for example). At

an early stage, it was supposed that HMO Theory could be reduced to the study of

graph spectra of the adjacency matrix of molecular graphs (Chemical Graph The-

ory). In fact in 1956, Günthard and Primas [16] posed the question in a paper that
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relates the theory of graph spectra to the Hückel Theory (see also Chapter 8 in [3] or

[4]). From that moment it was believed that each (molecular) graph is determined

by the spectrum (of the adjacency matrix), since different physical properties of

molecules would take to different values of the spectra. In 1957, Collatz and others

(see Chapter 6 in [3] or Section 4.6 in [10]) reported several examples of non isomor-

phic graphs having the same spectrum (later such pairs were called PINGs, Pair of

Isospectral Non-isomorphic Graphs) and in 1973 Živković (see also [23]) found the

first PING based on chemical graphs: 1,4-divinylbenzene and 2-phenylbutadiene

have all 10 eigenvalues equal when looking to the adjacency matrix of correspond-

ing molecular graphs (with hydrogen atoms suppressed). Then the question “which

graphs are determined by their spectrum” dates from about half a century and it

originates from Chemistry. Actually, there are few results known about DS-graphs,

and determining what kinds of graphs are DS is yet far from resolved. The recent

developments about DS-graphs are summarized in two excellent surveys in [5, 6].

In the paper all graphs considered are simple and undirected. Let G = (V (G), E(G))

be a graph with vertex set V (G) = {v1, v2, · · · , vn} and edge set E(G), where its

order and size are |V (G)| = n(G) = n and |E(G)| = m(G) = m respectively. Let

matrix A(G) be the (0,1)-adjacency matrix of G and dG(vk) = dk the degree of

the vertex vk. The polynomial φ(G,λ) = det(λI − A(G)) or simply φ(G), where

I is the identity matrix, is defined as the characteristic plolynomial of the graph

G. Since matrix A(G) is real and symmetric, its eigenvalues are all real numbers.

Assume that λ1(G) ≥ λ2(G) · · · ≥ λn(G) are the adjacency eigenvalues of the graph

G, where the maximum eigenvalue λ1(G) is called the spectral radius or index of G.

The adjacency spectrum (or simply adj-spectrum) of a graph G, denoted by Spec(G),

is the multiset of its adjancency eigenvalues. By [G]φ we denote the cospectral class

consisting of the graphs cospectral with a given graph G. Now, we pose the Spectral

Characterization Problem (SCP) of a graph G as follows:

SCP1 : Is G a DS-graph?

SCP2 : If G is not a DS-graph, can we determine [G]φ?

As far as we know, there are fewer results about SCP2 of graphs. The authors

of [27, 28] obtained the cospectral classes of some special graphs. In this paper, we

pose our attention on SCP1 of θ-graphs, and prove that the θ-graphs containing
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odd cycles (i.e., cycles with odd order) and without 4-cycles and the θ-graphs with

minimal index are determined by the adj-spectrum. Some other notations and ter-

minology are also needed:

(i) let Cn, Pn and Wn be respectively the cycle, the path and the double-snake of

order n. Cn is called a n-cycle.

(ii) The θ-graph, denoted by θi,j,k is a graph consisting of two given vertices joined

by three paths whose order is i + 2 ,j + 2 and k + 2 respectively, with any two

of these paths having only the given vertices in common (see Fig. 1). Due to

the symmetry, let us consider k ≥ j ≥ i ≥ 0, with (i, j) �= (0, 0).

(iii) The dumbbell graph, denoted by Da,b,c, consists of two vertex-disjoint cycles

Ca, Cb and a path Pc+1 joining them having only its end-vertices in common

with the cycles (see Fig. 1). By symmetry, consider b ≥ a ≥ 3 and c ≥ −1.

(iv) The lollipop graph, denoted by Hn,p, is obtained by appending a cycle Cp to a

pendant vertex of a path Pn−p (see Fig. 1).

(v) For two graphs G and H, G ∪ H denotes the disjoint union of G and H, and

kG stands for the disjoint union of k copies of G.

(vi) Let Ta,b,c denote the tree with exactly one vertex v having maximum degree 3

such that Ta,b,c − v = Pa ∪ Pb ∪ Pc.

(vii) A property of a graph G is called a cospectral invariant if φ(H) = φ(G) implies

that the graph H shares the same property.

(viii) A graph G is said to be bicyclic if it contains only two independent cycles. If

G is connected, then G is bicyclic if and only if m(G) = n(G) + 1.

(ix) A graph G is (r, r + 1)-almost regular if V (G) can be partitioned into two

subsets V1 and V2 such that d(vi) = r for vi ∈ V1 and d(vi) = r +1 for vi ∈ V2.

The graphs belonging to Fig.1 are relevant in Chemistry. For instance, some

chemical graphs are θ-graphs: θ0,4,4 is the naphithalene graph, θ0,3,5 is the azulene

graph, θ0,3,3 is the pentalene graph, θ0,5,5 is the heptalene graph. θ-graphs are also

considered in [7]. Dumbbells were studied in several papers (see, for example, [7, 9]).

A spectral characterization for dumbbells containing an odd cycle is given in [29];

in [15] it was conjectured that the dumbbell graphs with two hexagons has maximal
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energy (sum of the absolute values of the eigenvalues) among all bicyclic molecular

graphs; a partial proof of the latter fact is given in [21]. Spectral properties of

lollipops are studied in several recent papers [1, 17, 32]. Lollipops emerged in

chemical graph theory in the study of unicyclic graphs with maximal energy. It was

empirically found in [2] that among n-vertex connected unicyclic bipartite graphs

the lollipop with a hexagon has greatest energy, except for n=10 when cycle C10 has

greatest energy. In [14, 19] it was exactly proven that among n-vertex connected

unicyclic bipartite graphs either the lollipop with a hexagon, or the cycle has greatest

energy. Until now nobody succeeded to prove that the energy of the lollipop with a

hexagon exceeds the energy of the cycle (except for n = 10). Other relevant papers

concerning lollipops are [7, 8, 13, 20, 26, 31]. In this paper we will study the spectral

characterization of a large subset of θ-graphs.

Cp

Hn,p

n−p︷ ︸︸ ︷
Ca Cb

c+1︷ ︸︸ ︷

Da,b,c

i

j

k

θi,j,k

Fig. 1

This paper is organized as follows. In Section 2, some known lemmas will be

summarized. In Section 3, a cospectral invariant for (r, r+1)-almost regulars will be

given. In Section 4, some preparations for the main result will be done. In Section

5, we will prove that the θ-graphs containing odd cycles and without 4-cycles, and

that the θ-graphs with minimal index are determined by the adj-spectrum. Finally,

in Section 6, we give a conjecture about the spectral characterization of θ-graphs not

considered above and a remark on chemical graphs characterized by adj-spectrum.

2 Basic results

Some useful established results about the spectrum are presented in this section,

which will play an important role throughout this paper.

Lemma 2.1. [3] Let H be a proper subgraph of a connected graph G, then λ1(H) <

λ1(G).

Lemma 2.2. [3] Let λ1 ≥ λ2 ≥ · · · ≥ λn, μ1 ≥ μ2 ≥ · · · ≥ μn−1 be the eigenvalues

of G and G − v, respectively. Then λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ μn−1 ≥ λn.
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Lemma 2.3. [3] Let G be a (simple) graph. Denote by C (v) (C (e)) the set of all

cycles in G containing a vertex v (resp. an edge e = uv). Then we have:

(i) φ(G,λ) = λφ(G − v, λ) −
∑
w∼v

φ(G − v − w, λ) − 2
∑

C ∈ C (v)

φ(G − V (C), λ);

(ii) φ(G,λ) = φ(G − e, λ) − φ(G − v − u, λ) − 2
∑

C ∈ C (e)

φ(G − V (C), λ).

We assume that φ(G,λ) = 1 if G is the empty graph (i.e. with no vertices).

Lemma 2.4. [5] For n × n matrices A and B, the following are equivalent:

(i) A and B are cospectral;

(ii) A and B have the same characteristic polynomial;

(iii) tr(Ai) = tr(Bi) for i = 1, 2, · · · , n.

Lemma 2.5. [3] Let G be a graph with φ(G,λ) = λn + a1(G)λn−1 + · · · + an(G).

Then the length g of a shortest odd cycle in G is equal to the index of the first

non-vanishing coefficient among a1(G), a3(G), a5(G), · · · . The number of shortest

odd cycle is equal to − 1
2 ag(G).

If two graphs G and H are cospectral, then by Lemma 2.4 we get φ(G) = φ(H)

which implies ai(G) = ai(H) for 1 ≤ i ≤ n(G). Thus the following corollary follows

from Lemma 2.5:

Corollary 2.1. Let two graphs G and H be cospectral. Then both the length and

the number of shortest odd cycles in G and H are the same.

With respect to the cospectral invariants, we have the following result besides

Corollary 2.1:

Lemma 2.6. [5] Let G and H be two graphs such that φ(G) = φ(H). Then

(i) n(G) = n(H) and m(G) = m(H);

(ii) G is bipartite if and only if H is bipartite;

(iii) G is k-regular if and only if H is k-regular;

(iv) G is k-regular with girth g if and only if H is k-regular with girth g;

(v) G and H have the same number of closed walks of any fixed length.
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Lemma 2.7. [30] Let ri and si (i = 1, 2) be non-negative integers such that 0 ≤
r1 ≤ r2, r1 ≤ s1 ≤ s2 and r1 + r2 = s1 + s2. Then

φ(Pr1)φ(Pr2) − φ(Ps1)φ(Ps2) = −φ(Ps1−r1−1)φ(Ps2−r1−1).

Lemma 2.8. Let G be a graph of order n, size m and degree sequence (d1, d2, · · · , dn).

If nG(C4) denotes the number of cycles C4 in G, then the number of closed walks of

length 4 is

W4(G) = 2
n∑

i=1

d2
i − 2m + 8nG(C4).

Proof. Let nG(P3) be the number of paths P3 in G. Then W4(G) = 2m+4nG(P3)+

8nG(C4). Substituting nG(P3) =
∑n

i=1

(
di
2

)
and
∑n

i=1 di = 2m, by direct calculation

we get the result.

Simić studied the index of bicyclic graphs in [24, 25]. Next lemma is a subcase

of Theorem 1 in [25], it will be useful for proving some main theorems in Section 5.

Lemma 2.9. Let n(θi,j,k) and k be fixed. Then λ1(θi,j,k) is an increasing function

in j − i.

Lemma 2.10. [24] Among all the connected bicyclic graphs of order n, there are

precisely two graphs whose index is minimal: one of both is Dk,k,n−2k−1, while the

other is θk−1,k−1,n−2k, where k = �n
3 � and n ≥ 7.

The following lemma, reported here in a weaker variant, can be found in [3] p.

58. To state it, we need more definitions. An internal path in some graph, denoted

by v0, v1, . . . , vk−1, vk, is a path joining vertices v0 and vk which are both of degree

greater than two (not necessarily distinct), while all other vertices (i.e. v1, . . . , vk−1)

are of degree equal to two.

Lemma 2.11. Let G′ be a graph obtained from a connected graph G by inserting

in an edge e, which lies on an internal path, a vertex of degree two. Then, if G is

not the tree Wn, λ1(G′) < λ1(G). If G = Wn, then λ1(G′) = λ1(G) = 2.

In view of Lemma 2.11, Lemma 2.10 becomes:

Corollary 2.2. Among all the connected bicyclic graphs of order less than or

equal to n, there are precisely two graphs whose index is minimal: one of both

is Dk,k,n−2k−1, while the other is θk−1,k−1,n−2k, where k = �n
3 � and n ≥ 7.
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3 A cospectral invariant for (r, r + 1)-almost regular

graphs

To prove that a graph is determined by the spectrum, it is helpful to know more

about cospectral invariants. In this section, we provide a new one for (r, r+1)-almost

regular graphs. The following lemma and theorem were proved in [29] by Lagrange

multiplier method and by the coefficients of characteristic polynomial, respectively.

Here, by the number of closed walks, we provide another proof for Theorem 3.1.

Lemma 3.1. [29] Let (d1, d2, · · · , dn) be the degree sequence of a graph of order n

and size m, and d the average degree. Then
∑n

i=1 d2
i is minimum if and only if

d1 = · · · = dt = �d� + 1 and dt+1 = · · · = dn = �d�,

where t =
∑n

i=1 di − n�d�. In addition, the minimum value of
∑n

i=1 d2
i is 2md, and

it is reachable iff the graph is a regular or (�d�, �d� + 1)-almost regular graph.

Theorem 3.1. Let G be a (r, r + 1)-almost regular graph without cycle C4 as its

subgraph. If H is a graph such that Spec(H) = Spec(G), then

(i) H contains no cycle C4 as its subgraph;

(ii) H is a (r, r + 1)-almost regular graph with the same degree sequence as G.

Proof. Since Spec(H) = Spec(G), by Lemma 2.6 we get n(G) = n(H) = n, m(G) =

m(H) = m and W4(G) = W4(H), where W4(G) is the number of closed walks of

length 4. Note that G does not contain C4 as subgraph. By Lemma 2.8 we have

2
n∑

i=1

dG(vi)2 = 2
n∑

i=1

dH(vi)2 + 8nH(C4). (1)

Since G is a (r, r+1)-almost regular graph, from Lemma 3.1 we know that the left of

(1) is minimum, which implies nH(C4) must be zero. Then H does not contain C4

as its subgraph too, and, by Lemma 3.1, H is a regular or (r, r + 1)-almost regular

graph with the same degree sequence as G. From Lemma 2.6(iii) H cannot be a

regular graph. Hence the required result follows.
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4 Structural properties of θ-graphs

The following lemma is trivial but fundamental, it follows from simple observations.

It classifies all the θ-graphs θr,s,t (recall that (r, s) �= (0, 0)) by the number of the

shortest odd cycles contained in θr,s,t. Note that θr,s,t contains no odd cycles iff r,

s and t have the same parity; θr,s,t contains two odd cycles in the remaining cases.

Lemma 4.1. Under the convention that t ≥ s ≥ r ≥ 0, graph θr,s,t contains at most

two shortest odd cycles Cg. In addition,

(i) The θ-graphs containing exactly one shortest odd cycle Cg are graphs θr,s,t

depicted below:

.................

.................s

.................

r

t

0 < r < s < t

.................

.................

r

s

t

r = 0 < s < t

.................

.................

r

s

t

r = 0 < s < t
Condition 1

Type C
s = g − 2
Type A

t = g − 2
Type B

where s and t have the opposite parity in Type B and Condition 1 means

that r + s + 2 = g (or r + t + 2 = g, when r and s have the same parity).

(ii) The θ-graphs containing two shortest odd cycles Cg are graphs θr,s,t de-

picted below:

r r r

s s s

t t t

r = 0 < s = t
s = g − 2
Type D

0 < r = s < t
r + t + 2 = g

Type E

0 < r < s = t
r + s + 2 = g

Type F

.................

.................
.................
..................................

................. ..................................

Lemma 4.2. [11] φ(Pn, 2) = n + 1 and φ(Ta,b,c, 2) = a + b + c + 2 − abc.

Lemma 4.3. Let k ≥ j ≥ i ≥ 0, then 2 ∈ Spec(θi,j,k) if and only if (i, j, k) ∈ S =

{(2, 6, 41), (2, 7, 23), (2, 8, 17), (2, 9, 14), (2, 11, 11), (3, 4, 19), (3, 5, 11), (3, 7, 7),

(4, 4, 9), (5, 5, 5)}.
In addition, 2 is a simple root.

Proof. By Lemma 2.3 we get that

φ(θi,j,k) = λφ(Ti,j,k)−(φ(Ti−1,j,k)+φ(Ti,j−1,k)+φ(Ti,j,k−1))−2(φ(Pi)+φ(Pj)+φ(Pk)),
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which implies from Lemma 4.2 that

φ(θi,j,k, 2) = ijk − (ij + ik + jk) − 3(i + j + k) − 5. (2)

Thus, 2 ∈ Spec(θi,j,k) iff ijk − (ij + ik + jk) − 3(i + j + k) − 5 = 0 which leads to

k =
ij + 3(i + j) + 5
ij − (i + j) − 3

=
1 + 3(1

i + 1
j ) + 5

ij

1 − (1
i + 1

j ) − 3
ij

(3)

implying that k is the strictly decrease function of i and j. Thus, for k ≥ j ≥ i ≥ 6,

we obtain that the maximum of k is attained when i = j = 6. From (3) we get

k ≤ 77/21 ≈ 3.7 contradicting k ≥ 6, then 2 �∈ Spec(θi,j,k). Next we only need to

consider the cases 0 ≤ i ≤ 5:

Case 1. i = 0. By (2) we get φ(θ0,j,k, 2) = −jk − 3(j + k) − 5 < 0 and so

2 �∈ Spec(θ0,j,k).

Case 2. i = 1. By (2) we get φ(θ1,j,k, 2) = −2j − 2 < 0 and so 2 �∈ Spec(θ1,j,k).

Case 3. i = 2. By (3) we get k = 5j+11
j−5 which, together with k ≥ j ≥ 2, implies

that j2 − 10j − 11 ≤ 0, i.e., 2 ≤ j ≤ 11. Note that j and k are integers. A direct

calculation shows that (2, 6, 41), (2, 7, 23), (2, 8, 17), (2, 9, 14), (2, 11, 11) ∈ S .

Case 4. i = 3. By (3) we get k = 3j+7
j−3 which, together with k ≥ j ≥ 3,

implies that j2 − 6j − 7 ≤ 0, i.e., 3 ≤ j ≤ 7. A direct calculation shows that

(3, 4, 19), (3, 5, 11), (3, 7, 7) ∈ S .

Case 5. i = 4. By (3) we get k = 7j+17
3j−7 which, together with k ≥ j ≥ 4,

implies that 3j2 − 14j − 17 ≤ 0, i.e., 4 ≤ j ≤ 17/3. A direct calculation shows that

(4, 4, 9) ∈ S .

Case 6. i = 5. By (3) we get k = 2j+5
j−2 which, together with k ≥ j ≥ 5, implies

that j2 − 4j − 5 ≤ 0, i.e., j = 5. Thus, k = 5 and so (5, 5, 5) ∈ S .

Now we show the second assertion. Let u and v denote the vertices of degree 3

in θi,j,k respectively. By Lemma 2.2 we get

λ1(θi,j,k) ≥ λ1(θi,j,k − u) ≥ λ2(θi,j,k) ≥ λ2(θi,j,k − u) ≥ λ3(θi,j,k)

and

λ3(θi,j,k) ≤ λ2(θi,j,k − u) ≤ λ1(θi,j,k − u − v) = λ1(Pi ∪ Pj ∪ Pk).
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Since θi,j,k contains cycles (whose index is 2) as its proper subgraphs and λ1(Pn) < 2,

from the above two inequalities and Lemma 2.1 we have λ1(θi,j,k) > λ2(θi,j,k) = 2 >

λ3(θi,j,k). This completes the proof.

Lemma 4.4. Spec(θ0,j,k) = Spec(θ0,s,t) if and only if (j, k) = (s, t).

Proof. We need only to show the necessary condition. Assume, for contradiction,

that (j, k) �= (s, t). Since φ(θ0,j,k) = φ(θ0,s,t), from Lemma 2.6(i) we get j+k = s+t.

Without loss of generality, set j > s and so s < j ≤ k < t. By Lemma 2.3 we have

φ(θ0,j,k) = φ(Cj+k+2) − φ(Pj)φ(Pk) − 2(φ(Pj) + φ(Pk)),

and

φ(θ0,s,t) = φ(Cs+t+2) − φ(Ps)φ(Pt) − 2(φ(Ps) + φ(Pt)).

From the above two equalities, it follows that

φ(Ps)φ(Pt) − φ(Pj)φ(Pk) = 2(φ(Pj) + φ(Pk) − φ(Ps) − φ(Pt)),

which implies from Lemma 2.7 that

φ(Pj−s−1)φ(Pk−s−1) = 2(φ(Pt) + φ(Ps) − φ(Pk) − φ(Pj)).

Note, the degree of both sides of above equality is equal and so j + k − 2s − 2 = t

which, together with j + k = s + t, leads to s = −2. This is impossible.

Lemma 4.5. If θ0,j,k is the graph of Type A or B, then Spec(θ0,j,k) �= Spec(θr,s,t),

where r > 0.

Proof. We only consider θ0,j,k as a graph of Type A, i.e., θ0,j,k = θ0,g−2,k (the

other case can be proved similarly). Assume, for contradiction, that Spec(θ0,j,k) =

Spec(θr,s,t). Under the hypothesis, we get that θ0,j,k contains exactly one shortest

odd g-cycle, so θr,s,t does by Corollary 2.1, and thus θr,s,t is of Type C by Lemma

4.1, where r + s + 2 = g (or r + t + 2 = g). If r + s + 2 = g (or r + t + 2 = g),

from g + k = n(θ0,j,k) = n(θr,s,t) = g + t (or g + s) we have k = t (or k = s). Since

g − 2 = r + s > s − r (or g − 2 = r + t > t − r), by Lemma 2.9 we conclude that

λ1(θ0,g−2,k) > λ1(θr,s,k) (or λ1(θ0,g−2,k) > λ1(θr,k,t), a contradiction.
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Lemma 4.6. Suppose that θi,j,k contains at least one odd cycle of length g, then

Spec(θi,j,k) �= Spec(Da,b,c).

Proof. Assume, for contradiction, that Spec(θi,j,k) = Spec(Da,b,c). By Lemma 2.6

we get that θi,j,k and Da,b,c have the same order and the same number of closed

walks of a given length l (such a closed walk is called a l-tour in [17]). Since θi,j,k

has at most two shortest odd cycles Cg (see Lemma 4.1), by Corollary 2.1 it is also

true for the graph Da,b,c, and so we can set b ≥ a = g.

There are two types of (g + 2)-tours in Dg,b,c. Tours around the cycle Cg where

one edge is used three times (there are precisely 2g2 (if b �= g) or 4g2 (if b = g) of

these), and tours around Cg that go one step up and down the edge e = uv, where

e is the edge not contained in Cg such that d(u) = 3, u ∈ V (Cg) and v �∈ V (Cg)

(there are 2(g + 2) such (g + 2)-tours if b �= g or 4(g + 2) if b = g). Thus the total

number τ of (g + 2)-tours in Dg,b,c is

τ1 =

⎧⎪⎨
⎪⎩

2g2 + 2(g + 2) if b �= g;

4g2 + 4(g + 2) if b = g.
(4)

With the similar method, the number of (g + 2)-tours in the θ-graphs θi,j,k is

τ2 =

⎧⎪⎨
⎪⎩

2g2 + 4(g + 2) if θi,j,k contains one Cg;

4g2 + 8(g + 2) if θi,j,k contains two Cg.
(5)

Obviously, τ1 �= τ2 which is a contradiction.

Lemma 4.7. For l ≥ 1, Spec(θl,l,l) �= Spec(Dl+1,l+1,l−1).

Proof. Assume, for contradiction, that φ(Dl+1,l+1,l−1) = φ(θl,l,l). Thus

φ(Dl+1,l+1,l−1, 2) = φ(θl,l,l, 2). (6)

By Lemma 2.3 we get that

φ(Dl+1,l+1,l−1) = φ(Cl+1)φ(H2l+1,l+1) − φ(Pl)φ(Cl+1)φ(Pl−1) + φ(Pl)2φ(Pl−2)

and

φ(θl,l,l) = λφ(Tl,l,l) − 3φ(Tl−1,l,l) − 6φ(Pl),
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which shows from Lemma 4.2 that

φ(Dl+1,l+1,l−1, 2) = (l + 1)2(l − 1) and φ(θl,l,l, 2) = l3 − 3l2 − 9l − 5. (7)

By (6) and (7) we get (l + 1)2(l − 1) = l3 − 3l2 − 9l − 5 which implies that l = −1,

a contradiction. This completes the proof.

5 Main results

5.1 The θ-graphs containing odd cycles and without 4-cycles are

determined by the adj-spectrum

The main results of this subsection is the following theorem:

Theorem 5.1. The θ-graphs containing odd cycles and without 4-cycles are deter-

mined by the adj-spectrum.

We prove the above theorem in two steps . Firstly, we show that the θ-graphs

with eigenvalue 2 are determined by the adj-spectrum (see Theorem 5.2). Sec-

ondly, we show that the θ-graphs without eigenvalue 2 are determined by the adj-

spectrum (see Theorems 5.3-5.6). The following lemma restricts the structure of

graphs cospectral with θ-graphs:

Lemma 5.1. Let G be a graph cospectral with θi,j,k not containing C4, then G ∼=
Da,b,c

⋃
z∈Z Cz or G ∼= θr,s,t

⋃
z∈Z Cz, where Z is a finite subset of {n ∈ N | n ≥ 3}.

Proof. If G is a graph cospectral with θi,j,k then m(G) = m(θi,j,k) and n(G) =

n(θi,j,k), so we get that m(G) = n(G) + 1. Since θi,j,k is a (2, 3)-almost regular

graph, then G is a (2, 3)-almost regular graph by Theorem 3.1. By combining the

above facts we get the assertion.

Theorem 5.2. Let (i, j, k) ∈ S \{(3, 5, 11), (3, 7, 7), (5, 5, 5)}, where S is defined

in Lemma 4.3. Then θi,j,k is determined by the adj-spectrum.

Proof. We just prove the case (i, j, k) = (4, 4, 9). The remaining cases can be proved

similarly. Let G be any graph cospectral with θ4,4,9, so by Lemma 5.1 G consists

of a θ-graph with some cycles or a dumbbell graph with some cycles and C4 is not
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a subgraph in both cases. From Lemma 4.3, we know that 2 ∈ Spec(θ4,4,9) with

multiplicity one. Then G is one of the following graphs:

G ∼= Da,b,c ∪ hCz or G ∼= θr,s,t ∪ hCz, (8)

where h is an integer with h ≤ 1 . Using the computer package NewGraph [22] (or

similar programs), we find that −2 �∈ Spec(θ4,4,9), and thus Cz is odd cycle (i.e., z

is odd). Since θ4,4,9 contains two shortest odd cycle C15, so G does by Corollary

2.1. Thus, 15 ≤ z < n(G) = 19. Using NewGraph again, we obtain for z = 15, 17

that φ(Cz)� |φ(θ4,4,9) which implies that h = 0. Thus G ∼= Da,b,c or G ∼= θr,s,t by

(8). Note that G and θ4,4,9 have the same number of 17-tours. Then G ∼= Da,b,c is

impossible by (4) and (5). For the case G ∼= θr,s,t, since 2 ∈ Spec(G) = Spec(θr,s,t),

then θr,s,t is one of the graphs in the set S , and thus θr,s,t
∼= θ4,4,9 by n(G) = 19.

This completes the proof.

Theorem 5.3. Let θ0,j,k be the graph of Type A or B. If it contains no 4-cycles,

then it is determined by the adj-spectrum.

Proof. Let G be an any graph cospectral with θ0,j,k, so G is a graph of Lemma 5.1.

In addition, G and θ0,j,k have the same number of l-tours and does not have cycle

C4 as its subgraph, since θ0,j,k is such a graph. Furthermore, by Lemma 4.3, θ0,j,k

does not have 2 as eigenvalue, then G must be one of the following graphs:

G ∼= Da,b,c or G ∼= θr,s,t.

By Lemma 4.6 we know that the former case cannot hold. For the latter case,

since θ0,j,k merely contains one shortest odd g-cycle, then by Corollary 2.1 we have

that θr,s,t also has one g-cycle, and thus θr,s,t is one of the graphs shown in Lemma

4.1(i). If θr,s,t is of Type A or B, then by Lemma 4.4 we obtain that θr,s,t
∼= θ0,j,k.

If θr,s,t is of Type C, by Lemma 4.5 we know that it is impossible.

Theorem 5.4. Let θ0,j,k be the graph of Type D (i.e, j = k = g − 2). If it contains

no 4-cycles, then it is determined by the adj-spectrum.

Proof. Let G be an any graph cospectral with θi,j,k. By the same analysis as in
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Theorem 5.3, we obtain that

G ∼= Da,b,c or G ∼= θr,s,t.

By Lemma 4.6 we know that the former case cannot hold. For the latter case, since

θ0,j,k contains two shortest odd g-cycle, then by Corollary 2.1 we have that θr,s,t

also has two g-cycles, and thus θr,s,t is one of the graphs shown in Lemma 4.1(ii).

If θr,s,t is of Type E (or F ), then by 2g − 2 = n(θ0,j,k) = n(θr,s,t) = g + s (or g + t),

and so s = g − 2 (or t = g − 2) which implies that t = 0 (or r = 0), a contradiction.

If θr,s,t is of Type D, then θr,s,t
∼= θ0,j,k, by Lemma 4.4. This ends the proof.

Theorem 5.5. Let θi,j,k be a graph of Type C such that (i, j, k) �∈ S . If it contains

no 4-cycles, then it is determined by the adj-spectrum.

Proof. Let G be an any graph cospectral with θi,j,k. By the same analysis as in

Theorem 5.3, we get that G is one of the following graphs:

G ∼= Da,b,c or G ∼= θr,s,t.

Note that G and θi,j,k have the same number of l-tours. Since θi,j,k contains exactly

one shortest odd g-cycle Cg, so G does. We consider the following two cases:

Case 1. G ∼= Da,b,c. Since Da,b,c contains one shortest cycle Cg, then b > a = g

and thus the number of (g + 2)-tour is τ1 which is not equal to τ2 (see (4) and (5)).

Case 2. G ∼= θr,s,t. Note that θi,j,k is the graph of Type C. Then k > j > i > 0

and i + j + 2 = g or i + k + 2 = g. Next we only consider i + j + 2 = g (the

latter case can be proved similarly). Since θr,s,t contains one shortest cycle Cg, then

θr,s,t is one of the graphs shown in Lemma 4.1(i). If θr,s,t is a graph of Type A

(or B), by Lemma 4.5 we get Spec(θr,s,t) �= Spec(θi,j,k), a contradiction. If θr,s,t is

the graph of Type C, we get t > s > r > 0 and r + s + 2 = g (or r + t + 2 = g).

From g + k = n(θi,j,k) = n(G) = g + t (or g + s) we get k = t (or k = s). Since

λ1(θi,j,k) = λ1(θr,s,t), then we obtain by Lemma 2.9 that j − i = s − r (or t − r)

which, together with j + i = g − 2 = s + r (or t + r), leads to i = r, j = s (or

i = t, j = r). Thus we get θr,s,t
∼= θi,j,k (or a contradiction, since j > i and t > r).

This ends the proof.
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Theorem 5.6. Let θi,j,k be a graph of Type E or F such that (i, j, k) �∈ S . If it

contains no 4-cycles, then it is determined by the adj-spectrum.

Proof. We only prove the theorem for Type E (the proof is analogous for Type F).

Note, 0 < i = j < k and i + k + 2 = g. Let G be a graph cospectral with θi,i,k. By

the same analysis as in Theorem 5.3 we get that G is one of the following graphs:

G ∼= Da,b,c or G ∼= θr,s,t.

Note that G and θi,i,k have the same number of l-tours. Since θi,i,k contains exactly

two shortest odd g-cycle Cg, so G does. The following cases are taken into account:

Case 1. G ∼= Da,b,c. Since Da,b,c contains exactly two shortest odd cycles Cg,

then b = a = g and thus the number of (g + 2)-tour is τ1 which is not equal to τ2

by (4) and (5).

Case 2. G ∼= θr,s,t. Since θr,s,t contains exactly two shortest odd cycles Cg, then

θr,s,t is the graph of Type E (or F), and so 0 < r = s < t and r + t + 2 = g (or

0 < r < s = t and r + s + 2 = g). By g + i = n(θi,i,k) = n(θr,s,t) = g + r (or g + s),

we get that i = r (or i = s), and thus k = t (or k = r). Hence, we get θr,s,t
∼= θi,i,k

(or a contradiction, since i < k and s > r). This ends the proof.

5.2 The θ-graphs with minimal index are determined by the adj-

spectrum

Theorem 5.7. The θ-graphs with minimal index are determined by the adj-spectrum.

Proof. From Lemma 2.10 we know that, for any fixed order n, the θ-graphs with

minimal index are the graphs of type θk−1,k−1,n−2k, where k = �n
3 � and n ≥ 7.

Let G be any graph such that φ(G) = φ(θk−1,k−1,n−2k). Note that θk−1,k−1,n−2k

contains no cycle C4 as its subgraph. From Lemma 5.1, we get that:

G ∼= Da,b,c

⋃
z∈Z

Cz or G ∼= θr,s,t

⋃
z∈Z

Cz, (9)

where |Da,b,c| ≤ n and |θr,s,t| ≤ n. Since θk−1,k−1,n−2k contains a cycle as its proper

subgraph, then λ1(θk−1,k−1,n−2k) > 2, which implies that

λ1(G) = λ1(Da,b,c) or λ1(G) = λ1(θr,s,t).
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Note that λ1(G) = λ1(θk−1,k−1,n−2k) is minimal among all the bicyclic graphs of

order less than or equal to n by Corollary 2.2, which leads to

Da,b,c
∼= Dk,k,n−2k−1 or θr,s,t

∼= θk−1,k−1,n−2k.

Since n(θk−1,k−1,n−2k) = n(G) = n, then Z = ∅ and

G ∼= Dk,k,n−2k−1 or G ∼= θk−1,k−1,n−2k.

To complete the proof, it is enough to show that the former case is impossible. Let

n take over all the integers not less than 7, i.e., n ∈ {3l, 3l + 1, 3l + 2}.

Let n = 3l or 3l + 1. It is easy to see that θk−1,k−1,n−2k has the shortest odd

cycle C2l+1. By Lemma 2.1 we know that there is such a cycle C2l+1 in the graph

Dk,k,n−2k−1. This is impossible, since the longest cycle in Dk,k,n−2k−1 is Cl+1.

Let n = 3l + 2, then θk−1,k−1,n−2k = θl,l,l and G ∼= Dk,k,n−2k−1
∼= Dl+1,l+1,l−1.

From Lemma 4.7 we get Spec(θl,l,l) �= Spec(Dl+1,l+1,l−1), a contradiction.

6 Final remarks

We proved that θ-graphs containing odd cycles and without 4-cycle and θ-graphs

with minimal index are determined by the adj-spectrum. Are all of the θ-graphs

determined by the adj-spectrum? The answer might be affirmative.

Conjecture 1. All θ-graphs are determined by the adj-spectrum.

We observe that by Theorem 5.1 the azulene graph (θ0,3,5), the pentalene graph

(θ0,3,3) and the heptalene graph (θ0,5,5) are determined by the adj-spectrum.
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[4] D.M. Cvetković, I. Gutman, The algebraic multipicity of the number zero in the spec-

trum of a bipartite graph, Math. Vesnik 9 (1972) 141–150.

[5] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectra?, Linear

Algebra Appl. 373 (2003) 241–272.

[6] E.R. van Dam, W.H. Haemers, Developments on spectral characterizations of graphs,

Discrete Math. 309 (2009) 576–586.

[7] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs

and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 597–616.

[8] H. Deng, S. Chen, The extremal unicyclic graphs with respect to Hosoya index and

Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 59 (2008) 171–

190.
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