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Abstract. The six-membered ring spiro chain can be considered as the graph rep-

resentations of an important subclass of linear unbranched, saturated spiro molecules.

We prove that Zn and Sn have the maximal and minimal energies in the set of all six-

membered ring spiro chains. For the polyphenyl chains, we prove that ZN and SN have

the maximal and minimal energies.

1. Introduction

The HMO total π-electron energy is a well-known topological index in theoretical

chemistry. In fact, the experimental heats of formation of conjugated hydrocarbons are

closely related to the total π-electron energy. Furthermore, it can be used to calculate

the resonance energies and the results are as good as those obtained by more advanced

SCF-MO methods [7].

The energy of a graph is equal to the sum of the absolute values of its eigenvalues.

This concept was proposed quite some time ago in the paper: I. Gutman, The energy

of a graph, Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz

103 (1978) 1-22 (and later on several other occasions). After a long latent period, it now

became a popular topic of research.
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As pointed out in [7, 4], the total π-electron energy of a conjugated molecule is a

bridge between the chemical structure and its thermodynamic stability. For this topic,

some bounds of the total π-electron energy have been found [4, 5]. Gutman determined

the trees with the maximal and minimal energy [3] and gave some further results. Since

then the problem of extremal energy was solved for a variety of classes of graphs; for

recent results along these lines see the recent papers [2, 6, 8–13, 15–17] and the references

cited therein. Spiro compounds are an important subclass of cycloalkanes in organic

chemistry. According to the number of spiro atoms present, compounds are distinguished

as monospiro, dispiro, trispiro, etc. (see Figure 1). Two or more benzene rings, linked

by a single bond, form the polycyclic aromatic hydrocarbons (see Figure 2). A kind

of compound in which two or more benzene rings are directly linked by single bonds

are known as the biphenyl compounds, which play a very important role in theoretical

chemistry, too.
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Figure 2:

In this letter, we are trying to find the extremal energies of the six-membered ring

spiro chains and the polyphenyl chains. This will help the study chemical structure of

spiro compounds and biphenyl compounds.

The characteristic polynomial of a graph G is denoted by ΦG , It is well known that if
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G is a bipartite graph, then ΦG can be written as

ΦG =

�n/2�∑
k=0

a2k(G)xn−2k =

�n/2�∑
k=0

(−1)kb2k(G)xn−2k (1)

where n is number of vertices of G . Note that b0(G) = 1 , b2k(G) ≥ 0 for all k =

1, 2, . . . , �n/2� . The total π-electron energy of the molecule is defined to be

E(G) =
n∑

j=1

|λj|

where λj , j = 1, 2, . . . , n , are the eigenvalues of G . The energy of a bipartite graph G

is also expressed by the Coulson integral formula [7, 4, 5, 3] as

E(G) =
2

π

∫ ∞

0

x−2 ln

⎡
⎣1 +

�n/2�∑
k=0

b2k(G)x2k

⎤
⎦ dx .

One can see that E(G) is a strictly monotonously increasing function of the coefficients

of the characteristic polynomial of G . This fact inspired Gutman to define a quasiordering

to compare the energies of trees and further for a set of graphs.

If for two bipartite graphs G1 and G2 whose characteristic polynomials are of the form

(1), b2k(G1) ≥ b2k(G2) hold for all k ≥ 0 , we say that G1 is not less than G2 , written as

G1 � G2 or G2 � G1 . Obviously, if G1 � G2 and G2 � G1 , then G1 and G2 have the

same non-zero eigenvalues. If G1 � G2 and there is a k such that b2k(G1) > b2k(G2) , then

we write that G1 � G2 . By the strict monotonicity of E(G) , if G1 � G2 for two bipartite

graphs G1 and G2 , then E(G1) ≥ E(G2) and E(G1) > E(G2) , if G1 � G2 , Stimulated

by Refs. [14, 18], our attention turns to six-membered ring spiro chains and polyphenyl

chains.

2. Six-membered ring spiro chains

2.1. Definition. Spiro union is a linkage between two rings that consists of a single atom

common to both rings. The common atom is designated as the spiro atom. Six-membered

ring spiro chain is a graph consisting of n six-membered ring H1, H2, . . . , Hn , (n ≥ 1)

with the properties that (i) for any 1 ≤ k < j ≤ n − 1 , Hk and Hj are linked by spiro

union if and only if j = k +1 ; (ii) every spiro atom belongs to at most two six-membered

rings.

Obviously, “six-membered ring spiro chain” can be considered as the graph represen-

tation of an important subclass of linear unbranched, saturated multispiro molecules, in

which every ring is a six-membered ring.

We denote by Gn the set of the six-membered ring spiro chain with n six-membered

rings. Any element Gn ∈ Gn (n ≥ 1) can be obtained by spiro union a six-membered
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ring to the last six-membered ring Hn−1 of Gn−1 , where Gn−1 ∈ Gn−1 . There are three

non-isomorphic adding ways Gn−1 → [Gn−1]k=Gn , where k=1, 2, 3; A ∈ Gn−2 (see Figure

3). We call these three spiro union ways respectively: way-1, way-2, way-3.
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In particular, if every six-membered ring in the six-membered ring spiro chain is added

by the way-1, then denote by Zn ; if every six-membered ring in the six-membered ring

spiro chain is added by the way-2, then denote by Sn ; if every six-membered ring in
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the six-membered ring spiro chain is added by the way-3, then denote by Ln . In this

paper, we will prove that Zn and Sn have the maximal and minimal energies in the set of

six-membered ring spiro chains.

H(A, s) is the graph obtained by coinciding the s-th vertex of Pn and the atom of

the last six-membered ring in the six-membered ring spiro chain A ∈ Gi−1 , i ≥ 1 and

s = 1, 2, 3, . . . , n (see Figure 4).

Let A ∈ Gi−1 , B ∈ Gn−i and Hi be the six-membered rings. Gi is obtained by spiro

union of Hi to A . If B is spiro union to Gi ∈ Gi by way-k, we denote by Gn(i, k) ,

1 ≤ i ≤ n − 1 and k = 1, 2, 3 (see Figure 5).
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Figure 5: Gn(i, k)

In order to obtain the result we need some auxiliary lemmas.

2.2. Auxiliary lemmas

Lemma 2.2.1. [1]. Let uv be an edge of G . Then

φ(G, λ) = φ(G − uv, λ) − φ(G − u − v, λ) − 2
∑

C∈ξ(uv)

φ(G − C, λ)

where ξ(uv) is the set of cycles containing uv . In particular, if uv is not in any a cycle,

then φ(G, λ) = φ(G − uv, λ) − φ(G − u − v, λ) .

Lemma 2.2.2. [19]. Let uv be an edge of a bipartite graph G . Then

b2k(G) = b2k(G − u − v) + b2k−2(G − u − v)

+ 2
∑

C�∈ξ(uv)

(−1)1+�/2 b2k−�(G − C�)

where ξ(uv) is the set of cycles containing uv . In particular, if uv is not in any a cycle,

then

b2k(G) = b2k(G − uv) + b2k−2(G − u − v) .
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Proof. By Lemma 2.2.1, we have

a2k(G) = a2k(G − uv) − a2k−2(G − u − v) − 2
∑

Cl∈ξ(uv)

a2k−l(G − Cl)

and

(−1)k a2k(G) = (−1)ka2k(G − uv) + (−1)k−1 a2k−2(G − u − v)

+ 2
∑

C�∈ξ(uv)

(−1)1+�/2(−1)k−�/2 a2k−�(G − C�) .

Since b2k(G) = (−1)k a2k(G) , the result follows. �

The following Lemma 2.2.3 is obvious.

Lemma 2.2.3. Let G and G′ be two bipartite graphs of order n with characteristic

polynomials

Φ(G) =

�n/2�∑
k=0

(−1)kb2kx
n−2k

and

Φ(G′) =

�n/2�∑
k=0

(−1)kb′2kx
n−2k

respectively, then G � G′ iff b0 = b′0 and b2k ≥ b′2k for k = 1, 2, 3, . . . , �n/2� . Further,

G � G′ iff G � G′ and there is a k ∈ {1, 2, . . . , �n/2�} , such that b2k > b′2k . �

Lemma 2.2.4. [7] Let n = 4k , 4k + 1 , 4k + 2 , 4k + 3 . Then Pn � P2

⋃
Pn−2 �

P4

⋃
Pn−4 � P6

⋃
Pn−6 � · · · � P2k

⋃
Pn−2k � P2k+1

⋃
Pn−2k−1 � P2k−1

⋃
Pn−2k+1 �

· · · � P3

⋃
Pn−3 � P1

⋃
Pn−1 .

Lemma 2.2.5. Let G1 and G2 be two graphs with n vertices, if G1 � G2 , then G∪G1 �
G ∪ G2; if G1 � G2 , then G∪G1 � G ∪ G2 .

2.3. Main result

Theorem 2.3.1. Let A ∈ Gi−1 (i ≥ 1) be a six-membered ring spiro chain and Pn be

a path, where n = 4k, 4k + 1, 4k + 2, 4k + 3 . Then H(A, 1) � H(A, 3) � H(A, 5) � · · · �
H(A, 2k + 1) � H(A, 2k) � H(A, 2k − 2) � · · · � H(A, 4) � H(A, 2) .

Proof. Let u1v and u2v be the edge in A , where v is a common vertex of A and Pn

(see Figure 3). Compare the energies of two graphs, only to compare the corresponding

coefficients of their characteristic polynomial by Lemma 2.2.3. By Lemma 2.2.2, we have

b2i(H(A, s)) = b2i(H(A, s) − u1v) + b2i−2(H(A, s) − u1 − v) + 2b2i−6(H(A, s) − Hi−1) .
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It is obvious that

H(A, s) − u1 − v = (A − u1 − v)
⋃

Ps−1

⋃
Pn−s

and

H(A, s) − Hi−1 = (A − Hi−1)
⋃

Ps−1

⋃
Pn−s

so for all s = 1, 2, . . . , n , we only have to consider Ps−1

⋃
Pn−s . By Lemma 2.2.4, we have

Pn−1 � P2

⋃
Pn−3 � P4

⋃
Pn−5 � P6

⋃
Pn−7 � · · · � P2k

⋃
Pn−1−2k � P2k+1

⋃
Pn−2k−2 �

P2k−1

⋃
Pn−2k � · · · � P3

⋃
Pn−4 � P1

⋃
Pn−2 . At last, we consider H(A, s) − u1v . By

Lemma 2.2.2, we have

b2i(H(A, s) − u1v) = b2i(H(A, s) − u1v − u2v) + b2i−2(H(A, s) − u1v − u2 − v)

+ 2b2i−6(H(A, s) − Hi−1) .

Clearly, H(A, s)−u1v−u2v = (A−u1v−u2v)
⋃

Pn . So it suffices to consider b2i−2(H(A, s)−
u1v − u2 − v) . Obviously, H(A, s) − u1v − u2 − v = (A − u2 − v)

⋃
Ps−1

⋃
Pn−s , and

in a similar manner as in the above proof we can compare Ps−1

⋃
Pn−s , for all s. This

completes the proof. �

Theorem 2.3.2. Gn(i, 1) � Gn(i, 3) � Gn(i, 2) .

Proof. Let u1v and u2v be the edge in Hi+1 , where v is a common vertex of Hi and Hi+1

(see Figure 4). By Lemma 2.2.2, we have

b2i(Gn(i, k)) = b2i(Gn(i, k) − u1v) + b2i−2(Gn(i, k) − u1 − v) + 2b2i−6(Gn(i, k) − Hi+1)

for k = 1, 2, 3 . Clearly, Gn(i, k)−u1 − v = H(A, k)
⋃

(B −u1 − v) . By Theorem 2.3.1 we

have H(A, 1) � H(A, 3) � H(A, 2) . So by Lemma 5, Gn(i, 1)−u1−v � Gn(i, 3)−u1−v �
Gk(i, 2) − u1 − v . At the same time, Gn(i, k) − Hi+1 = H(A, k)

⋃
(B − Hi+1) . Similarly,

we obtain that Gn(i, 1) − Hi+1 � Gn(i, 3) − Hi+1 � Gn(i, 2) − Hi+1 . At last, we see that

b2i(Gn(i, k) − u1v) = b2i(Gn(i, k) − u1v − u2v) + b2i−2(Gn(i, k) − u1v − u2 − v)

+ 2b2i−6(Gn(i, k) − Hi+1) .

Clearly, Gn(i, k)−u1v−u2v are isomorphic for all k = 1, 2, 3 , and Gn(i, k)−u1v−u2−v =

H(A, k)
⋃

(B − u1 − u2) for k = 1, 2, 3 .

Because H(A, 1) � H(A, 3) � H(A, 2) by Theorem 2.3.1, we get Gn(i, 1)−u1v−u2 −
v � Gn(i, 3) − u1v − u2 − v � Gk(i, 2) − u1v − u2 − v . The conclusion follows. �

Theorem 2.3.3. Among all the six-membered ring spiro chains with n six-membered

rings, we have Zn � Ln � Sn .
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Proof. We attempt to prove that Zn and Sn are the unique maximal element and minimal

element in the set of six-membered chains with n six-membered rings, respectively. We

first consider the maximal energy. Let L̄n be a six-membered ring spiro chain that we

make the 2-th six-membered ring in Ln added to the previous six-membered ring by way-

1. We get Ln ≺ L̄n by the Theorem 2.3.2, immediately. Repeating the approach, we can

find a series of the six-membered ring spiro chains Ln ≺ L̄n ≺ ¯̄Ln ≺ · · · ≺ Zn .

On the other hand, we find the graph with the minimal energy. Let L̃n be a six-

membered ring spiro chain that we make the 2-th six-membered ring in Ln add to the

previous six-membered ring by way-2. The proof of minimal energy is similar to the

maximal energy. It is easy to get Ln � L̃n � ˜̃Ln � · · · � Sn . Thus we proved that Zn

and Sn are the graphs with the maximal and minimal energies in the six-membered ring

spiro chains. In the end, Zn � Ln � Sn . �
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H H
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Z S L
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3    n−1

n
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1

    n−1

n 1 2 n

n   n  n

. . . . . .
. . .  H    n−1

Figure 6: Zn, Ln, Sn

Zn, Ln, Sn are shown in Figure 6.

3. Polyphenyl chain

3.1. Definition. The polyphenyl chain is a graph consisting of N benzene rings

B1, B2, . . . , BN with the properties that for any 1 ≤ k < j ≤ N − 1 (N ≥ 1), Bk and Bj

are linked by a cut edge if and only if j = k + 1 , and the common vertex of a benzene

ring and a cut edge is denoted the vertex with degree three.

H ′(A, s) is the graph obtained by attaching the s-th vertex of Pn to the last benzene

ring in the polyphenyl chain A ∈ G′
i−1 , s = 1, 2, 3, . . . n (see Figure 7).

Any element G′
N ∈ G ′

N can be obtained by linking a benzene ring to the last ben-

zene ring of G′
N−1 ∈ G ′

N−1 . There are three non-isomorphic adding ways G′
N−1 →

[G′
N−1]k=G′

N , where k = 1, 2, 3 (see Figure 8). we call these three adding ways respec-

tively: way-I, way-II, way-III.

Let A∈ G′
i−1 , B ∈ G′

N−i and Hi be the benzene rings. Bi is linked to A by a

single bond, denote by G′
i . If C is linked to Gi by way-k, we denote by G′

N(i, k) , where

G′
i ∈ G′

i , k=I, II, III (see Figure 9).
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In particular, if every benzene ring in the polyphenyl chain is added by the way-I,

then denote by ZN ; if every benzene ring in the polyphenyl chain is added by the way-II,

then denote by SN ; if every benzene ring in the polyphenyl chain is added by the way-III,

then denote by LN . In this paper, we will prove that ZN and SN have the maximal and

minimal energies in the set of polyphenyl chains.

3.2. Main result

Theorem 3.2.1. Let A be a polyphenyl chain with i benzene rings. Then H ′(A, 1) �
H ′(A, 3) � H ′(A, 5) � · · · � H ′(A, 2k + 1) � H ′(A, 2k) � H ′(A, 2k − 2) � · · · �
H ′(A, 4) � H ′(A, 2).

Proof. It is obvious that a single bond can be viewed as an edge. Let uv be the edge

connecting A and Pn in H ′(A, s) (see Figure 7). Compare the energies of two graphs, only

to compare the corresponding coefficients of their characteristic polynomial by Lemma

2.2.3. On the other hand, by Lemma 2.2.2, we have

b2i(H
′(A, s)) = b2i(H

′(A, s) − uv) + b2i−2(H
′(A, s) − u − v) .

We can see that H ′(A, s)− uv=A
⋃

Pn for all s = 1, 2, 3, . . . , n . So it suffices to consider

H ′(A, s) − u − v .

Clearly, H ′(A, s) − u − v = (A − u)
⋃

Ps−1

⋃
Pn−s by Lemma 5, we only see that

Ps−1

⋃
Pn−s . By Lemma 2.2.4, we have Pn−1 � P2

⋃
Pn−3 � P4

⋃
Pn−5 � P6

⋃
Pn−7 �

· · · � P2k

⋃
Pn−1−2k � P2k+1

⋃
Pn−2k−2 � P2k−1

⋃
Pn−2k � · · · � P3

⋃
Pn−4 � P1

⋃
Pn−2 .

This leads to the result. �

Theorem 3.2.2. G′
N(i, 1) � G′

N(i, 3) � G′
N(i, 2) .

Proof. Let the edge uv denote the bond connecting Bi and Bi+1 , where u is the vertex

in Bi , v is the vertex in first benzene ring of B (see Figure 8). Then

b2i(G
′
N(i, 1)) = b2i(G

′
N(i, 1) − uv) + b2i−2(G

′
N(i, 1) − u − v)

for k = 1, 2, 3 . Clearly, G′
N(i, 1) − uv are isomorphic for all k = 1, 2, 3 .

It suffices to prove that

b2i−2(G
′
N(i, 1) − u − v) � b2i−2(G

′
N(i, 1) − u − v) � b2i−2(G

′
N(i, 1) − u − v)

because

G′
N(i, 1) − u − v = H ′(A, 1)

⋃
(B − v), G′

N(i, 3) − u − v

= H ′(A, 3)
⋃

(B − v), G′
N(i, 2) − u − v

= H ′(A, 2)
⋃

(B − v) .
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By Theorem 3.2.1, we have H ′(A, 1) � H ′(A, 3) � H ′(A, 2) . This completes the proof.

�

Theorem 3.3.3. Among all the polyphenyl chains with N benzene rings, we have ZN �
LN � SN .

Proof. The proof is similar to that of Theorem 2.3.3. �

ZN , LN , SN are shown in the Figure 10.
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Figure 10: ZN , LN , SN
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