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Abstract

The energy of a graph is defined as the sum of the absolute values of its eigenvalues.
A tree is non-starlike if it has at least two vertices of degree greater than two. For
4 <k <n—2, we determine, in the class of non-starlike trees with n vertices and k
pendent vertices, the trees with minimal energy if n > 6 and the trees with second—
minimal energy if n > 8.

1. INTRODUCTION

Let G be a graph with n vertices, and and let Ay, Ag, ..., A, be its eigenvalues [1].
Then the energy of G is defined as [2, 3]

E(G) :Zm.

For a survey of the mathematical properties and chemical applications of E(G), see

the recent reviews [4, 5].
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Gutman [6] determined the n-vertex trees with minimal, second-minimal, third
minimal, and fourth—minimal energy, as well as the n-vertex trees with maximal and
second-maximal energy. Recently, these results were extended in [7, 8]. Minimal or
maximal energies have been determined within various subclasses of trees, see [9-15].
Related results on the energy of trees may be found in [16, 17].

Let G be an acyclic graph with n vertices. Then E(G) can be expressed as the
Coulson integral formula [3]

9 [+oo L5] _
E(G) = 7/0 log Zm(G,i)le dx

4 i=0

where m(G, i) denotes the number of i-matchings in G, and in convention, m(G,0) =
1, and it is obvious that m(G,7) = 0 for 4 > |%]. This formula led Gutman [6] to
introduce a quasi-order relation over the class of all acyclic graphs: if G; and G5 are

two acyclic graphs, then
G1 = Gy & m(Gy,1) > m(Ga,i) for i > 1.

If G; = G5 and there exists a j such that m(G1,j) > m(Ga, j), then we write G; > Go.

For acyclic graphs Gy and Ga,
G- Gy = E(Gl) > E(Gg)

A tree in which exactly one vertex has degree (i.e., number of first neighbors)
greater than two is said to be starlike. Otherwise, it is non-starlike.

The starlike trees (with a given number of vertices), extremal with respect to the
relation “>”, have been characterized in [18], from which properties on the ordering
of starlike trees respect to their energies can be deduced.

A pendent vertex is a vertex of degree one. Obviously, the number of pendent
vertices in a non-starlike tree with n vertices is at least 4 and at most n — 2. Let
T« be the class of non-starlike trees in with n vertices and & pendent vertices, where
4<k<n-—2.

For integers n and k with 4 < k£ <n—2, let P;Z(a, b) be the tree formed from the
path P,_j;.o whose vertices are labelled consecutively as vy, ..., v,_rio by attaching

a pendent vertices to vertex v, and b pendent vertices to vs, where 2 < r < s <
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n—k+1,ab>1anda+b==k—2 Let Sy(a+1,b+1) =P " (a,b), ic.,
Sp(a+ 1,b+ 1) is the tree obtained from the path with n —a — b — 2 vertices by
attaching @ + 1 and b + 1 pendent vertices to its two end vertices respectively. Let
Ang = P (k= 3,1) = S, (k — 2,2) and By, = Pi(k —3,1).

In this paper, we determine the trees in T, ; with minimal energy for 4 <k <n—2
and trees in T, ; with second-minimal energy for 4 < k < n — 2 and n > 8. More

precisely, we show
e A, ; is the unique tree with minimal energy in T, ; for 4 <k <n —2;

e S,(n—>5,3) is the unique tree with second minimal energy in T,, ,,—2, Pz;i%(n -

n.

6,1) if n =8, Pfﬁ_g(n —7,2) if n > 9 is the unique tree with second—minimal

energy in T, ,_3, and B, ; is the unique tree with second-minimal energy in

T, ford <k <n-—4

2. PRELIMINARIES

For convenience, let m(G,i) = 0 for a graph G if i < 0. Let T be a tree with
vertex set V(7'). For uw € V(T'), d,, denotes the degree of w in T'.

Lemma 1. [3] Let T be a tree, and let uv be an edge of T. Then
m(T,i) =m(T —uv,i) + m(T —u—wv,i—1).
Moreover, if u is a pendent vertex, then
m(T,i) =m(T —u,i) + m(T —u—v,i—1).

Let T be a tree of the form in Fig. 1, where 77 and T3 are subtrees of T" with at
least two vertices, u; € V(T1), w41 € V(1) and I > 3. Let T” be the tree formed
from T by deleting edge wu and adding edge usu for every neighbor u of w; in V(17).
We say that 7" is obtained from T by Operation 1.

@ e Operation I .@' .—.—@
Uy Uz ug uy Uy Uz ug uy

Up+1 Up+1

T T

Fig. 1. Trees T and 7" in Operation L.
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Let T be a tree of of diameter at least 3 which is of the form in Fig. 2, where u,
and w; are end vertices of a diametrical path, I,q > 2, T} is a tree with v € V(7}).
Let T" be the tree formed from T by deleting edge uu; and adding edge vu; for the
pendent neighbor w; of u with ¢ = 2,...,1. We say that T" is obtained from T by
Operation II.

Uy W 2
U VNS t U
uj
T r

Fig. 2. Trees T and T" in Operation II.
Lemma 2. [14] If T" is obtained from T by Operation I or II, then T > T'.

Lemma 3. [13] For integers i and | with 2 <i < L%J, 1#3,andl>6, P,UP_; -
P3sUP 3= PUP_;.

Lemma 4. [6] Let T be a tree on n vertices. If T is different from the path P, and
the star S,, then P, =T »= S,,.

Lemma 5. Forn >9, £ (PQ’3 (n—6,1)) > E (PQ’4 5(n—17,2)).

n,n—3 n,n—3

Proof. Let Ty = P>* ,(n—6,1) and T, = P>} ,(n—7,2). Tt can be easily seen that

n,n—3 n,n—3
m(11,2) =3n—13, m(71,3) =n—>5, m(Ty,i) =0 fori >4,
m (T,2) =4n — 21, m (Ty,4) =0 for i > 3.

Note that the eigenvalues of a tree T" with n vertices are the n roots of its characteristic

polynomial, which may be written as [3]

5]
&(T,x) =Y (=1)'m(T,i)a""2.

Thus,
O(Ty,x) = 2" % [2° — (n — 12" + (3n — 13)2® — (n — 5)],

(T, x) = 2" * [2* — (n — 1)a® + (4n — 21)] .
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Let /a1, /a2, /as be the positive eigenvalues of 73, and /b1, /by be the positive
eigenvalues of Ty. Then a; + as + a3 = by + by = n— 1, ajas + asaz + aza; = 3n — 13,

ajasas = n — 5 and biby = 4n — 21. We have

[M)] (V@)

= a1+ ay+az +2(Vaag + Jagaz + \/azar)
= n—1+2y/ar1as + asas + aza; + 2v/a1aza3 (/a1 + v/az + /as)
= n71+2\/3n713+\/nf5E(T1),

[PE = (v i)’

by + by + 2v/biby = n — 1+ 2¢/4n — 21.

2

Now it is easily seen that E(T7) > E(T3) is equivalent to n — 8 < v/n—5E(T}),

ie., E(Ty) > \}%, which is obviously true, because by Lemma 4, E(T}) > E(S,) =

n—=8
2 —1> 2= D

Let T be a tree. Let [(T) denote the number of vertices of degree at least 3 in 7.
If vovy ... v is a path (of length ¢) in T such that d,, > 3, d,, = 1 and d,, = 2 for
i=2,...,t—1, where t > 1, then it is called a pendent path of T". If ¢ = 1, then it is
a pendent edge. Let p(T) be the number of pendent paths of length at least 2 in 7.
For integers n and k with 3 < k < n — 2, let P,:k be the tree formed from the
path P, ;.o labelled as vq,...,v,_p1o by attaching & — 2 pendent vertices to vertex

v, where 2 < r < L#j

3. RESULTS

Note that Operations I and II do not change the number of pendent paths and
hence the number of pendent vertices, and that Operation II reduces the number of
vertices of degree at least 3 by one. For a tree T" of diameter at least 3, if Operation I
can not be applied to T" then Operation IT may be applied to get a tree 7" and when
the diameter is at least 4 and I(T") > 2, Operation II may be applied to T”.

Now we are ready to prove our results.
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Theorem 1. For integer n and k with 4 < k < n — 2, A, is the unique tree with

manimal energy in T, .

Proof. Let T' € T, with T"22 A,, .. We will prove that T" > A, ;.

Note that {(T) > 2. If [(T') > 3, or [(T) = 2 and p(T)) > 1, then applying
Operations I and II to T, and by Lemma 2, we get a tree 7" € T, such that
U(T") =2, p(T") =0and T > T". Assume that {(T) = 2 and p(T) = 0. Then T is a
tree S, (a,b) witha >b >3 and a+b=k.

Claim. S,(a,b) = S,(a+1,b—1) for a > b > 3.

If a + b =n — 2, then this follows easily. Suppose that a +b < n — 3. By Lemma

1, we have
m (Sy(a,b),i) = m(Sp_1(a,b—1),7) +m (Pg—b—l,aJrhi —1),
m(Sp(a+1,0—1),i) = m(Sp-r(a,b—1),0)+m (P2, 5, i—1).

Since P2_, ,, is a proper subgraph of P2, | . for a > b, we have

m (Pr%—b—l,a-%—lvi - 1) =m (P%—a—Z,lﬁi - 1)

n

and then m (S, (a,b),7) > m (S,(a+1,b—1),7) for all ¢ > 0 and it is strict for i = 2.
This proves the Claim.

By the Claim, T' > S, (k —2,2) = A, ;. O

It is easily checked that |T, ;| > 2 if and only if either 4 <k <n—2andn > 8 or
n=7and k = 4. Obviously, Try = {Ar4, P77 (1,1)}, and E (A7) < E (P7{(1,1)).
Thus, for the graphs with second-minimal energy in T,, ; with 4 < k <n —2, we may

assume that n > 8.
Theorem 2. For integers n and k with 4 < k <n —2 and n > 8, we have
(i) Sp(n —5,3) is the unique tree with the second—minimal energy in Ty p_o;

(i) Pj:,d(n —6,1) ifn = 8, PX (n—17,2) ifn > 9 is the unique tree with

nn—3

second-minimal energy in T, ,_3;

(iwi) If 4 < k < n —4, then B, is the unique tree with second—-minimal energy in

Tn,k'
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Proof. Any tree T’ € T,, ,,_» is of the form S,,(n—2—¢,¢) with 2 < ¢ < % By direct
check or by the Claim in the proof of Theorem 1, if T' 2% S, (n — 5,3), S,(n — 4,2),
then 7' > S,(n —5,3) = S,(n —4,2). Thus S,(n — 5,3) is the unique tree with the
second-minimal energy in T, ,,_». This proves (i).

Let T € Tppos With T % Ayyos, P _s(n—17,2), Pro_s(n—6,1). Then I(T) > 2
and 7" must be of the form obtained from the path Ps = vjvvzv4vs by attaching z, y
and z pendent vertices to vertices vq, v3 and vy, respectively, where z+y+2z = n—>5,
x>z, (v,y,2) # (n—6,0,1), (n —17,0,2), (n —6,1,0). If y = 0, then n > 9 and by
the argument of Theorem 1, 7" > Pfﬁ 3(n—17, 2). If y > 1, then applying Operation
IT and by Lemma 2, we may easily have T' = P, 3 ,(n—6,1). By Lemma 5, we have
the result in (ii).

In the following we prove (iii). Let T € T, with 7" 22 A, x, By, where 4 < k <
n —4.

Note that I(T) > 2. If I(T') > 3, then by making use of Operation II and if
necessary Operation I to T, and by Lemma 2, we get a tree 7" € T, such that
I(T") = 2 and T > T'. By the definition of Operation II, 7" 2 A, ;. Assume that
I(T)=2and T"%# A, . Let u,v be the two vertices in T' with d,, > d, > 3.

Suppose that d, > d, > 4. Applying Operation I, and by Lemma 2, we find
T = S,(d, +1,d, — 1). By the proof of Theorem 1, we have T = S,,(k — 3,3).
Claim 1. S,(a,3) > B, 443, where a > 3.

Let d = n —a — 3. Since m(P,,i) = ("] ’) we have

m($(3,3),0) = 33 (“757) 43 (T +3- (TIT) + ()

9({73) +6(7) + (),

M (B ) = 42 (5 44 () (1) 4 (1)
+(d—2—1+2)
i—2
= 9(5) +4(5) + () + (),
and thus
m (S,(3,3),1) —m (Bnsis, i) = (‘Z:ll) — (dZI])

It follows that m (S,(3,3),7) > m (B 345,%) for all ¢ > 0 and it is strict for i = 2.
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Thus the claim is true for a = 3. Suppose that @ > 4 and it is true for a« — 1. By
Lemma 1 we have

m(Sp(a,3),i) = m(Su_1(a—1,3),9) +m (P}, i—1),

m (Buats, i) = m(Bp_1a42,1) +m (Pfﬂﬁ,i - 1) .

Since Pj,, 4 is a proper subgraph of P7,, ,, we have m (S,(a,3),i) > m (Bnats,1)
for all ¢« > 1 and it is strict for ¢ = 2. Now Claim 1 follows. By Claim 1, T" >
Sn(k—3,3) = Bp.

Now suppose that d,, > d, = 3. If p(T) > 2, then applying Operation I to T we
may get a tree 7" such that 77 with p(7”) = 1, and by Lemma 2, T > T". Suppose
that 7" % B, ;. Then we have either 7" = Piz(k —3,1) with 3 < s < n—k and
s#4,ork>4and T'= P2y(1,k—3) with3 < s <n—k

Suppose that 3 < s < ¢ and s # 4. We have by Lemma 3 that P,_; U P.yo ¢ >
Py U P, and thus by Lemma 1, P 35 = PCJr33 If s = 3, then by Lemmas 1 and
4, P62f474(1,1) - Pff474(1,1) = Boiga. 15 < s < ¢ then by Lemma 3, we have
P,_sUP..o_ = P,UP._, and by Lemma 1, we have Pc(frlz; >~ P?., 4, and thus
Pff4,4(1,1) - PfﬁA(l,l) = B.is4. We have shown that PE244,4(1,1) > Beyau for
3 < s <cand s # 4, which will be the starting point of Claims 2 and 3.

Claim 2. Pc+z+3z+3(x7 1) = Betatswrs, where x> 1,3 <s<¢, s #4.
If x = 1, then the claim follows. Suppose that z > 2 and it is true for x — 1. By

Lemma 1,

(PC2+GL+3 1+3(‘T7 1)‘ Z) = (P('2+x+2 42 («T 1, 1)7 Z)
+m (Pc+z+3 z+3(x7 1) — U1 = ’U27Z‘ - ]-) )

m (Bc+ac+3,x+37 Z) = m (Bc+1‘+2,r+27 ) +m (zPl U P+1 3’ 1) .

If s # 3, then ¢ > 5, P57y = P2, 4, and thus Pc+z+3 wrs(®, 1) —vi—vy = 2 PLUPS 5 =
P UP? 4. If s =3, then ¢ > 3, Poyy = P2, 4, and thus P25 (2, 1) — v — v =
P UP. 1 = xP U Pc2+1,3' Thus Claim 2 follows.

Claim 3. PH_;H wi3(1,2) = Beiaisars, where 2 > 2 and 3 <s <c.

If x =1 and s # 4, then Pffﬁgwrg(l,x) > Betgisats. If o =1and s =4, then



- 489 -

Pf;;+311+3(1, Z) = Beygysets. Suppose that © > 2. By Lemma 1, we have

m (Pffer:;,er:s(L ), Z) = m (Pr:2‘s.7c+27m+2(17 x—1), Z)
+m ((x —1)PLU P23U Poyo_y,i — 1),
m (Bepaisars i) = m(Beroroare, i) +m(xPLU P2, 50 —1).
Obviously, m ((z —1)PLU P2, U P.ys ,i—1) > m (2P UP?,5i—1) and then
m (P2 5045(1,2),4) = m(Betorsass,i) for all i > 1 and it is strict for i = 2.
Thus Claim 3 follows.
Setting * = k — 3 and ¢ = n — k in Claims 2 and 3, we have ' > 1" > B, ;. O
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