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Abstract

The energy of a molecular graph is a popular parameter that is defined as the
sum of the absolute values of eigenvalues of the graph. It is well known that in the
case of trees the energy is related to the matching polynomial and thus also to the
Hosoya index via a certain Coulson integral. Ye and Yuan [On the minimal energy of
trees with a given number of pendent vertices, MATCH Commun. Math. Comput.
Chem. 57 (2007) 193-201.] and Yu and Lv [Minimum energy on trees with k pendent
vertices, Lin. Algebra Appl. 418 (2006) 625-633] independently characterized the
trees with the minimal energy among the trees with a given number of pendent
vertices (that is, vertices of degree one). Let Tn,t be the set of trees of order n with
at least t vertices of degree two. In the present paper, we characterize the tree with
minimal energy or Hosoya index in Tn,t.
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1 Introduction

Gutman [2,4] defined the energy of a graph G with n vertices, denoted by E(G).

The energy is a graph parameter stemming from the Hückel molecular orbital (HMO)

approximation for the total π-electron energy. It is defined as the sum of the absolute

values of eigenvalues of a graph: if λ1, λ2, · · · , λn denote the spectrum of a graph G, then

E(G) =
n∑

i=1

|λi| .

The Hosoya index of a graph G with n vertices, denoted by Z(G), is defined as

Z(G) =

�n
2
�∑

r=0

m(G, r) ,

where m(G, r) denotes the number of matchings with r edges in G.

Let T be a tree with n vertices, and let V (T ) = 1, 2, ..., n denote the set of vertices

of T . The adjacency matrix A(T ) of T is the square matrix A(T ) = (aij) of order n,

where aij = 1 if i and j are adjacent and 0 otherwise. The characteristic polynomial of T ,

denoted here by φ(T, x), is defined as φ(T, x) = det(xI − A(T )) , where I is the identity

matrix of order n. It is well known [1] that if T is a tree with n vertices then

φ(T, x) =

�n
2
�∑

k=0

(−1)km(T, k)xn−2k , (1)

where m(T, k) equals the number of matchings with k edges in T , and �n
2
� denotes the

largest integer no more than n
2
.

It follows from (1) that the energy can actually be computed by means of Coulson

integral [5,6,7].

E(T ) =
2

π

∫ ∞

0

x−2log(
∑

k

m(T, k)x2k)dx (2)

The fact that E(T ) is a strictly monotonously increasing function of all matching

numbers m(T, k), k = 0, 1, 2, · · · , �n
2
�, provides a way of comparing the energies of pair of

trees. Gutman [3] introduced a quasi-ordering relation “ � ”(i.e. reflexive and transitive

relation) on the set of all forests (acyclic graphs) with n vertices: if T1 and T2 are two

forests with n vertices and characteristic polynomials in the form (1), then

T1 � T2 ⇐⇒ m(T1, k) ≥ m(T2, k)
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for all k = 0, 1, 2, · · · , �n
2
� .

If T1 � T2 and there exists a k such that m(T1, k) > m(T2, k) then T1 � T2. Hence,

by (2),

T1 � T2 =⇒ E(T1) ≥ E(T2) (3)

T1 � T2 =⇒ E(T1) > E(T2) (4)

This quasi-ordering has been successfully applied in the study of the extremal values of

energy over a significant class of graph (see [8-28, 31-38]). In [4] Gutman determined

the tree with n vertices and the maximal energy, namely, the path Pn. Furthermore, he

obtained the following result.

E(Xn) < E(Yn) < E(Zn) < E(Wn) < E(T )

for any tree T �= Xn, Yn, Zn,Wn with n vertices, where Xn is a star K1,n−1, Yn is the graph

obtain by attaching a pendent edge to a pendent vertex of K1,n−2, Zn by attaching two

pendent edge to a pendent vertex of K1,n−3, and Wn by attaching a P3 (here Pm denotes a

path with m vertices) to a pendent vertex of K1,n−3. Fig. 1 shows the trees X9, Y9, Z9,W9.

X
9

Y
9

Z
9

W
9

Fig. 1: The trees X9, Y9, Z9 and W9

Zhang et al [25] determined the trees with maximal energy and minimal energy

[24], respectively, among the hexagonal chains. Lin et al [16] determined the tree with

maximal energy among the trees with order n and maximum degree Δ(3 ≤ Δ ≤ n − 2)

and the tree with minimal energy among the trees with order n and maximum degree

Δ(�n+1
3
� ≤ Δ ≤ n − 2). Zhou et al [28] determined the minimal energy of trees of a

prescribed diameter. Ye et al [22] and Yu et al [27] determined the minimal energy of

trees with a given number of pendent vertices (that is, vertices of degree one), respectively.

In the present paper, we will consider the minimal energy of trees with a given number

of vertices of degree two.

In order to formulate our results, We need to define a tree Tn,t with n vertices as

follows: Tn,t is obtained from a path Pt+2 with t+2 vertices by attaching n−t−2 pendent

edges to an end vertex of Pt+2. Tn,t is called a broom (see Brualdi and Goldwasser [29]).
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Fig.2 shows the broom Tn,t. Obviously, the largest length of a path of Tn,t is t+2 and Tn,0

is a star K1,n−1. Let Tn,t be the set of trees of order n with at least t vertices of degree

two. Clearly, Tn,t ∈ Tn,t.

T
n,t

...
.

.

.

n-t-2

v
0

v
1

v
2 v

3
v

4 v
t+2

x
1

x
n-t-3

Fig. 2: The broom Tn,t

Let T be a tree of order n, and n ≥ 3. Let e = uv be a nonpendent edge of T , and

let T1 and T2 be the two components of T − e, u ∈ V (T1), v ∈ V (T2). Let T0 be the tree

obtained from T in the following way.

(1) Contract the edge (i.e. identify u of T1 with v of T2).

(2) Attach a pendent vertex to the vertex u (= v).

The procedures (1) and (2) are called [30] the edge-growing transformation of T (on

edge e = uv), or e.g.t of T (on edge e = uv) for short.

The following lemmas will be used in the proof of our main result.

Lemma 1.1 [16] Let T be a tree of order n with at least a nonpendent edge, and n ≥ 3.

If T0 can be obtained from T by one step of e.g.t, then T � T0 and E(T ) > E(T0).

Lemma 1.2 [21] Let T and T ′ be two trees of order n. Suppose that uv (resp. u′v′) is

a pendent edge of T (resp. T ′) and u (resp. u′) is a pendent vertex of T (resp. T ′). Let

T1 = T − u, T2 = T − u− v, T ′
1 = T ′ − u′, and T ′

2 = T ′ − u′ − v′. If T1 � T ′
1 and T2 � T ′

2;

or T1 � T ′
1 and T2 � T ′

2, then T � T ′.

It is obvious that, in Lemma 1.2, if T1 � T ′
1 and T2 � T ′

2 then T � T ′.

Lemma 1.3 [22] Let T be an acyclic graph with n vertices (n > 1) and T ′ a spanning

subgraph (resp. a proper spanning subgraph) of T . Then T � T ′ (resp. T � T ′).

In this paper, we prove the following.
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Theorem 1.4 Let n and t be two positive integers with n ≥ t+2 ≥ 2, and let T be a tree

with n vertices in which there are at least t vertices of degree two. Then E(T ) ≥ E(Tn,t)

with equality if and only if T is the broom Tn,t.

Corollary 1.5 Let n be a positive integer n ≥ 2,and t ≥ 0, and let T be a tree with n

vertices and with at least t vertices of degree two. Then Z(T ) ≥ Z(Tn,t) with equality if

and only if T is the broom Tn,t, where Z(T ) denotes the Hosoya index of T .

2 Proofs of the main results

Now we are in the position to prove our main results.

Proof of Therorem 1.4. By (3) and (4), it suffice to prove T � Tn,t for any tree T � Tn,t

in Tn,t. We will prove it by induction on n and t.

If t = 0 and T � Tn,0, by a number of e.g.t, T can be transformed to a star which is

just Tn,0. By Lemma 1.1, T � Tn,0.

For any tree T ∈ Tn,t, n ≥ t + 2. So a tree with t vertices of degree two and with a

minimum number of vertices has exactly t+2 vertices which is just a path Pt+2 isomorphic

to Tt+2,t. Thus if n = t + 2, then T ∼= Tt+2,t and E(T ) = E(Tt+2,t).

Now we suppose that n > t + 2 > 2 and that, for any tree T ′ ∈ Tn′,t′ with either

n′ ≤ n and t′ < t or n′ < n and t′ ≤ t, T ′ � Tn′,t′ , and E(T ′) = E(Tn′,t′) if and only if

T ′ ∼= Tn′,t′ .

Denote the diameter of T by d. Let Pd+1 = u0u1 · · ·ud be a longest path in T .

Then dT (u0) = dT (ud) = 1, where dT (ui) denotes the degree of the vertex ui in T . Let

dT (u1) = s ≥ 2, and u0, w1, w2, · · · , ws−2, u2 the adjacent vertices of u1. Since Pd+1 is a

longest path in T , dT (wj) = 1 for j = 1, 2, · · · , s− 2. Let T0 be the component of T − u1

containing u2. Then T0 contains at least t + 1 vertices, in which at least one pendent

vertex of T and at least t vertices having degree two in T . T − u1 − u2 consists of T0 and

s − 2 isolated vertices.

Note that Tn,t consists of a path Pt+2 = v1v2 · · · vt+2 and n − t − 2 pendent vertices

v0, x1, x2, · · · , xn−t−3 adjacent to v1 (see Fig. 2).

We can assert that s = dT (u1) ≤ dTn,t(v1) = n − t − 1. Otherwise, s ≥ n − t ≥ 3.

Then T0 would have at most t vertices in which at least two pendent vertices of T0 and

at most t − 2 vertices of degree two. Thus T would have at most t − 1 vertices of degree
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two, a contradiction.

Case 1. dT (u1) = s = 2. Then T − u0 is a tree with n − 1 vertices and with at least

t − 1 vertices of degree two, T − u0 − u1 is a tree with n − 2 vertices and with at least

t − 2 vertices of degree two. By induction hypothesis, T − u0 � Tn−1,t−1
∼= Tn,t − vt+2,

T − u0 − u1 � Tn−2,t−2
∼= Tn,t − vt+2 − vt+1. In addition, E(T − u0) = E(Tn,t − vt+2)

if and only if T − u0
∼= Tn,t − vt+2, and E(T − u0 − u1) = E(Tn,t − vt+2 − vt+1) if and

only if T − u0 − u1
∼= Tn,t − vt+2 − vt+1. Since T � Tn,t, either T − u0 � Tn,t − vt+2 or

T − u0 − u1 � Tn,t − vt+2 − vt+1. By Lemma 1.2, we have T � Tn,t.

Case 2. dT (u1) = s ≥ 3. Then T − u0 is a tree with n − 1 vertices in which there

are at least t vertices of degree two, T − u0 − u1 consists of s − 2 isolated vertices and

a tree T0 with n − s vertices in which there are at least t − 1 vertices of degree two. By

induction hypothesis, T − u0 � Tn−1,t
∼= Tn,t − v0, T − u0 − u1 � T0 � Tn−s,t−1. Since

s ≤ n−t−1, we have that n−s ≥ t+1 and Tn−s,t−1 contains a subgraph Pt+1. By Lemma

1.3, Tn−s,t−1 � Pt+1. On the other hand, Tn,t−v0−v1 consists of n− t−3 isolated vertices

and a path Pt+1, so Pt+1 � Tn,t − v0 − v1. Therefore, T − u0 − u1 � Pt+1 � Tn,t − v0 − v1.

Since T � Tn,t, either T − u0 � Tn,t − v0 or T − u0 − u1 � Tn,t − v0 − v1. By Lemma 1.2,

we also have T � Tn,t. �

Proof of Corollary 1.5. Note that for any tree T with n vertices, the Hosoya index

Z(G) =
∑�n

2
�

r=0 m(G, r). Hence, if T1 and T2 are two trees with n vertices such that T1 � T2

then Z(T1) ≥ Z(T2). Now it follows from Therorem 1.4 that Z(T ) ≥ Z(Tn,t). �
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