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Abstract

It was recently shown that an interesting class of trees maximizes the Merrifield-

Simmons index and minimizes the Hosoya index and energy among all trees with

given number of vertices and maximum degree. In this paper, we describe how

these trees (which we will call F-trees) can be constructed algorithmically by means

of so-called F-expansions, which are very similar to ordinary base-d digital expan-

sions. Our algorithms are illustrated by various examples. Furthermore, some more

properties of F-trees are described and numerical data is provided.
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1 Introduction

The Merrifield-Simmons index, defined as the number of independent vertex subsets of a

graph, and the Hosoya index, the number of matchings (independent edge subsets) of a

graph, are two of the most popular topological indices that serve as molecular descriptors,

see [6, 19, 22]. In view of the similar definitions, it is not surprising that there are many

interesting connections between the two. One of the most important questions in the

study of such indices is the extremal problem, i.e., the problem of determining the graphs

within a prescribed class that maximize or minimize the index. There is a vast amount

of recent literature on the extremal problem for the Merrifield-Simmons index as well as

the Hosoya index: since acyclic systems are often of particular interest, a lot of work has

been done on trees. It is a long-known fact [6, 21] that among all trees of a given size,

the star has maximum Merrifield-Simmons index and minimum Hosoya index, while the

path maximizes the Hosoya index and minimizes the Merrifield-Simmons index. The fact

that the star and the path are extremal among all trees is actually the typical behavior

for all topological indices.

In order to obtain a deeper understanding of the Merrifield-Simmons index and the

Hosoya index of trees, the extremal problem has been investigated for trees with certain

restrictions, such as given diameter [17, 20], given size of largest matching [12] or given

number of leaves [20, 26, 27, 30]. For trees without restrictions, not only the largest or

smallest possible values are known, but also further values, see [14, 15, 23].

Furthermore, graphs with a bounded number of cycles, in particular unicyclic and

bicyclic graphs [3, 16, 24, 25, 28, 29], can be treated along essentially the same lines,

and again, several restrictions (e.g. fixed girth) can be included in the study as well.

Other structures that have been investigated include hexagonal chains [31], which are

very natural objects considering the chemical background. Typically, the graphs within a

given class that minimize one of the two indices maximize the other, and vice versa, even

though there are notable exceptions (see [2]). This is quite intuitive in view of the similar

definitions, while it is a less intuitive fact that the trees which minimize the Hosoya index

usually also minimize the energy (see for instance [13, 27]), i.e., the sum of the absolute

values of all eigenvalues (of the adjacency matrix). This is due to a relation between the

characteristic polynomial and matchings of a tree, which gives rise to a formula for the
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energy via a so-called Coulson integral [6]:

E(T ) =
2

π

∫ ∞

0

x−2 log

(∑
k

m(T, k)x2k

)
dx, (1)

where m(T, k) is the number of matchings of size k of a tree T . This relation was used in

many instances to show that the extremal trees with respect to energy and Hosoya index

coincide, see [5] for the earliest instance.

A very natural class of graphs that arises from the chemical applications is the class of

chemical trees, i.e., trees with maximum degree at most 4. The minimum Hosoya index

and energy of chemical trees were determined in [4] for a small number of vertices, and

it was also conjectured in this paper that the extremal chemical trees for the two are

always the same. This conjecture was proven recently in [8], where it was shown that the

extremal chemical trees for the energy have the same shape as those that had been shown

earlier to maximize the Merrifield-Simmons index and minimize the Hosoya index, see [9].

In the proof, the aforementioned Coulson integral representation plays a significant role.

The results for chemical trees are actually just special cases of more general theorems

for trees with given maximum degree. An earlier result in this context is due to Lv and

Yu [18], where the maximum degree is assumed to be relatively large. The extremal

trees with given number of vertices and maximum degree form a very interesting class of

trees that we treat in the current paper in some more depth. First, we define them and

summarize all known results. Section 2 deals with an associated digital system which we

call the F-system; the F-expansion associated to a given integer n can be determined by

a short algorithm (Section 3) that also allows us to generate the trees (Section 4), which

is exhibited for several examples (Section 5). Finally, we state a few more properties of

our class of trees and provide some numerical data.

Before defining the class of trees under consideration, we fix our notations on complete

trees. Throughout the paper, d is a fixed integer ≥ 2. The complete d-ary tree of height

h − 1 is denoted by Ch, i.e., C1 is a single vertex and Ch has d branches Ch−1, . . . , Ch−1,

cf. Figure 1. It is convenient to set C0 to be the empty graph.

As the shape of the trees under consideration is somewhat reminiscent of a festoon,

we call the trees festoon trees or F-trees for short.

Definition 1.1 An F-tree is a tree of the form
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(a) C1 for all d (b) C2 for d = 2 (c) C2 for d = 3 (d) C3 for d = 2

Figure 1: Complete d-ary trees

B0,d−1 B0,1· · · B�−1,d−1 B�−1,1· · · B�,d B�,d−1 B�,1· · ·

· · ·

with Bk,1, . . . , Bk,d−1 ∈ {Ck, Ck+2} for 0 ≤ k < � and

• either B�,1 = · · · = B�,d = C�−1

• or B�,1 = · · · = B�,d = C�

• or B�,1, . . . , B�,d ∈ {C�, C�+1, C�+2}, where at least two of B�,1, . . . , B�,d equal C�+1.

It is not obvious from the definition that such a tree exists for arbitrary order n and

d and that it is unique. The existence has been proved implicitly (in the proof of their

extremality with respect to the Merrifield-Simmons index and the Hosoya index) in [9].

Theorem 1 ([9]) For every d ≥ 2 and n ≥ 1, there is a unique F-tree of order n, denoted

by T ∗
n,d.

More specifically, let rk be the number of copies of Ck+2 among the subtrees Bk,j for

k < �, set ak = (d − 1)(1 + (d + 1)rk) and

• a� = 1, if B�,1 = · · · = B�,d = C�−1,

• or a� = d, if B�,1 = · · · = B�,d = C�,

• or a� = d + (d− 1)q� + (d2 − 1)r�, where q� ≥ 2 is the number of copies of C�+1 and

r� the number of copies of C�+2 among the subtrees B�,j.

Then we have

(d − 1)n + 1 =
�∑

k=0

akd
k. (2)

- 440 -



In fact, (2) is the result of simply counting the vertices of the various branches of T ∗
n,d,

taking into account that Ch has precisely dh−1
d−1

vertices.

The proof in [9] proves the existence of an F-tree of order n by starting with an extremal

tree with respect to the Merrifield-Simmons index, deriving that this is an F-tree, and then

using the counting argument to deduce (2). Uniqueness is then shown by establishing that

(2) (together with the obvious restrictions 0 ≤ rk < d, 0 ≤ r�, 0 ≤ r� + q� ≤ d) determines

rk, q�, r� completely. It is, however, not explained how to determine these quantities, and

therefore T ∗
n,d, from the knowledge of n and d. This gap is filled in the present paper:

we provide an explicit short algorithm (Algorithm 2) to compute the auxiliary quantities

and thus T ∗
n,d (Proposition 4.1). This is achieved by considering (2) as a d-ary digital

expansion with slightly unusual digits. All this will motivate the definitions of Section 2.

The following properties of T ∗
n,d have been proven in [8, 9].

Theorem 2 ([9]) Among all trees with n vertices and maximum degree ≤ d + 1, the F-

tree T ∗
n,d is the unique tree that maximizes the Merrifield-Simmons index and minimizes

the Hosoya index.

Theorem 3 ([8]) Let m(T, k) denote the number of matchings of size k of a tree T , and

define the polynomial M(T, x) by

M(T, x) =
∑
k≥0

m(T, k)xk.

Then, for any fixed n and x > 0, the unique tree that minimizes M(T, x) among all trees

with n vertices and maximum degree ≤ d + 1 is the F-tree T ∗
n,d.

From the representation (1), one immediately obtains the following fact:

Theorem 4 ([8]) The F-tree T ∗
n,d is the unique tree with n vertices and maximum degree

≤ d + 1 that minimizes the energy.

Furthermore, it is possible to describe the asymptotic behavior of the extremal values,

i.e., the Merrifield-Simmons index, the Hosoya index and the energy of T ∗
n,d, see [8, 10]

for details.

Theorem 5 ([10]) The Merrifield-Simmons index of the F-tree T ∗
n,d is given by

σ(T ∗
n,d) = ρnβn,
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where β = β(d) only depends on d, and ρn is bounded above and below by positive constants

which depend only on d.

Both β(d) and the upper and lower bounds for ρn can be computed numerically. Similarly,

one has an analogous theorem for the Hosoya index:

Theorem 6 ([10]) The Hosoya index of the F-tree T ∗
n,d is given by

Z(T ∗
n,d) = τnγn,

where γ = γ(d) only depends on d, and τn is bounded above and below by positive constants

which depend only on d.

Finally, it can be shown that the energy of an F-tree T ∗
n,d grows linearly in the number of

vertices for fixed d. This is made explicit in the following theorem:

Theorem 7 ([8]) The energy of T ∗
n,d is asymptotically

E(T ∗
n,d) = αn + O(log n),

where

α = α(d) = 2
√

d(d − 1)2

⎛
⎜⎜⎝ ∑

j≥1
j≡0 mod 2

d−j

(
cot

π

2j
− 1

)
+

∑
j≥1

j≡1 mod 2

d−j

(
csc

π

2j
− 1

)⎞⎟⎟⎠
is a constant that only depends on d.

2 F-expansions

The equation (2) provides the starting point for an algorithm that constructs T ∗
n,d (given n

and d) and motivates the following definitions. Note that the right hand side is essentially

a digital expansion (base-d expansion), the only difference being the fact that the “digits”

ak are not contained in the set {0, 1, . . . , d− 1}, but in a somewhat different set (the final

one, a�, is particularly exceptional). Hence, we introduce the concept of an F-expansion.

In the following, we write m + dZ for the residue class of m modulo d, i.e., m + dZ =

{m + kd | k ∈ Z}, where m and d > 0 are integers. Furthermore, we write m mod d for

the unique integer in m + dZ in the range {0, . . . , d − 1}.
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Let d ≥ 2 be a fixed integer. We set

D := {(d − 1) + (d2 − 1)r | 0 ≤ r ≤ d − 1},

Df := {1, d} ∪ {d + (d − 1)q + (d2 − 1)r | q ≥ 2, r ≥ 0, r + q ≤ d}.

The elements of D and Df are called the F-digits and final F-digits, respectively. Note

that ak ∈ D for k < � in our identity (2) and that a� ∈ Df . We are considering digital

expansions to the base d with those digits.

Example 2.1 We give D and Df for small values of d in Table 1.

d D Df

2 {1, 4} {1, 2, 4}
3 {2, 10, 18} {1, 3, 7, 9, 15}
4 {3, 18, 33, 48} {1, 4, 10, 13, 16, 25, 28, 40}
5 {4, 28, 52, 76, 100} {1, 5, 13, 17, 21, 25, 37, 41, 45, 61, 65, 85}

Table 1: F-digits

A d-ary F-expansion of a positive integer N is a sequence (a�, a�−1, . . . , a0) with a� ∈ Df

and aj ∈ D for 0 ≤ j < � such that

N = value(a�, a�−1, . . . , a0) =

�∑
j=0

ajd
j.

Example 2.2 The sequence (3, 2, 10, 10) is a ternary (i.e., 3-ary) F-expansion of N = 139:

Obviously, the digits belong to the correct digit sets, and we have

3 · 33 + 2 · 32 + 10 · 31 + 10 · 1 = 139.

We need the following information on the set D in order to compute F-expansions.

Lemma 2.3 Let m ∈ Z. Then there is exactly one a ∈ D such that m ≡ a (mod d),

which will be denoted by ε(m). We have

ε(m) = (d − 1) + (d2 − 1) (−m − 1 mod d) .

Example 2.4 For d = 3, we have ε(139) = 2 + 8 · (−140 mod 3) = 10.
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Proof: We have m ≡ (d − 1) + (d2 − 1)r (mod d) for some 0 ≤ r < d if and only if

r ≡ −m − 1 (mod d). Thus we have to choose r = (−m − 1 mod d). �
Next, we give an alternative description of the set of final digits. It is obvious that all

final digits are congruent to 1 modulo d − 1.

Example 2.5 For d = 5, the intersections of the sets Df and D with the residue classes

modulo 5 are given in Table 1.

∩ Df D
0 + 5Z {5, 25, 45, 65, 85} {100}
1 + 5Z {1, 21, 41, 61} {76}
2 + 5Z {17, 37} {52}
3 + 5Z {13} {28}
4 + 5Z ∅ {4}

Table 2: Intersections of Df and D with the residue classes modulo 5 for d = 5

In Example 2.5, it is shown that the intersection of Df with some residue class m + 5Z

consists of those positive numbers congruent to 1 modulo d − 1 = 4 and congruent to

m modulo d = 5 which are less than (or equal to) the unique representative ε(m) of the

residue class in the set of digits D. In the following lemma, we prove that this is true in

general.

Lemma 2.6 Let m ∈ Z. Then

Df ∩ (m + dZ) = {a ∈ Z | 0 < a ≤ ε(m), a ≡ 1 (mod d − 1), a ≡ m (mod d)}. (3)

Furthermore, a = ε(m) can only happen for d = 2.

Proof: We claim that

Df = {a ∈ Z | ∃k ∈ Z : 0 < a ≤ ε(k), a ≡ 1 (mod d − 1), a ≡ k (mod d)}. (4)

While proving this claim, we denote the set on the right hand side of (4) by S.

The congruence a ≡ k (mod d) is equivalent to a ≡ ε(k) (mod d) and to a = ε(k)−sd

for an appropriate s ∈ Z. Thus in a first step we can rewrite S as

S = {a = ε(k) − sd | a ≥ 1, s ≥ 0, a ≡ 1 (mod d − 1), k ∈ Z}.
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As ε(k) ∈ D, we have ε(k) ≡ 0 (mod d−1), so the condition a ≡ 1 (mod d−1) translates

to s ≡ −1 (mod d−1), so we may write s = −d+ q(d−1) for an appropriate q ∈ Z. The

condition s ≥ 0 then translates to q ≥ 2. This gives

S = {a = ε(k) + d2 − qd(d − 1) | a ≥ 1, q ≥ 2, k ∈ Z}.

Next, we replace ε(k) by (d − 1) + (d2 − 1)R for some 0 ≤ R ≤ d − 1 and obtain

S = {a = d2 + d − 1 + (d2 − 1)R − qd(d − 1) | a ≥ 1, q ≥ 2, 0 ≤ R ≤ d − 1}

= {a = d + (d − 1)q + (d2 − 1)(R − q + 1) | a ≥ 1, q ≥ 2, 0 ≤ R ≤ d − 1}.

Setting R − q + 1 = r, we get the alternative expression

S =
{

a = d + (d − 1)q + (d2 − 1)r
∣∣∣ 1 ≤ r + q ≤ d, q ≥ 2, r ≥ −1 + q + r

d

}
. (5)

We note that r + q ≤ d implies (1 + q + r)/d ≤ 1 + 1/d < 2, and so these inequalities

imply r ≥ −1. Thus the lower bound r + q ≥ 1 is redundant and can be removed. On

the other hand, the lower bound for r is certainly negative. Thus we separately consider

the two cases r ≥ 0 and r = −1 in (5) and obtain

S = {a = d + (d − 1)q + (d2 − 1)r | q ≥ 2, r ≥ 0, r + q ≤ d}

∪ {a = d + 1 − d2 + (d − 1)q | 2 ≤ q ≤ d + 1, q ≥ d}. (6)

In the second set, the lower bound q ≥ 2 is redundant. Actually, we have

{a = d + 1 − d2 + (d − 1)q | 2 ≤ q ≤ d + 1, q ≥ d} = {1, d}, (7)

as the only remaining choices for q are d and d+1. Combining (6) and (7) and comparing

with the definition of Df exactly gives S = Df , which concludes the proof of (4).

Intersecting (4) with m + dZ immediately yields (3).

As ε(m) ≡ 0 (mod d − 1) and all final digits a ∈ Df satisfy a ≡ 1 (mod d − 1),

ε(m) = a implies that (d − 1) divides 1, i.e., d = 2. �
We can now classify the integers admitting a F-expansion, prove uniqueness of the

expansion, and give an algorithm to compute it.

Theorem 8 If N �≡ 1 (mod d − 1), then N does not admit a F-expansion.

If N ≡ 1 (mod d − 1), then N admits a unique F-expansion and it can be computed

by Algorithm 1.
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Algorithm 1 Computing the F-expansion

Input: Positive integer N with N ≡ 1 (mod d − 1)

Output: The F-expansion (a�, a�−1, . . . , a0) of N

j ← −1

m ← N

while m �= 0 do

j ← j + 1

ε ← ε(m) = (d − 1) + (d2 − 1)(−m − 1 mod d)

if ε < m then

aj ← ε

m ← (m − aj)/d

{We have m ≡ 1 (mod d − 1).}
else

aj ← m

m ← 0

end if

{We have N = mdj+1 +
∑j

k=0 akd
k.}

end while

return (aj , aj−1, . . . , a0).

Proof of Theorem 8: First, we prove that N ≡ 1 (mod d−1) is necessary for the exis-

tence of an F-expansion of N : Assume that a positive integer N admits an F-expansion.

Then

N =
�∑

j=0

ajd
j ≡ a�d

� ≡ 1 · 1� = 1 (mod d − 1),

because a ≡ 0 (mod d − 1) for a ∈ D and a ≡ 1 (mod d − 1) for a ∈ Df .

Next, we prove uniqueness of the F-expansion via an indirect proof that was also used

in [9]. Let N be the least positive integer which admits two different F-expansions. Let

(a�, . . . , a0) and (b�′ , . . . , b0) be two different F-expansions of N .

If we had a0 = b0, then (N−a0)/d = (N−b0)/d would have two different F-expansions

(a�, . . . , a1) and (b�′ , . . . , b1), which is a contradiction to the minimality of N .

Thus we have a0 �= b0. Considering
∑�

j=0 ajd
j =

∑�′
j=0 bjd

j modulo d immediately

yields a0 ≡ b0 (mod d). As two different elements of D are incongruent modulo d

(Lemma 2.3), we conclude that one of a0 and b0 is an element of Df . Without loss

of generality, we may assume that b0 ∈ Df , which implies that �′ = 0 and N = b0.
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As b0 = N =
∑�

j=0 ajd
j and a0 �= b0, we conclude that � > 0. This implies that

a0 < N and a0 ∈ D, which in turn shows that a0 = ε(N) (by Lemma 2.3) and b0 > ε(N).

But this is a contradiction to Lemma 2.6, which concludes the proof of the uniqueness of

the F-expansion.

To prove that N ≡ 1 (mod d−1) is indeed sufficient for the existence of a F-expansion

of N only requires to show that Algorithm 1 terminates and is correct.

To see termination, we simply note that 0 < aj ≤ m in every step, which implies that

m strictly decreases in every step and is always a non-negative integer.

The invariants stated as comments in the algorithm are easily proved by induction. If

ε ≤ m, then the algorithm chooses aj = ε ∈ D. In the final step, when ε > m, we have

ε = ε(m) ≡ m (mod d) by construction. Furthermore, we have m ≡ 1 (mod d − 1) by

the loop invariants. From Lemma 2.6 we conclude that m ∈ Df , as required. �

Example 2.7 We come back to Example 2.2, where the ternary F-expansion of N =

139 has been given without any explanation. We now compute this expansion using

Algorithm 1.

As noted in Example 2.4, we have ε(139) = 2 + 8 · 1 = 10. As 10 < ε(139), we set

a0 = 10 and continue with m = (139−10)/3 = 43. Again, we have ε(43) = 10, set a1 = 10

and continue with m = 11. Now, we have ε(11) = 2, which is still less than 11, so we get

a2 = 2 and m = 3. We obtain ε(3) = 2 + 8 · 2 = 18, which is too large. Thus we have to

set a3 = m = 3 and are done: We obtained � = 3 and the F-expansion (3, 2, 10, 10). The

proof of Theorem 8 shows that the fact that the final m = 3 was an admissible final digit

is not a coincidence.

3 F-coefficients

For our application, our interest is not focused on the digits aj of the F-expansion, but

rather on the auxiliary variables q and r used in the definition of D and Df .

For an a ∈ D with a = (d−1)+(d2−1)r and 0 ≤ r ≤ d−1, we call r the corresponding

F-coefficient. For a final digit a = d+(d−1)q+(d2−1)r with q ≥ 2, r ≥ 0, and r+q ≤ d,

the pair (q, r) is called the corresponding final F-coefficient. The final F-coefficients for

a = 1 and a = d are defined to be (−1, 0) and (0, 0), respectively, such that the relation
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a = d + (d − 1)q + (d2 − 1)r also holds in these special cases.

It is obvious that the F-coefficient of a digit a ∈ D is defined uniquely. We claim that

this is also true for the final F-coefficient of a final digit.

Lemma 3.1 Let a ∈ Df . Then there is a unique final F-coefficient (q, r) corresponding

to a, namely

q =

⎧⎨
⎩−1, if a = 1,

a−d
d−1

mod (d + 1), if a > 1,

and

r =
a − d

d2 − 1
− q

d + 1
. (8)

Proof: If a = 1, we get q = −1 and r = −1/(d+1)+1/(d+1) = 0, as requested. Similarly,

if a = d, we obtain q = 0 and r = 0. So we are left with the case

a = d + (d − 1)q + (d2 − 1)r (9)

for some q ≥ 2. We obtain

a − d

d − 1
mod (d + 1) = (q + (d + 1)r) mod (d + 1) = q mod (d + 1) = q,

because 2 ≤ q ≤ d holds by assumption. Obviously, (8) is equivalent to (9). �
Let N be a positive integer with F-expansion (a�, . . . , a0). The F-coefficients corre-

sponding to the digits aj, 0 ≤ j < �, are denoted by rj , 0 ≤ j < �. The final F-coefficient

of the final F-digit a� is denoted by (q�, r�). Then the d-ary F-sequence of N is defined to

be r0, r1, . . . , r�−1, (q�, r�).

Example 3.2 We calculate the ternary F-sequence of 139. In Example 2.7, the F-

expansion of 139 has been calculated as (3, 2, 10, 10). Since 10 = 2+8 ·1 and 2 = 2+8 ·0,

we have r0 = 1, r1 = 1 and r2 = 0. For the final digit a3 = 3, we have q3 = 0 mod 4 = 0

and obtain r3 = 0. Thus the F-sequence of 139 is 1, 1, 0, (0, 0).

For the convenience of the reader, we include a version of Algorithm 1 computing the

F-sequence of a given integer N as Algorithm 2. It is simply a combination of Algorithm 1,

Lemma 2.3 and Lemma 3.1.
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Algorithm 2 Computing the F-sequence

Input: Positive integer N with N ≡ 1 (mod d − 1)

Output: The F-sequence r0, r1, . . . , r�−1, (q�, r�) of N

j ← −1

m ← N

while m �= 0 do

j ← j + 1

R ← (−m − 1 mod d)

ε ← (d − 1) + (d2 − 1)R

if ε < m then

rj ← R

m ← (m − ε)/d

else

if m = 1 then

qj ← −1

else

qj ← m−d
d−1

mod (d + 1)

end if

rj ← m−d
d2−1

− qj

d+1

return (r0, r1, . . . , r�−1, (q�, r�))

end if

end while
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4 F-trees

The considerations of the previous sections enable us to give the following constructive

variant of Theorem 1.

Proposition 4.1 Let n be a positive integer and r0, r1, . . . , r�−1, (q�, r�) be the F-sequence

of N = (d − 1)n + 1 (as computed by Algorithm 2). Then T ∗
n,d is the tree of the form

B0,d−1 B0,1· · · B�−1,d−1 B�−1,1· · · B�,d B�,d−1 B�,1· · ·

· · ·

with

• Bj,1 = · · · = Bj,rj
= Ck+2 and Bj,rj+1 = · · ·Bj,d−1 = Ck for 0 ≤ j ≤ � − 1,

• If q� = −1, then B�,1 = . . . = B�,d = C�−1,

• If q� ≥ 0, then B�,1 = . . . = B�,r�
= C�+2, B�,r�+1 = . . . = B�,r�+q�

= C�+1 and

B�,r�+q�+1 = · · · = B�,d = C�.

Example 4.2 We construct T ∗
69,3. To this aim, we need the F-sequence of N = 2·69+1 =

139, which has been computed in Example 3.2 as 1, 1, 0, (0, 0). Thus we start with a path

of 4 vertices v0, v1, v2, v3.

• We attach r0 = 1 copy of C0+2 = C2 and d− 1− r0 = 1 copy of C0+0 = C0 at vertex

v0.

• We attach r1 = 1 copy of C1+2 = C3 and d− 1− r1 = 1 copy of C1+0 = C1 at vertex

v1.

• We attach no (r2 = 0) copy of C2+2 = C4 and d− 1− r2 = 2 copies of C2+0 = C2 at

vertex v2.

• Finally, we attach no (r3 = 0) copy of C3+2 = C5, no (q3 = 0) copy of C3+1 = C4

and d − r3 − q3 = 3 copies of C3+0 = C3 at vertex v4.
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C0 C2 C1 C3 C2 C2 C3 C3 C3

Figure 2: T ∗
69,3 in decomposed form. An explicit version is shown in Figure 3

Figure 3: T ∗
69,3, explicit version

The result is shown in Figures 2 and 3, once in the decomposition as in the definition and

once in explicit form.

Example 4.3 In the same way, we construct T ∗
69,2 now. The corresponding F-sequence

(obtained from the binary F-expansion of 70) is easily found to be 1, 0, 1, 1, (−1, 0) in this

case. Note that only one complete binary tree is attached to each of the vertices of the

base-path v0v1v2v3v4, except for the very last one. This complete binary tree is Cj+2 if

rj = 1 and Cj otherwise. Note also that this example illustrates the special case when the

final F-coefficient is (−1, 0), so that we have to attach two copies of C3 to the terminal

vertex v4 of the base path. The result is shown in Figures 4 and 5, as in the previous

example.

C2 C1 C4 C5 C3 C3

Figure 4: T ∗
69,2 in decomposed form. An explicit version is shown in Figure 5

Example 4.4 Our last example in this section shows an instance where three different

types of complete d-ary trees are attached to the terminal vertex of the base path, namely

the F-tree T ∗
44,4. The corresponding F-expansion is found to be 2, (2, 1) in this case, and

so we have � = 1, meaning that we have to start with a path v0v1 and attach two copies

of C2 to v0 (and one copy of C0, which does not actually change anything) and one copy

of C1, two copies of C2 and one copy of C3 to v1, see Figures 6 and 7.
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Figure 5: T ∗
69,2, explicit version

C0 C2 C2 C1 C2 C2 C3

Figure 6: T ∗
44,4 in decomposed form. An explicit version is shown in Figure 7

Figure 7: T ∗
44,4, explicit version
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Figure 8: The F-trees T ∗
n,2 for 1 ≤ n ≤ 20

5 Further examples

In addition to the examples discussed in the previous section, we show complete lists of the

F-trees T ∗
n,d for small values of n and d, specifically for 1 ≤ n ≤ 20 and 2 ≤ d ≤ 4. These

are shown in Figures 8 to 10. All of these figures, including the ones in Section 4, were

created automatically by means of an Asymptote [1] package that can be downloaded from

[11]. On this webpage, all necessary files for creating pictures of F-trees of arbitrary size

and degree are provided together with samples containing all F-trees up to 100 vertices

for d ≤ 5.
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Figure 9: The F-trees T ∗
n,3 for 1 ≤ n ≤ 20
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Figure 10: The F-trees T ∗
n,4 for 1 ≤ n ≤ 20
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6 Further properties and numerical data

Various structural parameters of F-trees can be determined directly from the F-coefficients.

For instance, it is not difficult to see that all vertices, with at most one exception, in an

F-tree T ∗
n,d have degree 1 or d+1. The degree of the exceptional vertex is given by 1+ r0,

provided that � > 0. Since the sum of all degrees is known to be twice the number of

edges, a simple counting argument yields a formula for the number of leaves of T ∗
n,d:

Proposition 6.1 For n > 1, the F-tree T ∗
n,d has exactly

L = L(n, d) =

⌊
(d − 1)n + 2

d

⌋

leaves.

Proof: Assume that � > 0. If r0 = 0, every vertex has degree 1 or d + 1, and one obtains

L + (d + 1)(n − L) = 2(n − 1),

which simplifies to

L =
(d − 1)n + 2

d
.

If r0 > 0, then there is an additional vertex of degree 1 + r0, which leads to

L + (1 + r0) + (d + 1)(n − L − 1) = 2(n − 1),

or

L =
(d − 1)n + 2 + r0 − d

d
,

and since 0 < r0 < d, this simplifies to the desired identity. In case that � = 0, one simply

has to replace r0 by q0 + r0. �
It is somewhat trickier to provide a formula for the diameter. Roughly stated, the di-

ameter of T ∗
n,d is close to the minimum diameter for any tree with n vertices and maximum

degree ≤ d + 1, i.e.,

Proposition 6.2 The diameter of the F-tree T ∗
n,d is 2 logd n + O(1).

More specifically, the diameter can be expressed explicitly in terms of the F-expansion as

follows:
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Proposition 6.3 The diameter of the F-tree T ∗
n,d is given by 2� + δ, where −1 ≤ δ ≤ 4

is specified as follows:

• If r� ≥ 2, then δ = 4.

• If r� = 1, then

δ =

⎧⎨
⎩3 � = 0 or rk = 0 for all k < �,

4 otherwise.

• If r� = 0 and q� ≥ 2, then

δ =

⎧⎨
⎩2 � = 0 or rk = 0 for all k < �,

3 otherwise.

• If r� = 0 and q� = 0, then

δ =

⎧⎨
⎩0 � = 0 or rk = 0 for all k < �,

2 otherwise.

• If r� = 0 and q� = −1, then

δ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 r�−1 ≥ 2 or r�−1 = 1 and rk �= 0 for some k < � − 1,

−1 rk = 0 for all k < �

1 otherwise.

Proof: Note first that the diameter of any tree is the maximum distance between two

of its leaves. If H(Bi,j)− 1 denotes the height of a subtree Bi,j (i.e. H(Bi,j) = h if Bi,j is

a Ch), then two leaves of the subtrees Bi1,j1 and Bi2,j2 have a distance of

|i1 − i2| + H(Bi1,j1) + H(Bi2,j2),

unless (i1, j1) = (i2, j2), in which case the distance is at most 2H(Bi1,j1) − 2. Now all

that needs to be done is to distinguish all the cases mentioned in the statement of the

problem and determine the maximum distance between leaves in each case. For instance,

if r� ≥ 2, then B�,1 and B�,2 are both isomorphic to C�+2, and so the distance between

leaves of these two subtrees is 2(� + 2) = 2� + 4. It is easy to see that there cannot be a

larger distance between leaves, since

|i1 − i2| + H(Bi1,j1) + H(Bi2,j2) ≤ |i1 − i2| + i1 + 2 + i2 + 2 = 2 max(i1, i2) + 4.
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If r� = 1, then the largest distance between leaves occurs for leaves of the two subtrees

B�,1 and B�,2, which are isomorphic to C�+2 and C�+1 respectively (yielding a distance of

2� + 3), unless there is some k < � for which rk > 0. In this case, Bk,1 is a Ck+2, so that

the distance between a leaf of Bk,1 and a leaf of B�,1 is

(� − k) + � + 2 + k + 2 = 2� + 4.

Hence, we obtain the formula stated in the second case; the remaining cases are similar.

Finally, it is not difficult to see that � = logd n + O(1), yielding Proposition 6.2. This

follows from the fact that

(d − 1)n + 1 =

�∑
k=0

akd
k ≥ (d − 1)

�−1∑
k=0

dk + d� = 2d� − 1

by (2) and similarly

(d − 1)n + 1 =

�∑
k=0

akd
k ≤ (d − 1)d2

�−1∑
k=0

dk + (d3 − 2d2 + 2d)d� = (d2 − d + 2)d�+1 − d2.

Much more detailed asymptotic information on � is contained in [7]. �
Finally, we provide some numerical data; the following tables (Table 3 to Table 5)

list the values of the Merrifield-Simmons index, the Hosoya index and the energy in the

cases d = 2, d = 3, d = 4 for small values of n. The values have been computed using

MathematicaR© routines which are also available on the accompanying web site [11].

Table 6 lists the aforementioned polynomials M(T ∗
n,d, x) whose coefficients are exactly

the numbers of k-matchings. We conjecture that the following strong result holds:

Conjecture 1 For given positive integers n, d and k, the F-tree T ∗
n,d minimizes the num-

ber of k-matchings (i.e. matchings of cardinality k) among trees with n vertices and

maximum degree ≤ d + 1.

The same might also be true for independent vertex subsets:

Conjecture 2 For given positive integers n, d and k, the F-tree T ∗
n,d maximizes the num-

ber of independent sets of cardinality k among trees with n vertices and maximum degree

≤ d + 1.

The asymptotic behavior of the Merrifield-Simmons index, the Hosoya index and the

energy is stated in Theorems 5 to 7; these results were proved in references [10] and [8]

respectively, where numerical values of the involved constants were provided as well. We

list these values again for completeness (Table 7).
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n σ(T ∗
n,2) σ(T ∗

n,3) σ(T ∗
n,4)

1 2 2 2

2 3 3 3

3 5 5 5

4 9 9 9

5 14 17 17

6 24 26 33

7 41 44 50

8 66 80 84

9 110 145 152

10 189 226 288

11 305 388 545

12 510 684 834

13 863 1241 1412

14 1425 1970 2568

15 2345 3330 4760

16 3987 5868 9009

17 6515 10657 13922

18 10905 17001 23748

19 18254 28674 42500

20 30135 50508 78744

Table 3: The Merrifield-Simmons index of F-trees T ∗
n,d for 1 ≤ n ≤ 20 and 2 ≤ d ≤ 4
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n z(T ∗
n,2) z(T ∗

n,3) z(T ∗
n,4)

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 7 5 5

6 10 9 6

7 15 13 11

8 24 17 16

9 37 24 21

10 54 40 26

11 87 56 35

12 132 81 60

13 201 112 85

14 306 176 110

15 483 264 151

16 720 376 200

17 1137 512 325

18 1710 816 450

19 2655 1216 635

20 4068 1712 860

Table 4: The Hosoya index of F-trees T ∗
n,d for 1 ≤ n ≤ 20 and 2 ≤ d ≤ 4
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n E(T ∗
n,2) E(T ∗

n,3) E(T ∗
n,4)

1 0 0 0

2 2 2 2

3 2.82843 2.82843 2.82843

4 3.46410 3.46410 3.46410

5 5.22625 4 4

6 6 5.81863 4.47214

7 6.82843 6.60272 6.32456

8 8.42429 7.21110 7.11529

9 9.33533 7.93624 7.72741

10 10.1290 9.61686 8.24621

11 11.6857 10.3631 8.89898

12 12.6171 11.1349 10.6332

13 13.4801 11.8272 11.3910

14 14.9113 13.3979 11.9820

15 15.9244 14.2651 12.6664

16 16.7721 15.0171 13.2915

17 18.2517 15.6838 14.9282

18 19.1867 17.2461 15.6569

19 20.1045 18.1316 16.3921

20 21.5369 18.8673 17.0539

Table 5: The energy of F-trees T ∗
n,d for 1 ≤ n ≤ 20 and 2 ≤ d ≤ 4
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n M(T ∗
n,2, x) M(T ∗

n,3, x) M(T ∗
n,4, x)

1 1 1 1

2 x + 1 x + 1 x + 1

3 2x + 1 2x + 1 2x + 1

4 3x + 1 3x + 1 3x + 1

5 2x2 + 4x + 1 4x + 1 4x + 1

6 4x2 + 5x + 1 3x2 + 5x + 1 5x + 1

7 8x2 + 6x + 1 6x2 + 6x + 1 4x2 + 6x + 1

8 4x3 + 12x2 + 7x + 1 9x2 + 7x + 1 8x2 + 7x + 1

9 10x3 + 18x2 + 8x + 1 15x2 + 8x + 1 12x2 + 8x + 1

10 20x3 + 24x2 + 9x + 1 9x3 + 21x2 + 9x + 1 16x2 + 9x + 1

11 8x4 + 36x3 + 32x2 + 10x + 1 18x3 + 27x2 + 10x + 1 24x2 + 10x + 1

12 24x4 + 56x3 + 40x2 + 11x + 1 33x3 + 36x2 + 11x + 1 16x3 + 32x2 + 11x + 1

13 52x4 + 86x3 + 50x2 + 12x + 1 54x3 + 45x2 + 12x + 1 32x3 + 40x2 + 12x + 1

Table 6: Polynomials M(T ∗
n,d, x) for 1 ≤ n ≤ 13 and 2 ≤ d ≤ 4

d β(d) γ(d) α(d)

2 1.663458397072 1.537176717182 1.102947505597

3 1.711047716866 1.467929313206 0.970541979946

4 1.752772283509 1.413925936186 0.874794345784

5 1.786638067241 1.371550869136 0.802215758706

10 1.877945384383 1.250294688426 0.597794680849

20 1.935063600987 1.157772471129 0.434553264777

50 1.973001642192 1.080428182842 0.279574397741

100 1.986321304317 1.046824956103 0.198836515295

Table 7: Numerical values of the constants β(d), γ(d) and α(d) that occur in Theorems 5

to 7. The Merrifield-Simmons index of an F-tree T ∗
n,d grows like β(d)n, the Hosoya index

like γ(d)n, and the energy like α(d) · n.
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