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Abstract 
The non-rigid molecule group theory (NRG), in which the dynamical symmetry operations are defined 
as physical operations, is a new field of chemistry. Balasubramanian computed the NRG of the triple 
equivalent nitro group rotation in 1,3,5-triamino-2,4,6-trinitrobenzene, and proved that the NRG of 
this molecule is a group of order 48 (see Chem. Phys. Lett., 398, 15 (2004)). In this work the non-rigid 
molecule group theory in which the dynamical symmetry operations are defined as physical operations 
is applied to deduce the character table of the full non-rigid molecule group (f-NRG) of Di μ-oxo-
bis(tetraamine manganese(II)).The f-NRG of this molecule is seen to have order 52488 which has 
1674 conjugacy classes.  
 

1.  Introduction 
The mathematical tools of group theory have been used extensively to analyze of the 

symmetry properties of physical systems. Following Y. G. Smeyers1,2 and K. 

Balasubramanian3,4, the complete set of molecular conversion operations that commute with 

the nuclear motion operator contains overall rotation operations, describing the molecule 

rotating as a whole, and intermolecular motion operations, describing molecular moieties 

moving with respect to the rest of the molecule. Such a set forms a group, which we call the 

Non-Rigid Group (NRG).  Balasubramanian, using the wreath product of groups, computed 

the character table of non-rigid groups for water pentamer and 1,3,5-triamino-2,4,6-
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trinitrobenzene3,4.  Balasubramanian3-11 was the first chemist who calculated the non-rigid 

group of molecules using wreath product formalism. He also computed the character table of 

non-rigid groups under consideration, using a well-known method for computing the 

character table of groups which is representable as a wreath product of two groups.  

       Ashrafi and coauthors computed character tables of the non-rigid groups of some 

molecules12-17. Longuet-Higgins18 investigated the symmetry groups of nonrigid molecules 

where changes from one conformation to another can occur easily. In many cases, these 

symmetry groups are not isomorphic to any of the familiar symmetry groups of rigid 

molecules, and their character tables are unknown. It is therefore of some interest and 

importance to develop simple methods of calculating these character tables, which are needed 

for classification of wave functions, determination of selection rules, and so  on. 

     The method described in the present study is appropriate for molecules that consist of a 

number of XH3 groups attached to a rigid framework19. An example of this molecule is Di μ-

oxo-bis(tetraamine manganese(II)), which is considered in some detail. We first specify the 

algebraic structure of the full non-rigid group of Di μ-oxo-bis(tetraamine manganese(II)). We 

will show that the f-NRG of Di μ-oxo-bis(tetraamine manganese(II)) can be represented by 

the wreath product of some known groups. Then based on the structure of the group we apply 

a useful programming language, namely GAP20, and compute the character table of f-NRG of 

this molecule. Note that we can use GAP to find many properties of the groups.   We use [21] 

for the standard notations and terminology of character theory. The motivation for this study 

is outlined in [3-17] and the reader is encouraged to consult these papers for background 

material as well as basic computational techniques. 

 

2.  Wreath products   
In this section we describe briefly some notation which will be used in the next section. 

Recall that a function f from a group G into a group K is a homomorphism if for all x, y�G, 

(xy)f=(xf)(yf). An automorphism of a group G is a bijective homorphism from N on to G. The 

set of all automorphism of G is a group under the composition operation and denoted by 

Aut(G).  

Let N and H be subgroups of a group G. If N is normal (that is for any g�G and x�N, g-

1xg�N), G=NH={xy | x�N, y�H}, and N�H = {e}, then we say that G is a semidirect 

product of N by H, denoted by N: H. Note that if H is also a normal subgroup of G, then 
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G=N�H is the direct product of N and H. If G= N: H, then each x�G can be written uniquely 

as x=nh for some n�N and h�H, and there is homomorphism�: H�	 Aut(N), such that  

(h)�= �h, where �h: N�	N is defined by (n)�h= h-1n h. We call � conjugation 

homomorphism of the semi direct product G and write G = N :� H. We can see that if the 

homomorphism � : H�	Aut(N) defined above is trivial, then the semidirect product reduces 

to the direct product N�H. It is a well-known fact that the homomorphism � completely 

determines the semidirect product22.   

Suppose X is a set. The set of all permutations on X, denoted by SX, is a group which is 

called the symmetric group on X. In the case that, X = {1, 2, …, n}, we denote SX by Sn or 

Sym(n). Let H be group acting on X. This is equivalent to the existence a homomorphism 

from H into SX  (see [22]).  Suppose also that G is a group. The set of all mappings X�	G is 

denoted by GX, i.e. GX = {f | f:X�	G}. It is clear that |GX| = |G||X|. We put G Wr(X)H = 

GX×H = {(f, π) | f � GX, π � H}. For f�GX and π � H, we define an action of H on GX, by 

fπ�GX by fπ=fπ(x)=f(xπ), where xπ=(x)π is the image of x�G under the permutation π.  It is 

easy to check that the following law of composition  

(f , π) (g ,σ) = (fgπ
 , π σ), 

makes G Wr(X) H into a group. This group is called the wreath product of G by H with respect 

to the action of H on X. If the action of H on X is faithful, that is the homomorphism from H 

into SX is one to one, then H is a subgroup of SX and we call H a permutation group on X.  In 

this case G Wr(X) H is called the standard wreath product of G by H and denoted by G∿H. 

Note that each function f�GX can be identified with its image (a1,a2,…., an), where ai=f(i). 

Therefore GX can be identified with G, G�G� … �G={(a1, a2, …., an) | ai �G}, the  group of 

n-tuples of elements of G. Now if f= (a1, a2,…., an) � GX and π � H, then  

fπ = (a(1)π, a(2)π,…, a(n)π). 

Hence G∿H=GX×H = {( a1, a2,…, an; π) | ai�G, π�H} and  

(a1,a2,…,an; π)(b1,b2,…, bn; σ)=(a1b(1)π,a2b(n)π,…, an b(n)π,; πσ) 
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3. Full non-rigid group of Di-μ-oxo-bis(tetraamine manganese(II))  
 

In this section we compute the full non-rigid group of Di-μ-oxo-bis(tetraamine 

manganese(II)). First of all, we consider the point group of the molecule in the case of a rigid 

framework. We consider the full non-rigid group W (f-NRG) of this molecule, each 

equilibrium conformation of which has an ordinary point group symmetry D2h.  

In order to characterize full non-rigid of this molecule, we first note that each dynamic 

symmetry operation of the molecule, considering the rotations of NH3 groups is composed of 

two sequential physical symmetry operations. We first have a physical symmetry of 

framework (as we have to map the NH3 groups on NH3 groups).   

    Before going into the details of the computations of the molecule, we should mention that 

we consider the speed of rotations of NH3 groups sufficiently high so that the mean time 

dynamical symmetry of the molecules makes sense.  

 
Figure1.The structure of Di-μ-oxo-bis (tetraamine manganese(II)) 

Now consider symmetry operations of this framework. This operations form an 

elementary abelian group H of order 8, which is not cyclic so it is isomorphic to Z2×Z2×Z2, 

where Z2 is cyclic group of size 2. After accomplishing the first framework symmetry 

operation we have to map each NH3 group on itself which forms the group G isomorphic to 

Z3, cyclic group of size 3. The number of all such operations is 52488. The composition of 

such dynamic symmetry operations are described as follows. Let us use the symbols a1, a2, a3, 

a4 to indicate nitrogen atoms in the left and a5, a6, a7, a8 to nitrogen atoms in the right, a and b 
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to oxygen atoms, A and B to manganese atoms as shown in Figure 1. Now from the symmetry 

point of view ai, 1≤ i ≤8, are important and a, b, A, B follow the motion of ai. Now consider 

the framework, as shown in Figure 1. Obviously the symmetry group of the framework is 

generated by the following permutations:  X1 = (a1, a4)(a5, a8), X2 = (a2, a3)(a6, a7)(a, b), X3 = 

(a1, a8)(a2, a7)(a3, a6)(a4, a5)(A, B). 

The permutation X1 is the reflection (σh) with respect to the horizontal plane containing A, B, 

a, b. X2 is the reflection with respect to the vertical plane (σv1) including A, B, a1, a4, a5, a8. 

Finally X3 is the reflection with respect to the vertical plane (σv2) containing a, b. These 

operations generate the point group of Di-μ-oxo-bis(tetraamine manganese(II)).  This group is 

abelian and by structure theorem for finitely generated abelian groups we have H=Z2×Z2×Z2. 

Referring to Figure 1, the group of each NH3 at the eight corners of framework is given in 

terms of permutations as follows: 

K1=<(1, 2, 3)>,      K2=<(4, 5, 6)>,  K3=<(7, 8, 9)>,      K4=<(10, 11, 12)>,   K5=<(13,14,15)>,  

K6=<(16,17,18)>, K7=<(19,20,21)>,  K8=<(22,23,24)> . 

Therefore the full symmetry group of Di-μ-oxo-bis(tetraamine manganese(II))has the 

following structure  

W = (K1× K2 × …×K8):  H,  

where : denotes the semi-direct product. Hence, we can identify every element of W, as a 

vector (a1, a2, …, a8; b) such that that ai�Ki and b � H. 

It is clear that H permutes Ki and so W can be written in terms of wreath product  

W =K∿H≈Z3∿ (Z2×Z2×Z2), 

where K is the cyclic group of order 3. Note that W has order 52488. We now apply GAP20 to 

construct a group which is isomophic to this group as follows  

 

x1:=(1, 4)(5, 8);    x2:=(2, 3)(6, 7);   x3:=(1, 8)(2, 7)(3, 6)(4, 5); 

H:=Group(x1, x2, x3);   G:=Group((1, 2, 3)); 

W:=WreathProduct(G, H); 

 

By above description it is clear that wreath product of G by H, denoted by W, is the full non-

rigid group of this molecule. Minimal generating se of the group W is {w1, w2, w3} where      

w1=(1, 10)(2, 11)(3, 12)(4, 5, 6)(13, 22)(14, 23)(15, 24)(19, 21, 20) 

w2=(1, 22, 3, 24, 2, 23)(4, 21)(5, 19)(6, 20)(7, 17, 8, 18, 9, 16)(10, 14, 11, 15, 12, 13) 
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w3=(4, 7, 6, 9, 5, 8)(10, 11, 12)(13, 14, 15)(16, 20, 17, 21, 18, 19)(22, 24, 23).  

W has 1674 conjugacy classes and so 1674 irreducible characters. Let  

r=(1, 2, 3), =(4, 5, 6), x=(7, 8, 9), y=(10, 11, 12), z=(13, 14, 15), u=(16, 17, 18),    

v=(19, 20, 21),  w=(22, 23, 24),   

k=(1, 22)(2, 23)(3, 24)(4, 19)(5, 20)(6, 21)(7, 16)(8, 17)(9, 18)(10, 13)(11, 14)(12, 15),  

m=(4, 7)(5, 8)(6, 9)(16, 19)(17, 20)(18, 21),  n=(1,10)(2,11)(3,12)(13,22)(14,23)(15,24).  

Let T1, T2 and T3 be the groups generating by the sets {sxuv, ryzw}, {k, m, n} and {sx2, 

u2v, s2v, ry2, z2w, r2w} respectively.  It is easy to check that T1, T2 and T3 are isomorphic to 

Z3×Z3, Z2×Z2×Z2 and Z3×Z3×Z3×Z3×Z3×Z3 respectively and T1and T3 are normal subgroups 

of W and T2 ∩T3 = 1. Finally we can see that W=T1× (T2: T3). So every irreducible character 

of W is of the form φ×γ, where φ�Irr(T1), γ�Irr(T2:T3). Recall that φ×γ(ab)=φ(a)γ(b)  for all 

a�T1 and b�T2:T3. Now conjugacy classes of W are of the form (t1, t2, t3) where t1, t2 and t3 

are conjugacy classes of T1, T2 and T3 respectively. Using this fact we can compute all of the 

conjugacy classes and irreducible characters of W. It suffices to find conjugacy classes and 

irreducible characters of T2:T3. 

Suppose that T2 = {1, a, b, c, d, e, f, g}. Now we can apply GAP to find the conjugacy 

classes and character table of the group T2:T3. Table 1 shows the conjugacy classes, a 

representative from each class and the order of the conjugacy class. Note the character table 

of the group T2: T3, is very large in size and can be found using GAP. Hence, as explained 

above, we can find character table of W.  
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Table1. Representative and size of the conjugacy classes of T2: T3 

No Representative Size No Representative Size No Representative Size 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

[1, 1] 

[uv2, 1] 

[zw2, 1] 

[zuv2w2, 1] 

[yw2, 1] 

[yuv2w2, 1] 

[yzw, 1] 

[yzuv2w, 1] 

[yz2, 1] 

[yz2uv2, 1] 

[y2uv2w, 1] 

[y2zuv2, 1] 

[y2z2w2, 1] 

[y2z2uv2w2, 1] 

[xv2, 1] 

[xuv, 1] 

[xu2, 1] 

[xzv2w2, 1] 

[xzuvw2, 1] 

[xzu2w2, 1] 

[xyv2w2, 1] 

[xyuvw2, 1] 

[xyu2w2, 1] 

[xyzv2w, 1] 

[xyzuvw, 1] 

[xyzu2w, 1] 

[xyz2v2, 1] 

[xyz2uv, 1] 

[xyz2u2, 1] 

[xy2v2w, 1] 

[xy2uvw, 1] 

[xy2u2w, 1] 

[xy2zv2, 1] 

[xy2zuv, 1] 

[xy2zu2, 1] 

[xy2z2v2w2, 1] 

1 

4 

4 

8 

4 

8 

4 

8 

4 

8 

8 

8 

4 

8 

4 

4 

4 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

[xy2z2uvw2, 1] 

[xy2z2u2w2, 1] 

[x2u2v2, 1] 

[x2zvw2, 1] 

[x2zuw2, 1] 

[x2zu2v2w2, 1] 

[x2yu2v2w2, 1] 

[x2yzvw, 1] 

[x2yzuw, 1] 

[x2yzu2v2w, 1] 

[x2yz2u2v2, 1] 

[x2y2u2v2w, 1] 

[x2y2zu2v2, 1] 

[x2y2z2vw2, 1] 

[x2y2z2uw2, 1] 

[x2y2z2u2v2w2, 1] 

[sxu2v2, 1] 

[sxzvw2, 1] 

[sxzu2v2w2, 1] 

[sxyu2v2w2, 1] 

[sxyzvw, 1] 

[sxyzu2v2w, 1] 

[sxyz2u2v2, 1] 

[sxy2u2v2w, 1] 

[sxy2zu2v2, 1] 

[sxy2z2vw2, 1] 

[sxy2z2u2v2w2, 1] 

[sx2uv2, 1] 

[sx2u2v, 1] 

[sx2zw2, 1] 

[sx2zuv2w2, 1] 

[sx2zu2vw2, 1] 

[sx2yuv2w2, 1] 

[sx2yu2vw2, 1] 

[sx2yzw, 1] 

[sx2yzuv2w, 1] 

8 

8 

4 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8  

8 

2 

8 

4 

4 

8 

4 

4 

4 

4 

8 

4 

2 

2 

8 

8 

8 

8 

8 

8 

8 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

[sx2yzu2vw, 1] 

[sx2yz2uv2, 1] 

[sx2yz2u2v, 1] 

[sx2y2z2w2, 1] 

[sx2y2z2uv2w2, 1] 

[sx2y2z2u2vw2, 1]  

[s2x2zv2w2, 1] 

[s2x2zuvw2, 1] 

[s2x2yzv2w, 1] 

[s2x2yzuvw, 1] 

[s2x2y2z2v2w2, 1] 

[s2x2y2z2uvw2, 1]  

[1, a] 

[zw2, a] 

[yw2, a] 

[yzw, a] 

[yz2, a] 

[y2z2w2, a] 

[su2, a] 

[szu2w2, a] 

[syu2w2, a] 

[syzu2w, a] 

[syz2u2, a] 

[sy2u2w, a] 

[sy2zu2, a] 

[sy2z2u2w2, a] 

[s2zuw2, a] 

[s2yzuw, a] 

[s2y2z2uw2, a] 

[ryz2w2, a] 

[ryz2uv2w2, a] 

[ry2zw2 , a] 

[ry2zuv2w2, a] 

[ry2z2w, a] 

[ry2z2uv2w, a]  

[rxyz2v2w2, a]  

8 

8 

8 
8 

8 

8 

8 

4 

8 

4 

8 

4 

9 

36 

 36  

36 

36 

 36  

18  

36 

 36  

36  

36  

36 

36  

36  

36  

36  

36 

2 

4 

2 

8 

2 

8 

4 
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        Table1. (Continued) 

No Representative Size No Representative Size No Representative size 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

[rxyz2uvw2, 1] 

[rxyz2u2w2, 1] 

[rxy2zv2w2, 1] 

[rxy2zuvw2, 1] 

[rxy2zu2w2, 1] 

[rxy2z2v2w, 1] 

[rxy2z2uvw, 1] 

[rxy2z2u2w, 1] 

[rx2yz2vw2, 1] 

[rx2yz2uw2, 1] 

[rx2yz2u2v2w2, 1] 

[rx2y2zu2v2w2, 1] 

[rx2y2z2u2v2w, 1] 

[rsxyz2vw2, 1] 

[rsxyz2u2v2w2, 1] 

[rsxy2zu2v2w2, 1] 

[rsxy2z2u2v2w, 1] 

[rsx2yz2w2, 1] 

[rsx2yz2uv2w2, 1] 

[rsx2yz2u2vw2, 1] 

[rsx2y2zuv2w2, 1] 

[rsx2y2zu2vw2, 1] 

[rsx2y2z2uv2w, 1] 

[rsx2y2z2u2vw, 1] 

[rs2x2yz2v2w2, 1] 

[rs2x2yz2uvw2, 1] 

  

4 

4 

8 

8 

8 

8 

8 

8 

4 

4 

4 

8 

8 

4 

2 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

2   

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

[ryz2w2, a] 

[ry2zw2, a] 

[ry2z2w, a] 

[rsyz2u2w2, a] 

[rsy2zu2w2, a] 

[rsy2z2u2w, a] 

[rs2yz2uw2, a] 

[1, b] 

[uv2, b] 

[rz2, b] 

[rz2uv2, b] 

[r2zuv2, b] 

[xv2, b] 

[xuv, b] 

[xu2, b] 

[rxz2v2, b] 

[rxz2uv, b] 

[rxz2u2, b] 

[r2xzv2, b] 

[r2xzuv, b] 

[r2xzu2, b] 

[x2u2v2, b] 

[rx2z2u2v2, b] 

[r2x2zu2v2, b] 

[sxu2v2, b] 

[rsxz2u2v2, b] 

18  

18  

18 

 18 

36  

36  

18 

9 

36 

18 

36 

36 

36 

36 

36 

36 

36 

36 

36 

36 

36 

36 

36 

36 

18 

18  

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

[r2sxzu2v2, b] 

[sx2uv2, b] 

[sx2u2v, b] 

[rsx2z2uv2, b] 

[rsx2z2u2v, b] 

[1, c] 

[rz2, c] 

[su2, c] 

[rsz2u2, c] 

[r2szu2, c]  

[1, d] 

[sx2, d] 

[ry2, d] 

[rsx2y2, d] 

[1, e] 

[s2x, e] 

[ry2, e] 

[rs2xy2, e]  

[1, f] 

[fsx2, f] 

[r2y, f] 

[r2sx2y, f] 

[1, g] 

[s2x, g] 

[r2y, g]  

[r2s2xy, g] 

18  

18 

18  

36 

36  

81 

162 

162 

162 

162 

81  

162 

162 

324  

81  

162 

162 

324 

81 

162 

162 

324 

81 

162 

162 

324 
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