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 Abstract 
Construction of two haplotypes from a set of Single Nucleotide Polymorphism (SNP) fragments is 
referred to as haplotype reconstruction problem. One of the most important computational models for 
this problem is Minimum Error Correction (MEC). Since MEC is an NP-hard problem, here we 
propose a heuristic algorithm for haplotype reconstruction problem. The algorithm is Particle Swarm 
Optimization (PSO) which is an evolutionary algorithm (EA). Evolutionary algorithms are stochastic 
search algorithms that imitate the natural biological evolution or the social behavior of species. In 
contrast to MEC model, our algorithm produces results in feasible time and it could be applied to large 
datasets. Our results suggest that the algorithm has less reconstruction error rate compared to other 
algorithms. This error is also very close to zero when the algorithm is applied to actual biological data. 
A comprehensive comparison between PSO and four famous algorithms in the literature is presented. 
A discussion on input parameters influencing reconstruction error rate is also presented. 
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1. Introduction 
Considering the rapid development of human genome sequencing process, in recent years, the 

identification of genetic differences has become one of the most interesting areas of research 

in bioinformatics. The human genome is a sequence formed by nucleotide alphabet {A, C, G, 

T}. In 99.9% of the positions of human genome, there are no differences across the gene 

sequence [1, 2]. Single Nucleotide Polymorphism (SNP) is the most frequent form of human 

genetic variation. In human genomes there are two copies of each chromosome. These copies 

are called paternal and maternal copies. A sequence of SNPs from each of the two 

chromosomes is called haplotype. 

A nucleotide observed in an SNP position is called allele. In human, SNPs are almost always 

biallelic. Thus, two alleles can be denoted by 0 and 1, and a certain haplotype can be 

illustrated as a string of {0, 1} [3]. An SNP position, in which the two alleles have the same 

nucleotide, is called homozygous, while it is called heterozygous if the two alleles differ. 

Haplotypes have important roles in many branches of biology, for example in designing new 

drugs for complex diseases [4]. Determining haplotypes is a costly, difficult and time 

consuming process [5]. 

Using two enzymes with different concentration, it is possible to break two copies of 

chromosomes into small fragments. Thus a fragment is a substring of consecutive SNPs on a 

chromosome [3, 6]. It is possible to reconstruct the original haplotypes from these fragments. 

However, error might happen because haplotypes are determined using experimental 

methods. In addition, some SNP positions in a fragment might not be identified. In the last 

case, a '-' symbol, called gap, is used to represent missing data in the corresponding SNP 

position. An SNP matrix is used to determine the set of fragments. In this matrix, rows are 

fragments and columns are SNP positions. 

The computational problem is as follows. Given an SNP matrix obtained by sequencing a 

DNA from two copies of a chromosome, how two haplotypes may be reconstructed using the 

SNP matrix. This process is called haplotype reconstruction problem [6]. 

Considering different types of errors, some models for haplotype reconstruction problem is 

introduced by Lancia, et al. [6]. Removal models are Minimum Fragment Removal (MFR) 

and Minimum SNP Removal (MSR). Time complexity analysis of MFR and MSR has been 

proposed by Bafna [7]. Practical algorithms for removal models have been proposed by Rizzi 

[8]. Another model is Longest Haplotype Reconstruction (LHR) which is discussed by Rudi, 
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et al. [9]. A statistical version of haplotype reconstruction problem, based on SNP fragments 

is proposed by Li, et al. [10]. One of the most important computational models for this 

problem is Minimum Error Correction (MEC), which was first introduced by Lippert, et al. 

[3], is an NP-hard problem. MEC is a popular model and is used widely in haplotype 

reconstruction process [11]. Recently a new model based on MEC called Minimum Conflict 

Individual Haplotyping (MCIH) has been proposed by Zhang, et al. [12]. This is also an NP-

hard problem. 

Since MEC is an NP-hard problem, some heuristic algorithms have been proposed for solving 

it. Also there is an exact algorithm based on Branch-and-Bound method for solving MEC 

problem. The exact algorithm has exponential time complexity and is not applicable to large 

datasets. In this paper we propose a new evolutionary algorithm based on particle swarm 

optimization method for solving MEC problem. Also we compare the algorithms in the 

literature and consider different types of parameters that influence the results. 

The rest of this paper is organized as follows: section 2 includes a formal statement of the 

problem and related works. In section 3 the proposed algorithm is presented in detail. The 

pseudocode of the algorithm is also presented in section 3. The process of preparing datasets 

is introduced in section 4. In section 5, we present our results and compare them with the 

results obtained by other methods. Concluding remarks are presented in section 6. 

 

2. Formal Statement of the Problem and Related Works 

Suppose that there are a set 1 2{ , ,..., }mF f f f�  of fragments and a set 1 2{ , ,..., }nS s s s�  of 

SNPs positions obtained by sequencing two copies of chromosome. Define an m n� SNP 

matrix M = ( ijm ), whose rows are fragments and columns are SNPs. The entry ijm  has the 

value from set {0, 1, -}. The symbol ‘‘-’’ called gap is used for characterizing missing data in 

the shotgun sequencing process or the entries that a fragment does not cover (so the size of 

each fragment is assumed to be n, the size of the haplotype). Let x,y �{0,1,-} and define  

1, , {0,1}
( , )

0, ,
if x y and x y

d x y
otherwise

� �

��
�

 

where d(x,y) is the distance between two chromosomes. Then the distance between two SNP 

fragments 1{ ,..., }i i inf f f� , 1{ ,..., }j j jnf f f� is defined as ( , )i jHD f f =
1

( , )n
ij kjj

d f f
�� . 
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We say that two fragments if , jf  are in conflict if ( , )i jHD f f  > 0 ,otherwise we say they 

are compatible. The distance between two haplotypes is defined in a similar way. For 

( , )i jHD f f  > 0, it means that if and jf  are not from the same copy of a chromosome or there 

are errors in some SNP positions of if  or jf . If there are no errors in SNP matrix M, the rows 

of M can be partitioned into two sets 1F and 2F  of pair wise compatible fragments and from 

each iF  (i=1,2) we can reconstruct a haplotype by fragment overlap. At this time we say M is 

feasible, otherwise infeasible. One of the most popular models for haplotype reconstruction 

problem is Minimum Error Correction (MEC). MEC is defined as what follows. 

MEC Problem: Given an SNP matrix M, find and correct minimum number of errors 

(convert 0 to 1 or vice versa) so that the resulting matrix is feasible. 

There are several algorithms concerning MEC model in the literature. Branch-and-bound 

algorithm presented by Wang in [13], is an algorithm producing an exact optimal solution for 

haplotype reconstruction problem. In fact, branch-and-bound is an exact and non-polynomial 

algorithm to avoid exhaustive search [14]. Using this algorithm, a classification of fragments 

into two disjoint sets 1S  and 2S  is obtained. Two haplotypes 1h  and 2h  are then 

reconstructed from 1S  and 2S . Branch-and-bound is an exponential algorithm. In some cases 

the algorithm must check for all pair of sets to find optimal solution. This might result in 

infeasible time for operation even if the numbers of fragments are small. 

Fast Hare is a heuristic algorithm for solving haplotype reconstruction problem [15]. Fast 

Hare is also based on MEC model. In the first step, Fast Hare sorts the SNP matrix based on 

the most left non gap SNP position of each fragment. The second step corresponds to 

reconstruct two haplotypes from this sorted SNP matrix. Fast Hare is a polynomial time 

algorithm and produces results in feasible time. Fast Hare runs in ( log )O n n . 

The process of grouping a set of physical or abstract objects into classes of similar objects is 

called clustering. A cluster is a collection of data objects which are similar to each other 

within the same cluster. A heuristic algorithm based on clustering analysis in data mining for 

haplotype reconstruction problem is introduced by Wang [16]. Based on hamming distance 

and similarity between two fragments, the iterative clustering algorithm produces two clusters 
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of fragments; then, in each iteration, the algorithm assigns a fragment to one of the clusters. In 

the last step, the algorithm produces two haplotypes from the set of two SNP fragments. 

Genetic algorithms are derivative-free, stochastic optimization methods based on the concepts 

of natural selection and evolutionary processes [17]. Genetic Algorithms work with a random 

population of solutions (chromosomes). The fitness of each chromosome is determined by 

evaluating it against an objective function. To simulate the natural survival of the fittest 

process, best chromosomes exchange information (through crossover or mutation) to produce 

offspring chromosomes [18]. Genetic Algorithm (GA) is a well known evolutionary 

algorithm. A Genetic Algorithm is proposed by Wang [13] for solving MEC problem. They 

define a fitness function and mutation and cross over operations considering the haplotype 

reconstruction problem. In the next section, our algorithm is presented. 

 

3. Particle Swarm Optimization Algorithm 
This section describes the particle swarm optimization (PSO) algorithm for solving haplotype 

reconstruction problem. Let M be an SNP matrix with m rows and n columns. m is the number 

of fragments and n is the length of the haplotype. Thus each row represents a fragment and 

each column represents an SNP position. It should be noted that the goal of the algorithm is to 

produce two disjoint sets of fragments; say 1S  and 2S ; then it produces two haplotypes from 

these sets. We need to infer two haplotypes from two sets of fragments by fragment overlap. 

Let 0 ( )j iN S and 1( )j iN S denote the number of 0s and 1s, respectively, in SNP position j of 

set iS .  The haplotypes 1h  and 2h are produced from sets 1S  and 2S by 

1 01 ( ) ( );
0 ,

j i j i
ij

if N S N S
h

otherwise

 �

� �
�

 

where i = 1, 2 and j = 1, 2, … , n and ijh  is jth SNP position of ith haplotype produced by ith 

set. We assume that the distance between two input haplotypes is in its maximum value. 

Therefore two input haplotypes are complements of each other. In the preprocess step, we 

remove those SNPs which contain a high percentage of 1s (0s), ignoring gaps, e.g. those 

SNPs with 90% of 1s (0s) will be removed from SNP matrix. For this case, we insert the most 

observed allele (1s or 0s) into two constructed haplotypes at that position and remove the 

corresponding column from the SNP matrix. 
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Evolutionary algorithms (EAs) are stochastic search methods that mimic the behavior of 

natural biological evolution and the social behavior of species. Considering the emergence 

and evolution of biological and social order has been a fundamental goal of evolutionary 

algorithms. Particle Swarm Optimization (PSO) is one of the modern evolutionary algorithms 

developed by Kennedy and Eberhart [23]. The PSO simulates the behavior of a group 

(swarm) of migrating birds, trying to reach an unknown destination. Like other evolutionary 

algorithms, PSO directs search using a population of particles (birds), corresponding to 

individuals. Each particle represents a candidate solution which could be an optimal solution. 

This mimics a swarm of birds that communicate together when they fly. Each bird flies in a 

specific direction, and identifies the bird that is in the best location by communicating with 

other birds. Each bird moves using a velocity which might change through the time when the 

algorithm is run. The process repeats until the swarm reaches a desired destination. 

We use a binary string corresponding to an individual. This binary string divides the SNP 

fragments into two disjoint sets. Thus, the length of the binary string is the number of SNP 

fragments. Hence, if the ith position of an individual is set to 0, then the ith SNP fragment is 

assigned to set 1S , otherwise to set 2S . For every individual in a population, we need to assign 

an evaluation function called fitness. Considering MEC model, the goodness or badness of an 

individual depends upon the number of error corrections needed for the corresponding 

clustering. Thus, we use the following fitness function for evaluating the fitness of individual, 

say, ind: 
2 2

1

( ) ( , )
i

i
i f S

fitness ind m n HD f h
� �

� � ���  

in which ih  is the corresponding haplotype of set iS , m is number of fragments and n is the 

number of SNP positions. It should be noted that an SNP matrix is feasible if and only if there 

exists an individual, ind, such that fitness(ind) = m �  n. The Algorithm is initialized with a 

group of random individuals (particles). The number of individuals, during the execution of 

the algorithm, is constant. Let us assume that, this is popSize. During the running of the 

algorithm, each individual keep three values. These values are: the best position reached in 

previous phases, iP ; its flying velocity iV  and its current position iX . In each iteration of the 

algorithm, the position of the best individual, iP , is calculated as the best fitness of all 

individuals. In each iteration, all individuals update their velocities as follows [19]: 
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1 1 21(.) ( ) 2(.) ( ),i i i i g iV V c rand P X c rand P X�� 	 � � � � � � � � �  

where 1c  and 2c  are two positive constants called learning factors (in this work we set 1c  

and 2c  equal to 2). rand1(.) and rand2(.) are two functions generating pseudo random 

numbers in [0,1]. �  is an inertia weight value proposed by Shi and Eberhart [19] to control 

the influence of previous velocity values on the current velocity. �  starts with a large weight 

and then decreases as time goes by to support local search over global search. iV  should 

satisfy inequality max maxiV V V� � � ; which maxV  is an upper bound on the maximum value of 

the velocity of the particle (individual). The new position 1iX �  is updated as: 

1 1i i iX X V� �� �  

After calculating the new position, 1iX � , the particle flies towards it. The pseudocode of PSO 

is presented in Table 1. 

 

Table 1. Pseudocode of PSO Algorithm 
Give proper parameter settings, population size popSize, number of generation gnumber, maximum change of a 

particle velocity maxV  

Generate random population of size popSize individuals (particles) 

for each individual ind 

        calculate fitness(ind) 

initialize the value of �  

counter  ← 0 

while counter < gnumber 

        for each individual ind 

                calculate fitness(ind) 

                set pBest(ind) as the best position of individual ind until this phase 

        set gBest as the best fitness of all individuals 

        for each individual ind 

                calculate particle velocity using 1 1 21() ( ) 2() ( )i i i i g iV V c rand P X c rand P X�� 	 � � � � � � � � �  

                calculate particle position using 1 1i i iX X V� �� �  

        update the value of �  

        counter ++ 
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4. Dataset 
In this section the procedure of producing three input datasets are discussed. The first two 

datasets are real and the last one is simulated. 

 

4.1. Angiotensin converting enzyme (ACE) Dataset 

Angiotensin converting enzyme (ACE) is encoded by the gene DCP1. The dataset of ACE 

from 11 individuals is available [20]. There are 52 biallelic SNP's out of 78 available SNP 

positions in ACE. As we have mentioned in our method, we consider biallelic SNP's. Among 

these 11 genotypes corresponding to 11 individuals, there are two identical genotypes. We 

obtain a data set of 8 pairs of haplotypes, after removing one of the repeated genotypes (a pair 

of haplotypes) and those genotypes for which there exist at most one heterozygous SNP 

position [20].  

 

4.1. Chromosome 5q31 Dataset 

The dataset presented by Daly [21] contains 258 haplotype pairs and 103 SNP positions. 

Those haplotype pairs with less than 20% missing alleles are considered. From these pairs, 18 

genotypes have at most one heterozygous position. We obtain 129 haplotype pairs from the 

dataset, after removing these genotypes [21]. 

4.1. Simulated Dataset 

We generate data under some assumptions based on reality. We use CelSim, a popular 

simulator based on shotgun assembly [22]. In this part we introduce CelSim and it's 

parameters concerning our purpose to produce an SNP matrix. First CelSim makes two 

haplotypes of length L which are complements of each other. CelSim includes a distance 

parameter, D, which is the distance between two haplotypes. We set D equal to 100% in this 

work concerning that our haplotypes are complements of each other. Then it produces equal 

number of copies, CopyNum, from these haplotypes, cuts them and then it produces F 

fragments. The number of haplotypes, F, for a given haplotype of length l, was assumed to be 

F=L/5 (e.g. for a haplotype of length 80, number of fragments, F, is 16). The length of each 

fragment is assumed to be somewhere between LMin and LMax. We set LMin equal to 3 and 

LMax equal to 8 as it is the case for real biological data. Thus we have an SNP matrix which 

is error free. We include some errors, ReadingError and GapError in SNP matrix. 

ReadingError is concerned with changing 0 to 1 and vice versa and GapError is concerned to 
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changing 0 or 1 to '-' in an SNP matrix. The algorithms are run 500 times with different 

inputs. Input dataset for each run is the same for all algorithms. 

 

5. Results and Discussion 
In this section the results of running Fast Hare, clustering algorithm, GA and the proposed 

algorithm, PSO on datasets are presented. Some discussions on the performance of the 

algorithms are also available. The algorithms were implemented on a 2.8 GHz Pentium 4 PC 

using JAVA language. The simulations show that Clustering and PSO algorithms produce 

better results, in terms of certain error, in comparison with Fast Hare and GA. We also present 

results of branch-and-bound algorithm. It should be noted here that we are not able to run 

branch and bound algorithm on large input datasets. The branch-and-bound algorithm can 

quickly process instances within 30 SNP fragments and 50 SNP sites under various error 

rates. Beyond this range, the time taken by the algorithm increases rapidly, especially when 

the error rate of fragments is high [13]. However, in the process of producing datasets, the 

fragments of each of the haplotypes are determined. Thus, we can assign fragments of original 

haplotype 1h  ( 2h ) to set 1S  ( 2S ). Then two reconstructed haplotypes are produced by clusters. 

Finally, we have results of branch-and-bound algorithm without running it. It should be 

mentioned that branch-and-bound algorithm produces exact optimal solution for haplotype 

reconstruction problem [13]. It means that the branch-and-bound algorithm produces results 

with the minimum value of error rate which is possible. For calculating error rate, we use the 

degree of similarity between the reconstructed haplotypes and the original haplotypes. 

Assume that 1h  and 2h are original haplotypes, and 1'h and 2'h are reconstructed haplotypes. 

Reconstruction error rate is defined by:  

11 22 12 21min{ , } ,
2

r r r rreconstruction error rate
haplotypeLength

� �
�

�
 

where ijr  is the hamming distance between an actual haplotype and a constructed haplotype 

i,j=0,1. 

We want to study the relationship between multiple values of reading error rate and gap error 

rate with reconstruction error rate. As we might expect, when reading error rate or gap error 

rate increases, reconstruction error rate increases too. Figures 1, 2 and 3 show the results of 

running algorithms with different reading error rate on ACE, Daly and Celsim dataset. The 
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gap error rate is set to 5 percent in the figures. It should be noted that the results of running 

algorithms on ACE and CelSim are very close to each other. It is because the numbers of SNP 

positions are approximately equal in CelSim and ACE datasets.  

These results suggest that when reading error rate is smaller than 3%, PSO and clustering 

algorithm produce more accurate results. The reconstruction error rates of these algorithms 

are very close to Branch-and-Bound results. This is very close to zero. When error rate 

increases form 3%, the results of PSO is better than the other algorithms. Also this is close to 

the results of branch-and-bound algorithm. When reading error rate is larger than 10%, GA 

produces more accurate results than Fast Hare and clustering algorithm. 

When haplotype length increases, reconstruction error rate increases. In Figure 4 we present 

results of running PSO algorithm on CelSim dataset for haplotypes of different lengths, from 

20 to 60. The gap error is set to 5 percent. The number of copies is set to 5. 
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Figure 1. The reconstruction error rate of the MEC model by different algorithms on ACE 
dataset. Haplotype length is 52, number of copy is 5, gap error is 10 percent. 
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Figure 2. The reconstruction error rate of the MEC model by different algorithms on Daly 

dataset. Haplotype length is 112, number of copy is 5, gap error is 10 percent. 
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Figure 3. The reconstruction error rate of the MEC model by different algorithms on CelSim 

dataset. Haplotype length is 50, number of copy is 5, gap error is 10 percent. 
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Figure 4. The reconstruction error rate of the MEC model by PSO algorithms on CelSim 

dataset. Haplotype length is varied, number of copy is 5, gap is set to 5 percent. 
 

The running times of PSO, GA, clustering algorithm and Fast Hare are presented in Table 2. 

It should be noted that we are not able to run branch-and-bound algorithm on large input 

datasets. Thus, the running time of branch-and-bound is not available. This table suggests that 

Fast Hare produce results faster than other algorithms. It is because Fast Hare has ( log )O n n  

time complexity, where n is the number of fragments. In addition, the running times of the 

clustering algorithm and Fast Hare depend on the number of fragments. But the running times 

of PSO and GA do not considerably change when the number of fragments varies. 

 

Table 2. Running times (in seconds) of the algorithms. Haplotype length is 50. We are not 
able to run branch-and-bound on datasets with more than 30 fragments because it has 
exponential time complexity. 

Number of fragments Clustering PSO Fast Hare GA 

40 0.33 2.98 0.11 3.18 

60 0.86 3.13 0.18 3.35 

80 1.97 3.35 0.26 3.52 

100 4.15 3.75 0.46 3.81 
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5. Conclusion 
We have studied evolutionary, heuristic and exact algorithms for haplotype reconstruction 

problem. Our algorithm, PSO, is an evolutionary algorithm. The second algorithm is based on 

clustering analysis and the techniques used in data mining. The third and fourth algorithms 

are GA and a heuristic algorithm called Fast Hare. The last one is branch-and-bound 

algorithm that produces exact optimal solution for haplotype reconstruction problem. Branch-

and-bound is an exponential algorithm and we are not able to run it on large input datasets. 
To summarize, our simulation results suggest that when reading error rate is smaller than 3% 

PSO and clustering algorithms can produce better results in terms of reconstruction error rate, 

compared to other algorithms. Also in comparison with minimum possible reconstruction 

error rate which is achievable by branch-and-bound algorithm, the results achievable by PSO 

are very close to it. Especially when reading error rate is in the range of actual biological data. 

Evolutionary and heuristic algorithms produce results in feasible time compared to the time 

complexity of branch-and-bound, which is exponential. Thus, we believe that evolutionary 

algorithms could be applied on haplotype reconstruction problem and these produce more 

accurate results. 
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