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Abstract

A benzenoid graph is a finite connected plane graph with no cut vertices in
which every interior region is bounded by a regular hexagon of a side length one.
A benzenoid graph G is elementary if every edge belongs to a 1-factor of G. A
hexagon of an elementary benzenoid graph is peripheral if it has some edge lying
on the boundary of the graph. A peripheral hexagon h of an elementary benzenoid
graph G is reducible if the removal of the internal vertices and edges of the common
path of the peripheries of h and G results in an elementary benzenoid graph. The
vertices of the inner dual I(G) of a plane graph G are the finite faces of G, two
vertices being adjacent if and only if the corresponding faces share an edge in G. If
S is a set of edges of I(G) which do not belong to the infinite face of I(G) such that
I(G) \ S is the graph where every finite face is a 4-cycle, then S is called a 4-tiling
of G. We describe a procedure to compute a 4-tiling of an elementary benzenoid
graph in linear time. This computation is the basis for an optimal algorithm to find
the sequence of reducible hexagons that decompose a graph of this class.

1 Introduction and preliminaries

A benzenoid graph is a finite connected plane graph with no cut vertices in which every
interior region is bounded by a regular hexagon of a side length one. A benzenoid graph
G is catacondensed if any triple of hexagons of G has empty intersection, otherwise it
is pericondensed. It is well known that benzenoid graphs possess very natural chemical
background. In particular, the skeleton of carbon atoms in a benzenoid hydrocarbon is a
benzenoid graph. The interested reader is invited to consult the books [1, 3] dedicated to
these class of graphs.
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A hexagon h of a benzenoid graph G is called a pendant hexagon if a common path of
the peripheries of h and G is a path of length five.

A graph G is called bipartite if it is connected and its vertex set can be divided in two
disjoint sets V1 and V2 such that V1 ∪ V2 = V (G) and no two vertices from the same set
are joined by an edge. Every benzenoid graph is clearly bipartite. A peak (valley) of a
benzenoid graph is a vertex that is above (below) all its first neighbors. Throughout this
paper all benzenoid graphs considered are drawn so that an edge-direction is vertical and
the peaks are colored black (cf. Fig. 1).

A matching of a graph G is a set of pairwise independent edges. A matching is a
1-factor, if it covers all the vertices of G.

A bipartite graph G is called elementary if G is connected and every edge belongs to
a 1-factor of G. It is well known that catacondensed benzenoid graphs are elementary.

Let M be a 1-factor of G. A cycle C is M-alternating if the edges of C appear alter-
nately in and off the M . An M -alternating cycle C of G is said to be proper (improper)
if every edge of C belonging to M goes from white (black) end-vertex to black (white)
end-vertex by the clockwise orientation of C.

Let us call the boundary of the infinite face of G the outer boundary or the outer cycle.
Let G be a plane bipartite graph and let M(G) denote the set of all 1-factors of G.

It was shown in [18] that G has a unique 1-factor M0̂ such that G has no proper M0̂-
alternating cycles. We call M0̂ the minimal 1-factor of G, since M0̂ is the minimal element
of the poset induced by M(G) [17, 8]. In addition, G has a unique 1-factor M1̂ such that
G has no improper M1̂-alternating cycles. M1̂ is called the maximal 1-factor of G.

Throughout the paper, for a given graph G, let n stand for the number of its vertices.
It is well know that the number of vertices is linear in the number of edges and the number
of hexagons of a benzenoid graph.

The symmetry difference of finite sets A and B is defined as A⊕B := (A∪B)\(A∩B).
If h is a hexagon of a benzenoid graph G and M a 1-factor of G then in the M⊕h operation,
h is always regarded as the set of edges bounding the hexagon.

A 1-factor M is said to be peripheral if the outer cycle of G is M -alternating. The
next proposition shows that the minimal and the maximal 1-factor of G are peripheral.

Proposition 1. [11] Let G be an elementary benzenoid graph. Then the outer cycle of G

is improper M0̂-alternating as well as proper M1̂-alternating.

Note that the minimal (and the maximal) 1-factor of an elementary benzenoid graph
can be computed in linear time using the concept of the rightmost (leftmost) perfect path
system. See [4, 11] for the details.

Let f denote a face of a plane bipartite graph G and P a common path of the periph-
eries of f and G. Let then G − f denote the resultant subgraph of G by removing the
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internal vertices and edges of P .
A face f of a plane bipartite graph G is peripheral if the peripheries of G and f have

a nonempty intersection. Let f be a peripheral face of G. If G− f is elementary then we
call f a reducible face of G.

Theorem 1. [19] If G is a plane elementary bipartite graph with at least three finite faces,
then G has at least two reducible faces.

In the next section we show that a 4-tiling of an elementary benzenoid graph G is
induced by a peripheral 1-factor of G. In particular, this is also true for the minimal
and maximal 1-factor of G. Moreover, this relation can be reversed: every 4-tiling of G

induces a peripheral 1-factor of G. In Section 3 we prove that the number of 4-tilings
of an elementary benzenoid graph G equals the number of 1-factors of G − C, where C

is a boundary cycle of G. Section 4 conclude the paper by presenting a simple linear
algorithm to find a reducible face decomposition for an elementary benzenoid graph.

2 4-tilings and peripheral 1-factors

The vertices of the inner dual of a plane graph G are the finite faces of G, two vertices
being adjacent if and only if the corresponding faces share an edge in G. The inner dual
of a benzenoid graph, denoted I(G), is a subgraph of the regular triangular grid. Clearly,
the inner dual of a catacondensed benzenoid graph is a tree with maximum vertex degree
three.

An edge e of I(G) is peripheral, if it belongs to the infinite face of I(G) and internal,
otherwise. If h is a hexagon of a benzenoid graph, then h will also denote the corresponding
vertex of I(G).

Let I(G) be the inner dual of a benzenoid graph G and let S denote a subset of internal
edges of E(I). Then S is a 4-tiling of G if I(G) \ S is the graph where every finite face is
a 4-cycle (cf. Figure 1). If S is a 4-tiling of G, then we set IS(G) := I(G) \ S.

The following theorem shows that the concept of 4-tiling is intrinsically connected
with elementary benzenoid graphs.

Theorem 2. [12] A benzenoid graph G is elementary if and only if G admits a 4-tiling.

The main theorem of this section indicates that a 4-tiling of an elementary benzenoid
graph can be constructed by using its peripheral 1-factor.

Let M denote a peripheral 1-factor of an elementary benzenoid graph G. Let us define
the set of edges SM(G) as follows: an internal edge hihj of I(G) belongs to SM(G) if and
only if the common edge of the corresponding hexagons hi and hj belongs to M .
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a. b.

Figure 1: A benzenoid graph with its a. inner dual b. 4-tiling.

Theorem 3. Let M denote a peripheral 1-factor of an elementary benzenoid graph G.
Then SM(G) is a 4-tiling of G.

Proof. Let C denote the outer cycle of G. Suppose that M is a peripheral 1-factor of an
elementary benzenoid graph G, such that C is improper M -alternating. We prove the
theorem by showing that SM(G) in the subgraph of I(G), induced by a hexagon h ∈ G

together with hexagons adjacent to (or "near") h, locally admits a 4-tiling.
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Figure 2: Six adjacent hexagons.

Suppose first that h possesses six adjacent hexagons. The situation is depicted if Fig.
2, where h is filled with gray color and the hexagons adjacent to H are labeled 1, . . . , 6.
Note also that the vertices and the edges of I(G) \ SM(G) are drawn gray. The figure
show all possible ways to cover the vertices of h by M up to the obvious symmetries.
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From Fig. 2a clearly follows that SM(G) in the subgraph, induced by a hexagon h

together with its adjacent hexagons, locally admits a 4-tiling. Situation in Fig. 2b is little
more involved. Note first that the hexagon h′ has to exist in G. To see this suppose to
the contrary that h′ does not belong to G. But then the edge of hexagon 1 which is (in
Fig. 2b) adjacent to h′ as well as the edge of hexagon 6 which is (in Fig. 2b) adjacent to
h′ belong to the outer cycle of G. Since the edge in the intersection of hexagons 1 and 6
belongs to M , these two consecutive edges of the outer of cycle do not belong to M and
proposition 1 yields a contradiction. Analogously we can see that h′′ also belongs to G.
It is easy to derive now that SM(G) in the subgraph, induced by a hexagon h together
with its adjacent hexagons as well as hexagons h′ and h′′, locally admits a 4-tiling. Cases
in Figs. 2c, 2d, and 2e can be proven analogously.
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Figure 3: Five adjacent hexagons.

The situation with h adjacent to five hexagons is depicted if Fig. 3. Note first that one
of the edges of h (in the figure labeled with e) as well as two adjacent edges of hexagons
1 and 2 (labeled e′ and e′′) belong to the boundary of G. Therefore either e or both of e′

and e′′ belong to M . Fig. 3 show all possible cases with h covered by M up to the obvious
symmetries. We can prove analogously as above that every configuration of SM(G) in the
subgraph, induced by h and hexagons adjacent to (or "near") h, locally admits a 4-tiling.

Figs. 4, 5 and 6 show configurations with four, three and two hexagons adjacent to h,
respectively. Using the same arguments than above, we can in a similar manner show that
every depicted configuration locally admits a 4-tiling. Note also that the claim trivially
follows for the pendant hexagon.
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Figure 4: Four adjacent hexagons.

Figure 5: Three adjacent hexagons.

We showed that SM(G) in the neighborhood of every hexagon of G locally admits a
4-tiling. If M is a peripheral 1-factor of an elementary benzenoid graph G, such that C is
proper M -alternating, the proof goes analogously. This argument concludes the proof.

Corollary 1. Let M0̂ denote the minimal 1-factor of a benzenoid graph G. Then G is
elementary if and only if SM0̂

(G) is a 4-tiling of G.
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Figure 6: Two adjacent hexagons.

Proof. It follows from Theorem 2 and Proposition 1.

Since the minimal and the maximal 1-factors of an elementary graph G can be com-
puted in linear time, Theorems 3 give a means to construct a 4-tiling of G within the
same time bound. The details are depicted in Section 4.

Let M denote a 1-factor of an elementary benzenoid graph G. If SM(G) is a 4-tiling
of G, we say that M induces the 4-tiling SM(G) of G.

Let G be an elementary benzenoid graph and let C denote the boundary cycle of G.
Define then the set M0̂(C) (M1̂(C)) as a matching of C such that C is proper (improper)
M1̂(C)(M0̂(C))-alternating.

Let S be a 4-tiling of G. If hh′ is an edge of S connecting hexagons h and h′ of G and
e the common edge of h and h′ in G, then we say that e is crossed by hh′.

Let us define two subsets of E(G) as follows.
MS0 := {e; e ∈ E(G) and e is crossed by an edge of S} ∪ M0̂(C)

MS1 := {e; e ∈ E(G)) and e is crossed by an edge of S} ∪ M1̂(C)

Theorem 3 demonstrates that every peripheral 1-factor of an elementary benzenoid
graph induces 4-tilings of G. The next proposition shows that this implication can be
reversed, namely every 4-tiling also induces 1-factors.

Proposition 2. Let G be an elementary benzenoid graph and S a 4-tiling of G. Then
MS0 (MS1) is a peripheral 1-factor of G.

Proof. Let C denote the boundary cycle of G and let ∂C denote the set of edges of G

with one end vertex in C and the other not in C. We show first that MS0 is a matching.
Note that by the definition of the 4-tiling an edge of ∂C cannot belong to MS0 . Moreover,
since M0̂(C) is a matching in C, the claim clearly holds for the boundary cycle of G. To
show the assertion for the internal edges of G, note first that an edge of G crossed by
an edge of S lies inside a four cycle of IS(G). This implies that all edges of G which are
crossed by edges of S are have to be independent. Thus, this claim is settled.

In order to finish the prove, we have to show that every vertex of G is covered by
an edge of MS0 . By definition of MS0 , this holds for C. To establish the assertion for
the internal vertices of G note that every internal vertex v is of degree three. Let v be
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a vertex in the intersection of hexagons h1, h2, h3 (see Fig. 7a). We have to show that
there always exists an adjacent vertex u such that uv is crossed by an edge of S. To see
this suppose to the contrary that uv is not crossed by an edge of S for any u adjacent
to v. But this implies that the hexagons h1, h2, h3 induce a triangle in I(G) \ S. This
contradiction concludes the proof.

3 4-tiling count

Let G be a benzenoid graph with a 1-factor. A subgraph of H of G is said to be nice if
G − V (H) has a 1-factor.

v

1 2

3

h

h

h

a. b.

Figure 7: a. Internal vertex v with its hexagons. b. Coronene.

Let H be any nice subgraph of an elementary bipartite graph G. Join its end vertices
by a path P1 of odd length (first ear). Then proceed inductively to build a sequence of
bipartite graphs as follows: if Gr−1 = H+P1+P2+. . .+Pr−1 has already been constructed,
add the rth ear Pr (of odd length) by joining any two vertices of different colors in
Gr−1 such that Pr has no internal vertices in common with Gr−1. The decomposition
Gr = H + P1 + P2 + . . . + Pr is called an (bipartite) ear decomposition of Gr.

Theorem 4. [9] A bipartite graph is elementary if and only if it has an (bipartite) ear
decomposition.

It is well known that some properties of an elementary benzenoid graph G depends
on whether G possesses a coronene (see Fig. 7b) as its nice subgraph or does not.

Lemma 1. Let HC denote a coronene which is a nice subgraph of an elementary benzenoid
graph G and let hc denote the central hexagon of HC. Then G − hc is elementary.

Proof. Since HC is a nice subgraph in G, G admits a bipartite ear decomposition G =

HC+P1+P2+. . .+Pr. Let C denote the outer cycle of HC . Obviously, the sequence of ears
P1+P2+. . .+Pr starting with C gives G−hc. More formally G−hc = C+P1+P2+. . .+Pr.
Since C is obviously a nice cycle in G − hc, it follows that C + P1 + P2 + . . . + Pr is a
bipartite ear decomposition of G − hc. Theorem 4 now yields the assertion.
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Lemma 2. [15] Let G be an elementary benzenoid graph. Then G has no coronene as its
nice subgraph if and only if for any pair of disjoint cycles that form a nice subgraph of G

their interiors are disjoint.

Let G be a benzenoid graph. Then the vertex set of the resonance graph R(G) of
G consists of the 1-factors of G, two 1-factors being adjacent whenever their symmetric
difference forms the edge set of a hexagon of G. The concept of a resonance graph
has been introduced in chemistry and later introduced in mathematics under the name
Z-transformation graphs. An extensive survey on resonance graphs of plane bipartite
graphs was presented by Zhang [14], see also [2, 6, 7, 12, 11].

The hypercube of order n and denoted Qn is the graph G = (V, E) where the vertex set
V (G) is the set of all binary strings bn−1, . . . b1, b0. Two vertices x, y ∈ V (G) are adjacent
in Qn if and only if x and y differ in precisely one place.

Let G = (V, E) be a connected graph and u, v ∈ V . Then the distance dG(u, v)

between u and v is the number of edges on a shortest u,v-path. A subgraph H of a graph
G is isometric if for any vertices u and v of H holds dH(u, v) = dG(u, v).

Isometric subgraphs of hypercubes are called partial cubes.
Let G denote a plane elementary graph. Let F be the set of all finite faces and let M

be the set of all 1-factors of a graph G, respectively. For each M ∈ M, a function φM is
defined on F as follows: for any f ∈ F , φM(f) is the number of cycles in M ⊕M0̂ with f

in their interiors. Particularly, M0̂ is constantly zero, i.e. every value on the inner faces
is 0.

It was shown in [17] that the resonance graph of a plane elementary bipartite graph
is a partial cube. For each 1-factor M , the function φM on F is naturally transformed
to φ̄M as follows: for each f ∈ F , φ̄M(f) is a sequence of length φM1̂

(f) such that first
φM(f) positions from the left side are all placed 1 and the others 0. If G is a benzenoid
graph, then φ̄ is an isometric embedding of R(G) into a hypercube.

Lemma 3. [17] Let G denote an elementary benzenoid graph. For M , M ′ ∈ M, M and
M ′ are adjacent in R(G) if and only if |φM(h) − φM ′(h)| = 1 for h = h0, where h0 is a
hexagon bounded by the cycle M ⊕ M ′ and 0 for the other hexagons of G.

Since 1-factors compile pairwise independent edges, all the cycles induced by M ⊕M0̂

have to be disjoint. It follows that for every peripheral hexagon h, φM(h) is either 1 or 0.
Note also that for every peripheral hexagon h, we have φ̄M(h) = φM(h)

The following lemma shows that the value of φ in a peripheral hexagon h depends on
the position of the peripheral edges of h that belong to a 1-factor.

Lemma 4. [12] Let e be an edge on the boundary of an elementary benzenoid graph G

and let h be the hexagon of G containing e. For a 1-factor M ′ of G let e ∈ M ′ and let
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φM ′(h) = i, i = 0, 1. If M is an arbitrary 1-factor of G, then φM(h) = i if and only if M

contains e.

Proposition 3. Let G be an elementary benzenoid graph. Then G admits exactly one
4-tiling if and only if G has no coronene as its nice subgraph.

Proof. Suppose first that G possesses a coronene as its nice subgraph. Let HC denote
a coronene which is a nice subgraph in G and let hc denote the central hexagon in HC .
From Lemma 1 it follows that G − hc is elementary. Let then M ′

0̂
denote the minimal

1-factor of G − hc end let Mc denote three edges of hc, such that the edges of Mc form
improper Mc-alternating cycle in hc. It is straightforward to see that M0̂ := M ′

0̂
∪ Mc is

a peripheral 1-factor of G. Moreover, M0̂ ⊕ hc is also a peripheral 1-factor of G. Since
M0̂ and M0̂ ⊕ hc induce two distinct 4-tilings in G (see Fig. 8), this part of the proof is
complete.

Figure 8: Two 1-factors in a coronene which is a nice subgraph.

Suppose now that G possesses no coronene as its nice subgraph. Suppose also that G

admits two 4-tilings. By Theorem 3 the minimal 1-factor M0̂ of G induces the 4-tiling
SM0̂

. Let then S denote the other 4-tiling of G distinct from SM0̂
. From Proposition 2 it

also follows that S induces the 1-factor MS0 . Observe now 1-factors MS0 and M0̂. From
Lemma 1 and from the definition of MS0 it follows that the outer cycle of G is improper
M0̂-alternating and also MS0-alternating. Let then M0̂ = M1, M2, . . . , Mk = MS0 denote
a shortest path between M0̂ and MS0 in R(G). From Lemma 3 it follows that for every
pair of 1-factors Mi and Mi+1, i = 1, . . . , k − 1, we get Mi ⊕ Mi+1 = h0, where h0 is a
hexagon of G.

Since the edges on the outer cycle of G that belong to M0̂ also belong to MS0 , from
Lemma 4 it follows that for every peripheral hexagon h we get φM0̂

(h) = φMS0
(h). More-

over, since R(G) is a partial cube, the same is true for every 1-factor on a shortest path
between M0̂ and MS0 in R(G) (eg. [5, p. 20]). More formally, we get φM0̂

(h) = φMi
(h) = j,

j = 0, 1 and i = 2, . . . , k.
From the arguments above than it follows that for every pair of 1-factors Mi and Mi+1,

i = 1, . . . , k − 1, Mi ⊕ Mi+1 = h, where h has to be an internal hexagon of G. The cycle
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induced by h is then clearly disjoint with the boundary cycle of G. But then from Lemma
2 it follows that G has a coronene as its nice subgraph and we obtain a contradiction.

Theorem 5. Let C be the outer cycle of an elementary benzenoid graph G. Then the
number of 4-tilings of G equals the number of 1-factors of G − C.

Proof. Let nf and nt denote the number of 1-factors of G−C and the number of 4-tilings
of G, respectively. If G has no coronene as its nice subgraph then nt = nf = 1 as follows
from Proposition 3 (see also the proof).

Suppose then nf > 1 and let M and M ′, M �= M ′, denote a pair of 1-factors of G−C.
Let B denote a 1-factor of C and let us set Mc := M ∪ B and M ′

c := M ′ ∪ B. Since Mc

and M ′
c are not equal, there exist at least one edge ei,j of G − C in the intersection of

hexagons hi and hj, such that ei,j ∈ Mc and ei,j �∈ M ′
c. Since from definition of SM(G) it

follows that SMc(G) �= SM ′
c
(G), this implies nt ≥ nf .

Suppose now that nt > 1 and let S and S ′, S �= S ′, denote a pair of 4-tilings of G. We
can show analogously as above that the 1-factors induced by S and S ′ are not equal. It
follows that nf ≥ nt and the proof is complete.

4 Decomposition of elementary benzenoid graphs

Let G be an elementary benzenoid graph. The sequence of hexagons h1, h2, h3, . . . , hr is
called reducible if hi is a reducible hexagon of Gi such that Gr = G, Gi−1 = Gi − hi,
i = r, r − 1, . . . , 2 and h1 = G1.

The characterization above is the basis for an algorithm which finds the sequence of
reducible hexagons that decompose an elementary benzenoid graph in O(n2) time [11].
Moreover, an algorithm which decomposes a less general graph (an elementary benzenoid
graph with at most one pericondensed component) in linear time is presented in the same
paper. We will show in this section that the best possible complexity can be obtained for
all elementary benzenoid graphs.

Let G be a benzenoid graph without a pendant hexagon and with a 4-tiling S. The
walk in a clockwise direction along the vertices of IS(G) induces three types of turns. The
turns and the corresponding hexagons are denoted π

3
, 2π

3
, and −π

3
in a natural way. All

turns are depicted in Figure 9.
Let G be a benzenoid graph with a 4-tiling and let C be the outer cycle of G. Let h

be a hexagon that corresponds to a vertex of C. Then the hexagon h is called removable
if

• h is a π
3

turn and the corresponding vertex in I(G) \ S is of degree two, or

• h is a −π
3

turn and the corresponding vertex in I(G) \ S is of degree three.
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Figure 9: Turns.

From Theorem 2 it clearly follows that a removable hexagon of an elementary ben-
zenoid graph G is also reducible. Note also that a pendant hexagon of G is also trivially
reducible. The following lemma was stated in [12] in slightly different form.

Lemma 5. Let G be an elementary benzenoid graph without a pendant hexagon. Then a
4-tiling of G admits at least one removable hexagon.

This observation together with Theorem 3 is the basis for the next algorithm.

Algorithm Optimal RFD

input - an elementary benzenoid graph G.
output - a reducible sequence of hexagons Li, i = 1, . . . , r.

1. i := 1.

2. IG := the inner dual of G.

3. M0̂ := the minimal 1-factor of G.

4. S := the 4-tilling induced by M0̂.

5. H := {h; h is a pendant or removable hexagon of G}.
6. repeat

(a) Li := a hexagon of H.

(b) H := H \ {Li}.
(c) IG := IG − Li.

(d) update H.

(e) i := i + 1.

7. until I(G) is a single hexagon h′.

8. Li := h′.
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Theorem 6. Algorithm Optimal RFD finds a reducible sequence of hexagons of an ele-
mentary benzenoid graph G and can be implemented to run in O(n) time.

Proof. The correctness of the algorithm follows from Theorem 3 and Lemma 5. Starting
from G = Gr, the algorithm at each execution of the loop finds a reducible hexagon in
G = Gi and then removes this hexagon from Gi. The obtained graph Gi−1 is elementary,
therefore we can repeat the procedure till the last hexagon.

Concerning the time complexity of the algorithm, note that a vertex of G and I(G)

possesses at most three and six adjacent vertices, respectively. Thus, the complexities of
basic operations: deleting an edge, deleting a vertex, deleting all edges incident with a
vertex etc., are constant notwithstanding a representation of G and I(G).

For Steps 2, 4, 5 it follows from the discussion above that they can be implemented
in linear time. For Step 3 we invoke the routine RPS presented in [4] which compute
the so called rightmost perfect path system of G in linear time. As shown in [11], this
implies that the computation of the minimal 1-factor can be executed within the same
time bound.

We are left to show that the body of the loop is executed in constant time. Since
we choose an arbitrary hexagon of H, Step 6(a) can be implemented to run in constant
time. For Step 6(d) observe that H can only be augmented with hexagons adjacent to Li.
Since the number of hexagons adjacent to Li is constant, this yields that this step can be
executed in constant time. The same argument can be applied for Step 6(c). Since the
number of hexagons is linear in the number of vertices of G, it follows that the overall
time complexity of the algorithm is O(n).
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