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Abstract

Polyhedral links, interlinked and interlocked architectures, have been proposed
for the description and analysis of knotted configurations in DNA and proteins. Qiu
et al. fabricated cubic polyhedral and carbon nanotube links by the means of three
cross curves and double lines covering, and analyzed their chirality by point groups.
We present, in this paper, a novel method by replacing three cross curves with
branched alternating closed braids to construct a new type of polyhedral links on
arbitrary convex polyhedra. We give some conditions to determine the chirality
of the polyhedral links in terms of generalized Tutte and Kauffman polynomials.
Accordingly, we show that each regular branched closed braid link is chiral. This
result shows that the model of bacteriophage HK97 capsid, topologically linked
protein catenane, is chiral.

1 Introduction

Since the first two interlocked rings topological catenane [1] was synthesized in 1961,

a new field has been opened for searching and synthesizing more topological complex

molecules. Particularly, due to the large length and enough flexility of DNA and protein

molecules, they can be used as materials to assembly molecular catenanes. Till now,

chemists have utilized DNA to address the realization of interlocked molecules with well-

defined polyhedral topologies, such as DNA cubes [2, 3] and truncated octahedrons [4],
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and more recently DNA bipyramids [5], DNA prisms [6], DNA octahedrons [7], DNA

dodecahedrons and DNA buckyballs [8]. Moreover, a protein catenane in the shape of a

72-hedron has been discovered in the context of virology [9]. These curious objects provide

some topological nontrivial structures that have inspired mathematicians to characterize

them by building models [10].

In recent years, a theoretical model of polyhedral and carbon nanotube links, fabri-

cated by Qiu and coworkers [11, 12], which are topological entities with polyhedral and

carbon nanotubal shape linking with a collection of finitely separate closed curves, are

constructed by using three cross curves and double lines to encode vertices and edges of a

polyhedron or carbon nanotube, respectively. Recall that, for the polyhedral shape link,

the inspiration for such models comes from the real structures of the protein polyhedral

catenanes. By extension, many other constructing methods and possible physico-chemical

properties are shown in [13–16]. However, the development of a well-founded scheme for

constructing polyhedral catenanes has remained a challenging problem awaiting a satis-

factory solution.

Chirality [17] is a geometrical-topological property of many physical systems, and a

fundamentally important aspect of chemistry. An object or a system is called chiral if

it cannot ambient isotopic to its mirror image. A non-chiral object is called achiral.

There exist some topological techniques to prove chirality of knots and links [18–21]. For

polyhedral links, but, to date, approaches to detect their chirality are brought forward.

Such as present an experienced approach to determining whether the symmetry of a rigid

representation is belonged to chiral group, and analyzing whether a molecular structure

can be deformed to its mirror image. So we will describe an approach of determining

chirality from mathematics for such a survey.

The current paper proposes a novel approach for constructing of polyhedral links by

using branched alternating closed braids and double lines to cover every vertex and every

edge of a convex polyhedron, respectively. Throughout this paper, the constructed poly-

hedral links are all alternating. The constructed approach provides a new interpretation

for three cross curve covering links, which belong to the family of regular branched closed

braid covering links. Furthermore, we shall applying a combinatorial method to analyze

the chirality of the model. By using generalized Tutte and Kauffman polynomials, we

give sufficient conditions to determine the chirality of the polyhedral links. Accordingly,

we show that a polyhedral link each vertex of which is covered by a regular branched

closed braid is chiral. This implies bacteriophage HK97 capsid is chiral. We hope that

our construction may offer a theoretical guideline for synthesizing of new DNA and pro-

tein polyhedra and the chirality criterion for polyhedral links will play an important role

in further study of stereochemistry of DNA and protein cage.
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2 Prelimaries

To provide necessary background, we begin our account with some basic concepts,

terminology and denotation.

A polyhedron is a solid in R3, enclosed by a number of polygons (faces), which, two

by two, have a side in common (edges), while three or more polygons join in common

vertices.

Let G = (V, E) be a graph with vertex set V and edge set E. We use n(G) to

denote the number of vertices of a graph G, e(G) the number of edges, f(G) the number

of faces, and c(G) cyclomatic number. Similarly, let n(P ) denotes the number of vertices

of a polyhedron P , e(P ) the number of edges, f(P ) the number of faces.

A knot K ⊂ R3 is a subset of points homeomorphic to a circle. A link L of n

components is a finite disjoint union of knots: L = K1 ∪ · · · ∪ Kn. A braid is a set of n

strings, all of which are attached to a horizontal bar at the top and at the bottom. Each

string always heads downward as we move along any one of the strings from the top bar

to the bottom bar. Tying the top ends to the bottom ends of braid b, to form a link,

called a closed braid b̂, as shown in Figure 1. Let n(b) be the number of strings of braid

b.

Figure 1. A braid b and it corresponding closed braid b̂.

An ordered combination of the σi and σ−1
i symbols constitutes a braid word. For

example, σ−1
i σ−1

i+1σ
−1
i is a braid word for the braid illustrated Figure 2(b), where the

symbols can be read off the diagram left to right and then top to bottom. For the left of

Figure 1, the braid b is denoted to be σ4σ1σ3σ
−1
2 σ4σ1σ

−1
3 .

3 Construction of polyhedral links

Our method of constructing polyhedral links is based on the knowledge of closed

braid. Using branched alternating closed braids and double lines to cover every vertex

and edge of a polyhedron P , respectively. The resulting link is the polyhedral link we
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Figure 2. (a)The geometric interpretation of generators σ1, σ2, · · · , σn. (b) A braid word.

fabricate. Let L(P ) denotes a polyhedral link from our construction. To explain the

construction, we first introduce the definition of branched alternating closed braid.

Let

Ji =

⎧⎨⎩(σ1σ3 · · ·σn(Ji)−2σ
−1
2 σ−1

4 · · ·σ−1
n(Ji)−1)

ki if n(Ji) is odd

(σ1σ3 · · ·σn(Ji)−1σ
−1
2 σ−1

4 · · ·σ−1
n(Ji)−2)

ki if n(Ji) is even

or

Ji =

⎧⎨⎩(σ−1
1 σ−1

3 · · ·σ−1
n(Ji)−2σ2σ4 · · ·σn(Ji)−1)

ki if n(Ji) is odd

(σ−1
1 σ−1

3 · · ·σ−1
n(Ji)−1σ2σ4 · · ·σn(Ji)−2)

ki if n(Ji) is even,

where i = 1, 2, · · · , n(P ); ki is crossing number between the 1st and the 2st string of Ji.

Then Ji is called ki-regular alternating braid. So Ĵi is called ki-regular alternating closed

braid, as illustrated in Figure 3.

Figure 3. The regular alternating closed braid Ĵi with ki = 5.

If c[j : j + 1] �= c[k : k + 1], j �= k, j, k ∈ {1, 2, 3, · · · , n(Ji) − 1}, c[1 : 2] = ki and

2 ≤ c[j : j + 1] ≤ ki, j = 2, 3, · · · , n(Ji) − 1, where c[j : j + 1] denotes crossing number

between the jst and the j +1st string of an alternating braid Ji, then Ji is called irregular.
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We define

Ŝi = Ĵi − {a1 ∪ a2 ∪ . . . ∪ aki
},

where a1, a2, . . . , aki
are subarcs of the first string of Ĵi. Let Ŝi denotes branched alter-

nating closed braid. If Ĵi is regular, then Ŝi is called regular. The irregular alternating

closed braid Ĵi and the branched alternating closed braid Ŝi as illustrated in Figure 4.

Figure 4. The irregular alternating closed braid Ĵi and the branched alternating closed

braid Ŝi.

We can construct a new type of polyhedral links on an arbitrary convex polyhedra by

the method of Ŝi and double lines covering. Firstly, taking a Ĵi with c[1 : 2] = ki, using

Ŝi to cover a vertex with d(vi) = ki of a polyhedron P until every vertex of P is covered

in the same way. secondly, using double lines to cover every edge of P . For example,

when n(Ĵi) = 2, Ŝi is ki cross curve, as shown in Figure 5. Applying Ŝi and double lines

covering on tetrahedron leads to tetrahedral links, as shown in Figure 6. Applying Ŝi and

double lines covering on bipyramid leads to bipyramidal links, as shown in Figure 7.

Figure 5. 3–cross–curve, 4–cross–curve and 5-cross-curve.

4 Some conditions for the polyhedral links to be chi-

ral

A connected plane medial graph M(G) is a 4-regular plane graph which can be

obtained from a connected non-trivial graph G as shown in Figure 8. A signed graph is a

graph with each of its edges labeled with a sign (+1 or -1). According to the sign of the
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Figure 6. The tetrahedral link obtained by three cross curves and double lines covering.

Figure 7. The bipyramidal link obtained by three cross curves, four cross curves and

double lines covering.
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edge, as shown in Figure 9, we can obtain a knot or link L(G) by converting each vertex

of medial graph M(G) into a crossing, as illustrated in Figure 10.

There is a one-to-one correspondence between link diagrams and signed plane graphs

via medial construction [22]. Therefore, conversley, given a link diagram L, we first shade

every other region of the link diagram so that the infinite outermost region is not shaded,

then connect it with a signed plane graph G as follows: put a vertex at the center of each

shaded region and connect with an edge any two vertices that are in regions that share a

crossing.

Figure 8. A planar graph G becomes a medial graph M(G).

e e

sign(e)=-1 sign(e)=1

Figure 9. Signs of edges.

Figure 10. A signed graph G becomes a link L(G).

Definition 4.1. [23, 24, 25, 26] The Kauffman bracket polynomial < L > of a link

diagram L is defined by the following three relations:

(1) < >= 1, where denotes the diagram of one component and no crossings.

(2) < L >= (−A2 − A−2) < L >, where L denotes the diagram L together

with a single component that does not cross itself or L.
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(3) < >= A < > +A−1 < > .

Definition 4.2. [22] The generalized Tutte polynomial for a signed graph G is defined by

the following properties:

1. If e is neither an isthmus (i.e., a cut edge) nor a loop in G, then

T (G) = A−1T (G − e) + AT (G/e) sign(e) = +1,

T (G) = AT (G − e) + A−1T (G/e) sign(e) = −1,

where G−e , G/e are obtained from G by deleting and contracting the edge e, respectively.

2. If every edge of G is either an isthmus or a loop and G is connected, then

T (G) = X i++l−Y i−+l+ ,

where X = −A−3, Y = −A3 ; i+(i−) is the number of the positive (respectively negative)

isthmuses; l+(l−) is the number of the positive (respectively negative) loops.

3. If G is the disjoint union of graphs G1 and G2 , then

T (G) = (−A2 − A−2)T (G1)T (G2).

The relation of Kauffman bracket polynomial and Tutte polynomial is given as follows:

Theorem 4.3. [22] Let G be a signed plane graph, L(G) be the link diagram associated

with G via the medial construction. Then

T (G) =< L(G) > .

Theorem 4.4. [25] If a link L is achiral, then

< L > (A) =< L∗ > (A) =< L > (A−1),

where link L∗ is mirror image of link L.

From Theorem 4.4 we immediately find that the polynomial of an achiral link must

be palindromic. Converse-negative proposition of Theorem 4.4 holds. Hence we have the

following Theorem:

Theorem 4.5. If < L > (A) �=< L > (A−1), then link L is chiral.

According to Theorem 4.5 above, if the sum of degree of maximum and minimum term

of Kauffman polynomial of a link diagram L is not equal to zero, then the link L is chial.

Hence we can obtain the following conclusions:
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Theorem 4.6. Let G be a signed planar graph from a polyhedral link diagram L(P ), Gi

be a signed planar graph from Ĵi.

If sign(e) = 1, e ∈ G, then the maximum degree term and minimum degree term of

< L(P ) > are respectively

(−1)

n(P )∑

i=1
c(Gi)+f(P )−1

A

n(P )∑

i=1
e(Gi)+2

n(P )∑

i=1
c(Gi)+2f(P )−2

and

(−1)
−

n(P )∑

i=1
c(Gi)+

n(P )∑

i=1
e(Gi)−f(P )+1

A
2

n(P )∑

i=1
c(Gi)−3

n(P )∑

i=1
e(Gi)+2f(P )−2

.

If sign(e) = −1, e ∈ G, then the maximum degree term and minimum degree term of

< L(P ) > are reverse.

Proof: For each e ∈ G, sign(e) = 1 or −1 since L(P ) is alternating. So there are two

cases for considering the maximum and minimum degree term of L(P ).

If sign(e) = 1, e ∈ G, then the minimum degree term < L(P ) > comes from spanning

tree Γ of graph G. The maximum degree term < L(P ) > comes from graph G∗, where

G∗ is a graph with one vertex and
n(P )∑
i=1

c(Gi) + f(P ) − 1 edges.

Graph G yields graph G∗ through
n(P )∑
i=1

e(Gi) − [
n(P )∑
i=1

c(Gi) + f(P ) − 1] operations of

contracting edges. Hence, according to definition 4.2, tree Γ contributes the maximum

degree term of < L(P ) >, which is

A

n(P )∑

i=1
e(Gi)−[

n(P )∑

i=1
c(Gi)+f(P )−1]

(−A3)

n(P )∑

i=1
c(Gi)+f(P )−1

.

That is

(−1)

n(P )∑

i=1
c(Gi)+f(P )−1

A

n(P )∑

i=1
e(Gi)+2

n(P )∑

i=1
c(Gi)+2f(P )−2

.

Graph G gives rise to spanning tree Γ by
n(P )∑
i=1

c(Gi) + f(P ) − 1 operations of deleting

edges. So the minimum degree term of L(P ) is

A
−[

n(P )∑

i=1
c(Gi)+f(P )−1]

(−A−3)

n(P )∑

i=1
e(Gi)−[

n(P )∑

i=1
c(Gi)+f(P )−1]

.

That is

(−1)
−

n(P )∑

i=1
c(Gi)+

n(P )∑

i=1
e(Gi)−f(P )+1

A
2

n(P )∑

i=1
c(Gi)−3

n(P )∑

i=1
e(Gi)+2f(P )−2

.

If sign(e) = −1, e ∈ G , then the spanning tree Γ of graph G generates maximum

degree term. Graph G∗, consisting of one vertex and
n(P )∑
i=1

c(Gi)+f(P )−1 edges, generates

minimum degree term.
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We can prove, in the same manner, that graph G∗ contributes the maximum degree

term of < L(P ) >, which is

(−1)
−

n(P )∑

i=1
c(Gi)+

n(P )∑

i=1
e(Gi)−f(P )+1

A
2

n(P )∑

i=1
c(Gi)−3

n(P )∑

i=1
e(Gi)+2f(P )−2

and

(−1)

n(P )∑

i=1
c(Gi)+f(P )−1

A

n(P )∑

i=1
e(Gi)+2

n(P )∑

i=1
c(Gi)+2f(P )−2

.

�

Applying Theorem 4.6, sufficient condition for the polyhedral links to be chiral can be

described via the following Theorem and Corollarys.

Theorem 4.7. If

n(P )∑
i=1

[c(Gi) − n(Gi)] + 2f(P ) + n(P ) − 2 �= 0, (1)

then polyhedral links L(P ) are chiral.

Proof: According to Theorem 4.5, this means that

(−1)
−

n(P )∑

i=1
c(Gi)+

n(P )∑

i=1
e(Gi)−f(P )+1

A
2

n(P )∑

i=1
c(Gi)−3

n(P )∑

i=1
e(Gi)+2f(P )−2

�= (−1)

n(P )∑

i=1
c(Gi)+f(P )−1

A
−[

n(P )∑

i=1
e(Gi)+2

n(P )∑

i=1
c(Gi)+2f(P )−2]

.

So

2

n(P )∑
i=1

c(Gi) − 3

n(P )∑
i=1

e(Gi) + 2f(P ) − 2 �= −[

n(P )∑
i=1

e(Gi) + 2

n(P )∑
i=1

c(Gi) + 2f(P ) − 2].

That is

2

n(P )∑
i=1

c(Gi) −
n(P )∑
i=1

e(Gi) + 2f(P ) − 2 �= 0.

However

e(Gi) = n(Gi) + c(Gi) − 1,

therefore

2

n(P )∑
i=1

c(Gi) −
n(P )∑
i=1

e(Gi) + 2f(P ) − 2

= 2

n(P )∑
i=1

c(Gi) −
n(P )∑
i=1

[n(Gi) + c(Gi) − 1] + 2f(P ) − 2

=

n(P )∑
i=1

[c(Gi) − n(Gi)] + 2f(P ) + n(P ) − 2

�= 0.
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Hence, a sufficient condition for the polyhedral links L(P ) to be chiral is

n(P )∑
i=1

[c(Gi) − n(Gi)] + 2f(P ) + n(P ) − 2 �= 0.

�

We now have a better result than the above Theorem by converting c(Gi) and n(Gi)

to crossing number of Ĵi.

Corollary 4.8. If

n(P )∑
i=1

n(Ĵi) +
1

2

n(P )∑
i=x(P )+1

ki + 2f(P ) + x(P ) >
1

2

n(P )∑
i=1

kin(Ĵi) + n(P ) + 2, (2)

then the polyhedral links L(P ) are chiral, where x(P ) denotes the number of i such that

n(Ĵi) is even.

Proof: The cyclomatic number of graph Gi from Ĵi is

c(Gi) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n(Ĵi)

2
−1∑

j=1

c[n(Ĵi) − 2j : n(Ĵi) − 2j + 1] + 1 if n(Ĵi) is even

n(Ĵi)−1

2∑
j=1

c[n(Ĵi) − 2j + 1 : n(Ĵi) − 2j + 2] if n(Ĵi) is odd,

.

The number of vertices of graph Gi is

n(Gi) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n(Ĵi)

2∑
j=1

c[n(Ĵi) − 2j + 1 : n(Ĵi) − 2j + 2] if n(Ĵi) is even

n(Ĵi)−1

2∑
j=1

c[n(Ĵi) − 2j : n(Ĵi) − 2j + 1] + 1 if n(Ĵi) is odd.

According to
n(P )∑
i=1

[c(Gi) − n(Gi)] + 2f(P ) + n(P ) − 2, in order to make it as small as

possible, we want to pick a Ĵi where c(Gi) is small but n(Gi) is large. So, the Ĵi is such

an alternating closed braid.

If n(Ĵi) is even, then

c[n(Ĵi) − 2j : n(Ĵi) − 2j + 1] = 2, j = 1, 2, · · · ,
n(Ĵi)

2
− 1,

c[n(Ĵi) − 2j + 1 : n(Ĵi) − 2j + 2] = ki, j = 1, 2, · · · ,
n(Ĵi)

2
.
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If n(Ĵi) is odd, then

c[n(Ĵi) − 2j + 1 : n(Ĵi) − 2j + 2] = 2, j = 1, 2, · · · ,
n(Ĵi) − 1

2
,

c[n(Ĵi) − 2j : n(Ĵi) − 2j + 1] = ki, j = 1, 2, · · · ,
n(Ĵi) − 1

2
.

Therefore

n(P )∑
i=1

[c(Gi) − n(Gi)] + 2f(P ) + n(P ) − 2

=

x(P )∑
i=1

[c(Gi) − n(Gi)] +

n(P )∑
i=x(P )+1

[c(Gi) − n(Gi)] + 2f(P ) + n(P ) − 2

≥
x(P )∑
i=1

[(2 − ki)(
n(Ĵi)

2
− 1) − ki + 1] +

n(P )∑
i=x(P )+1

[(2 − ki)
n(Ĵi) − 1

2
− 1]

=

n(P )∑
i=1

n(Ĵi) − 1

2

n(P )∑
i=1

kin(Ĵi) +
1

2

n(P )∑
i=x(P )+1

ki + 2f(P ) + x(P ) − n(P ) − 2.

According to Theorem 4.7, when

n(P )∑
i=1

n(Ĵi) − 1

2

n(P )∑
i=1

kin(Ĵi) +
1

2

n(P )∑
i=x(P )+1

ki + 2f(P ) + x(P ) − n(P ) − 2 > 0,

that is

n(P )∑
i=1

n(Ĵi) +
1

2

n(P )∑
i=x(P )+1

ki + 2f(P ) + x(P ) >
1

2

n(P )∑
i=1

kin(Ĵi) + n(P ) + 2,

the polyhedral links are chiral. �

Corollary 4.9. If Ĵi is regular, then polyhedral links L(P ) are chiral, where i = 1, 2, . . . , n(P ).
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Proof: From Theorem 4.7, we immediately yield

n(P )∑
i=1

[c(Gi) − n(Gi)] + 2f(P ) + n(P ) − 2

=

x(P )∑
i=1

[c(Gi) − n(Gi)] +

n(P )∑
i=x(P )+1

[c(Gi) − n(Gi)] + 2f(P ) + n(P ) − 2

= −
x(P )∑
i=1

(ki − 1) − [n(P ) − x(P )] + 2f(P ) + n(P ) − 2

= −
x(P )∑
i=1

(ki − 1) + x(P ) + 2f(P ) − 2

= −
x(P )∑
i=1

(ki − 1) + x(P ) + 2e(P ) − 2n(P ) + 2

= −
x(P )∑
i=1

(ki − 1) + x(P ) +

n(P )∑
i=1

ki − 2n(P ) + 2

=

n(P )∑
i=x(P )+1

ki + 2x(P ) − 2n(P ) + 2

≥ 3[n(P ) − x(P )] + 2x(P ) − 2n(P ) + 2

= n(P ) − x(P ) + 2 > 0.

Hence the polyhedral links L(G) are chiral. �

Note: A necessary condition of Theorem 4.7 and its Corollary 4.8 is not necessarily

hold. For example, for a tetrahedra, when⎧⎨⎩n(Ĵi) = 4, n(Ĵ4) = 3 i = 1, 2, 3

kj = 3 j = 1, 2, 3, 4.

The tetrahedral link we construct as shown in Figure 11.

The tetrahedral link is chiral, because < L(P ) >= −A60 +15A56 + . . .+9A−56 −A−60

is not palindromic. However, according to Theorem 4.7, we have

2

n(P )∑
i=1

[c(Gi) − n(Gi)] + 2f(P ) + n(P ) − 2 = −3 × 3 − 1 + 10 = 0.

Hence the necessary condition is not necessarily true.
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Figure 11. Polyhedral link with chirality dissatisfy formula 1 and 2.

5 Conclusions

We have presented a novel method for the fabrication of polyhedral links to explain

some characteristic of DNA and protein polyhedral catenanes, as well as, have obtained

three sufficient conditions for the polyhedral links to be chiral. The novel method is a

generalization of three cross curves and double lines covering, which in fact can be applied

to an arbitrary 3-regular convex polyhedron. For a 72-hedron, when n(Ĵi) = 2, ki = 3,

then Ĵi is a 3-regular alternating closed braid and Ŝi is a three cross curve, the polyhedral

link with 12 pentameric and 60 hexameric rings is obtained. Interestingly, we find that

the structure can be used to model the novel folding fashion of HK97 capsid proteins.

To distinguish the two forms of chirality, which are often designated right-handed

or left-handed. Chemists refer to mirror-image molecules as L-configuration and D-

configuration. Such as sugars are almost belong to D-configuration, but amino acids

are almost belong to L-configuration. Theorem 4.7 is a fundamental formula for deter-

mining chirality of polyhedral links. Corollary 4.8 establishes a strong condition for the

chirality of polyhedral links, which is basically relied on the string number and crossing

number of the fist and second string of every closed braid. Corollary 4.9 emphasize that

each polyhedral link which is covered by regular branched alternating closed braids is

chiral. The Corollary have the better function of theory direction in practice. For the

above model of 72-hedral link, it is chiral obtained by Corollary 4.8. On the other hand,

each Ĵi, which corresponding Ŝi is the building block of 72-hedral link, is 3-regular. So

the chirality of the link can also be determinant from Corollary 4.9. This means HK97

capsid proteins is chiral, which can be confirmed by tilt experiment.
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