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Abstract 

A quantum mechanical extension of the continuous symmetry measures (CMS) proposed 
by Avnir et al. is described. The theoretical framework is essentially based in a simple 
extension of the HMO approach, leading to compute molecular CSM energy spectra, 
constituting a useful step for construction of first and higher order CSM terms. This 
permits in turn to connect the general CMS theoretical framework with the fundaments 
of structure-property relationships and allows the evaluation of statistical mechanics 
CMS partition functions and the deduction of CMS thermodynamical functions as well.  

 
1 Introduction 

The symmetry of an object is usually described as a binary measure, i. e., an object is 

either symmetric or not. However, it is very intuitive to think that the symmetry can be 

treated as a continuous scale where some objects are more symmetric than others. This idea 

has been under development by Avnir et al. [1, 2] (for reviews see [3, 4]) since the beginning 

of the 90’s of the XX century. They have proposed that given a molecule and a symmetry 

group G  it is possible to evaluate quantitatively the “amount” of G -symmetry contained by 

such molecule. The situation is also found in different contexts where yes-or-not concepts are 

better expressed in the form of quantitative scales. One of such examples is the bipartivity of 

a set of relations, usually determined to be either bipartite or not-bipartite. However, the 
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practical necessity has obligated to define scales in which the “amount” of bipartivity of the 

relationships can be quantified [5-7]. 

The continuous symmetry measure put forward by Avnir et al. have found numerous 

applications across several fields of chemistry [8-16]. This approach can be resumed in the 

following. Let $  be the space of all molecular shapes of a given dimension, where each 

shape P  is represented by a sequence of n  points % &n
iiP 1� . Let d  be a metric on this space 

defined as follows: 

Rd �$'$:  

� � % & % &� � 	
�

���
n
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iiii QP
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QPdQPd
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21,,  

Then, this metric defines a distance function between every two molecular shapes in $ . 

Now, let a symmetry transform � �ST  represent the symmetric shape closest to P  in terms 

of the metric d . Then, the symmetry distance of a shape P  has been defined as the distance 

between P  and its corresponding ST : 

� � � �� �PSTPdsymS ,�  

 

which can be evaluated by finding the ST P̂  of P  and computing 
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        (1) 

 

The measure given in (1) is known as a continuous symmetry measure (CSM), � �symS  

and represents the square deviation of the shape P  from a perfect symmetry � �sym . The CMS 

can be considered as a first order measure of the deviation from perfect symmetry of a given 

object. The definition of the symmetry distance implies invariance to rotation and translation 

and a normalization of the original shape allows for invariance of scale. 

Here it is proposed to interpret this approach in a wider of quantum chemical context, 

as well as to extend this approach to a series of measures, which in some way quantify the 

“distribution” of continuous symmetry across a molecule. 
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2 CSM Graphs 

It is evident that in order to represent the CSM process there are needed two graphs 

for every studied object. For every “real” object P  for which the deviation from perfect 

symmetry is to be studied, one can employ the object P  and a “virtual” object P̂ , which 

represents the perfect symmetry for which the CSM will be computed. For instance, in the 

CSM process shown in Fig. 1A there are present two objects: a “real” one, represented by 

solid lines and a “virtual” one with perfect 6C -symmetry depicted by dotted lines. An 

abbreviated representation of the CSM process can be carried out by means of the CSM 

graph. The CSM graph of a CSM process is formed by joining the nodes of the “real” and 

“virtual” nodes into pseudo-nodes, in such a way that two pseudo-nodes are adjacent in the 

CSM graph if, and only if, the corresponding nodes are adjacent in the real and virtual object 

[17]. Fig. 1B represents the CSM graph for the previously mentioned CSM process. 

 

Figure 1. A) Illustration of the symmetry transform of % &621 ,,, PPP �  to % &621
ˆ,,ˆ,ˆ PPP �  with perfect 

6C -symmetry. B) The CSM graph representing the symmetry transform given in Fig. 1A. 
 

The necessity for this kind of representation will be evident in the following section. An 

object P  can be represented by means of a weighted graph: � �#,,, WEVG � . Here the sets 

V  and E  are the set of nodes (vertices) and links (edges) of the object P , characterizing its 

connectivity or discrete topology. The cardinality of these sets are nV �#  and mE �# , 

respectively. The set � �nW ((( ,,, 21 �� , where 
2

îii PP ��( , accounts for the deviations 

from perfect symmetry for every node of the object P . Such deviations are quantified by 
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means of the CSM approach. The surjective mapping WV �:#  assigns a value of i(  to 

each node. 

The graph � �#,,, WEVG �  can be represented through the use of the matrix: 

� � WAΓ ��G , where A  is the adjacency matrix [18] of the simple graph, whose elements 

1�ijA  if the nodes i  and j  are adjacent, or zero otherwise, and W  is a diagonal matrix 

whose diagonal entries are the values of the deviation from perfect symmetry for the 

corresponding node � �ndiag ((( ,,, 21 ��W . 

 
3 Quantum-mechanical formulation 

From now on one can consider that P  represents a quantum object. In the particular 

case of a molecule one can consider an AO basis set associated to each atom, which only 

depend on the deviation of a given atom from the perfect symmetry as accounted by the CSM 

approach. However, in the CSM graph each pseudo-node is formed by two orbitals, one 

representing the atom deviated from the perfect symmetry and the other the atom in the 

perfect symmetry. Then, the CSM orbitals, which are the orbitals in the CSM graph, can be 

supposed as a set of localized orbitals: % &CSM
i" , which can be constructed as the bond 

orbitals introduced by Hall and Lennard-Jones and used in a linear combination of bond 

orbitals (LCBO) approach. A similar approach to the present, although in a different context 

was proposed many years ago by Paoloni et al. [19]. They proposed for the first time the p-

type AO’s in aromatic molecules like benzene to be substituted by spherical s-type functions. 

A more elaborated approach has been also employed in describing approximate promolecular 

first order density functions [20-[24] . A parent approach has been successful in order to 

compute topological indices, which explicitly include molecular structure [25,[26]. More 

recently, the idea has been also successfully employed to compute multicenter aromaticity 

indices [27]. In fact the present approach amounts the same as to use both spherical and 

elliptically distorted s-type functions. Such distortion in GTO’s has been early described and 

even employed to compute AO integrals [28-[30]. 

Here a tight-binding approach similar to the one used in the Hückel molecular orbital 

(HMO) approach is employed. This is so, because in the present approach, the use of 

adjacency matrices as a basic tool precludes the theoretical association with the HMO wave 

function simplification. Therefore, such a choice permits the immediate use of MO’s instead 

of the implicit Hartree wave function. First, the MO’s are built as linear combinations of the 
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pseudo-atomic orbitals by considering that the CSM orbitals are orthonormalized, in order to 

obtain an easily manageable set of application algorithms. Of course that this is not 

compulsory and the method can use non orthogonal CSM orbitals, without needing a 

considerable change. The Coulomb integral Hii  of a CSM orbital #i  is assumed to depend 

only on the deviation from perfect symmetry of the atom i . As it is customary in HMO 

procedures, such an integral is set equal to baH iii (�� , while the resonance integral Hij  

between CSM orbitals #i  and # j  is assumed to be zero, unless i  and j  are adjacent atoms in 

the molecule, in which case it is set bHij � . After normalizing each element of the CSM 

Hamiltonian by b  the main diagonal, the entries are given by ix (� , where 

b
ax )�

�            (3) 

 The non-diagonal entries of this matrix are unity if, and only if, the corresponding atoms are 
adjacent. Thus, the orbital energy is determined by the eigenvalues of the matrix H , which 

are the eigenvalues of the weighted matrix � �GΓ  representing the CSM graph, 

jj bxa ��)           (4) 

where jx  is an eigenvalue of the matrix � �GΓ . The total electronic “CSM” energy is given 

by 

		
��

���
n

j
j

n

j
jCSM xbnaE

11
22 ) ,       (5) 

where 0�b .  

From now on the value 0*� nap   is used without loss of generality, since p  simply sets 

the origin of the energy scale. This makes the CSM energy expression equal to: 

	
�

�
n

j
jCSM xbE

1
2 ,         (6) 

It is well known that the sum of the eigenvalues of any Hermitian matrix is equal to 
its trace. Then, it is straightforward to realize that the CSM is the total energy of the 
symmetry deviation for a molecule under the previous tight-binding assumptions, 

� � 		
��

���
n

j
i

n

j
iCSM n

symSbE
11

12 (( ,      (7) 

for 
n

b 12 � . 
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4 Higher order CSM 

 The CSM, corresponding in the present scheme to the total energy of the symmetry 

deviation for a given molecule, does not account for the differences in symmetry between 

pairs of structures having the same sum of the i(  values. In other words, the CSM total 

energy appears to be a first order measure for the CS deviation of a molecule. However, in 

the previous section it has been discussed that the CS total energy is given by the trace, the 

sum of diagonal elements, of the matrix � �GΓ : 

� �GtrtrECSM ΓH ��         (8) 

This expression can be generalized in order to account for higher-order contributions of 

the deviations from perfect symmetry. Let k+  be the k -th spectral moment of the 

Hamiltonian matrix, which represents a weighted closed walk of length k  between the 

pseudo-nodes of the CSM graph, where the weight associated with the walk is the product of 

the 1 ,a ibH  interaction elements,  

1, 2 2, 3 , 11, 2
k

k i i i i ik ii i ik
tr H H H+ � �	H

�
� .     (9)

  

It is evident that the energy is just the first moment of the Hamiltonian. Then, the 

consideration of the higher-order moments differentiate the structures not distinguished by 

the first order measure. The higher-order terms can be accounted for in a more efficient way 

in a further section. 

 

5 Higher-order CSM in structure-property relationships 

One of the principal objectives of developing the CSM has been its use in describing 

quantitatively many different properties. Let  P be an experimental property which can be 

expressed as a linear combination of the higher-order CSM, 

�+ ��	 k
k

kbP ,         (10) 

where kb  are the coefficients of the correlation model and �  is the error. Then, the following 

result can be easily set:  

Theorem: Any property  P expressed quantitatively by means of the higher-order CSM can 

be expressed as an atomic additivity function. 
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Proof. The spectral moments of the CSM Hamiltonian can be expressed in terms of local 

moments for the atoms of the molecule , -ak+  

, -	
�

�
n

a
kk a

1
++ ,          (11) 

where the atomic moments are expressed in terms of the MO coefficients and energies as 

follows, 

, - � �, -	
�

�
m

j

k
jjk aca

1

2)+ .         (12) 

Then, substituting (11) in (10) the property under study can be expressed in terms of the 

atomic moments, 

, - �+ ��		
�

abP k
k

n

a
k

1
 .        (13) 

 Summing up all the local moments corresponding to a given atom a  multiplied by their 

respective coefficients, calling � �aP  the CSM contribution of the atom a  to the property P , 

then the following expression is deduced: 

� � , -abaP k
k

k+	� .         (14) 

 Consequently, one can express the global property as a sum of atomic contributions,  

� �  
1
	
�

��
n

a
aPP �          (15) 

which proves the theorem, 

 
6 Statistical mechanics approach to higher-order CSM 

First, it can be defined a CSM partition function, associated to the previously defined 

CSM energies,  

� � 	
�

��
n

j

jeCSMZ
1

�)
,         (16) 

where kT/1��  is the inverse temperature (T ) and k  is the Boltzmann constant. Using this 

partition function one can define the entropy of the CSM electronic distribution as 
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11
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�) ,     (16) 

where 

Z
ep

j

j

�)�

� ,          (17) 

is the probability of finding the system in the state having energy j)  and � �CSMZZ * .  Eq.  

(16) can be rewritten in the following way 

� � 		
��

��
n

j
j

n

j
jj pZktpkS

11
ln)� .       (18) 

Then, by multiplying by T  and reordering the terms it is obtained 

TSpZ
n

j
jj ��� 	

�1
ln1 )

� ,        (19) 

which by using the known expression TSHF �� , permits to identify the CSM enthalpy 

H and the CSM free energy F , as the expressions 

� � 	
�

�
n

j
jj pCSMH

1
)          (20) 

� � ZCSMF ln1
�

��          (21) 

In order to establish a connection between the statistical mechanics parameters and the 

higher-order CSM parameters previously defined, the spectral moments of the Hamiltonian 

matrices can be easily used. First, the partition function (16) can be rewritten as the trace of 

the exponential of the Hamiltonian matrix, which can be immediately interpreted in terms of 

the spectral moments of the corresponding Hamiltonian, 

, - � � � �
!00 kk!

trβetrZ k

k

k
k

k

k +
�� 		

.

�

.

�

� �����
HH

.     (22) 

Thus, the CSM partition function is a weighted sum of all the higher-order CS measures 

accounted by the spectral moments of the corresponding CSM Hamiltonian. Because the 

Hamiltonian here is simply the adjacency matrix of a weighted graph, the partition function is 

the CSM version of the “subgraph centrality” or the Estrada index of the graph (see [31-35] 

and references therein). 
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7 Summary 

The concept of continuous symmetry measure (CSM) of Avnir et al. has been extended 

within a quantum mechanical background, employing a simple modification of HMO and the 

attached topological adjacency matrices. This permits to easily compute first and higher order 

CSM terms, which can be applied in turn to describe the partition of molecular properties as a 

sum of atomic contributions in structure-property relationships. Finally, CMS energy spectra 

can be employed to develop statistical mechanics partition functions and hence this permits to 

compute CMS related thermodynamic functions. 
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