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Abstract

This paper extends the methodology of the construction of polyhedral links by tangles in knot theory. 

Building blocks consist of odd tangles which are regions in the projection plane with 2n+1 half-twist, 

where n is an integer. Fixing odd tangles at the all vertices of Extend Goldberg polyhedra, and then connect 

them together will result in many interlocked networks. The solution to the component algorithm of 

4-regular polyhedral links has been proposed. Our result shows, by counting the length of central circuits of 

a polyhedron, the component number of the relating polyhedral link will be presented. Using such 

topological models, some potential significance in biological and chemical areas is tested to be explored. 

1. Introduction  

In recent decades, a variety of exotic newcomers whose molecular graphs cannot deform 

into a plane have been created in Nature [1-3]. DNA and protein molecules are large enough to 

be flexible that they can form intricate knotted and interlocked topologies. Besides naturally 

occurring molecular catenanes and knots, some more interesting interlocked 3-dimension 

structures have been designed in DNA computing [4, 5] and later been synthesized as a 

chemical challenge [6-12]. The important mathematical tool to address these non-trivial 
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topological entities is knot theory [13, 14], which is the study and quantization of configurations 

of graphs in Euclidean 3-space (R3). By reason of the great development in its own right, it 

has been shown to have applications in researching topological chirality and designing novel 

topology of chemical molecules [15-21]. The present paper was motivated by the continuing 

interest of chemists and mathematicians in these amazing constructions.

In knot theory, any four-regular plane graph can be seen as a projection of an alternating 

link. Jablan has given a unique connection between knots and fullerene or other basic 

polyhedra [22]. However, we give another relationship between a 4-regular graph and the 

relating links which are not just one to one. By applying the even tangles to Extended 

Goldberg polyhedra, many infinite series of links have been generated from each polyhedral 

graph [23]. Here, the assembling of odd tangles will yield many more complex knotted 

networks. This work gives a different way for looking the geometrical information of these 

new polyhedra, and extends our earlier research of the construction of polyhedral links with 

tangles.  

The component number is the basic invariant of knots and links. Another goal of this 

paper is to determine number of components of links obtained from 4-regular graphs. A 

polyhedral link is not only a pure mathematical conception, but also provides a new idea to 

understand some phenomenon in organisms, such as the connection between component 

numbers and capsomere numbers, knot entanglement and viral crosslinking [24-27]. 

Additionally, we hope this process would stimulate chemists to set their sights on the design 

and construction of other interlocked and intertwined molecules of more complex topologies.

2. Odd Tangles as Building Blocks 

 To provide the necessary background, we begin our account with a simple discussion of 

some peculiar property of tangle in knot theory. Mile time, some basic concepts and 

terminology of knot theory are also being depicted.

Tangle A. A region in the projection plane surrounded by a circle exactly with four 

emerging arcs {NW, NE, SW, SE}, it is an ideal building block for the construction of 
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compounds possessing various complex knotted topologies. A tangle with a finite sequence R

left-handed half twist or R right-handed half twist will be called R-tangle or –R-tangle, where 

R is a positive integer and equal to the crossing number. All algebraic knots and links can be 

obtained from R-tangles by applying some tangle operations, such as addition, multiplication 

and numerator closure. Due to the same character of two strings and twists occur between 

tangles and double helical DNA or organic intermediate, thereby making the conversion from 

tangles in topology to real molecular objects in chemistry. 

Odd tangles. The tangles can be divided into two types depending on whether R is even 

or odd. When R = |2n+1|, n is an integer, the odd tangle is obtained and some examples are 

shown in Figure 1. Note that as the building blocks, odd tangles have some different 

properties with even tangles. For examples, the closure of an even tangle will yield a link, 

whereas the closure of an odd tangle will yield a knot. 

Tangle composition. The new tangle operation is tangle composition, which has been 

proposed for a 4-regular plane graph [23]. It means substituting vertices of graph by tangles 

and connecting two arcs of tangles along each edge of graph (Figure 2). The following 

sections of this paper are to determine number of components of links obtained as 

composition of odd tangles on 4-regular polyhedral graphs. 

Figure 1. Odd tangles obtained by 2n+1 half-twists 
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Figure 2. The operation of tangle composition on a 4-regular graph 

A graph in which all vertices are 4-valent is called a 4-regular graph. Among the graphs 

corresponding to the polyhedra, the octahedron graph is the smallest 4-regular. The resulting 

of using the odd tangles to replace the vertices of some 4-regular polyhedral graph is easy to 

show some alternating links. As examples in Figure 3(a), the borromean link will be obtained 

by applying unit tangles to octahedral graph, because no pair of rings is linked. In Figure 3(b), 

the resulting structures of 2n+1(n>0) tangles is similar to DNA borromean link which was 

obtained by Seeman [28], the only difference is in that the signs of the three outer nodes are 

opposite to those of the three inner nodes in DNA borromean link. 

Figure 3. Borromean links obtained by replace vertices of octahedral graph by (a) 1 and (b) 2n+1 tangles 

3. Component Algorithm 

Definition 1. For a 4-regular polyhedron graph G, a central circuit CC is a walk without 

repeated edges and every edge of CC is the opposite neighbor of its preceding edge [29, 30].  
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Note that, after applying the tangles of odd numbers to a 4-rugular polyhedral graph, 

many series of alternating polyhedral links L whose components correspond to its central 

circuits are obtained. As a result, each vertices relates to an odd tangle with 2n+1 crossings, 

thus, the number of crossings is a multiple of vertices number V by 2n+1, but the number of 

components is little difficult to count. Additionally, the number of half-twist n could be any 

integers, thus, the mapping between polyhedron and their links is one-to-many. 

However, the following algorithm solves the component number problem of a polyhedral 

link L from a 4-regular graph G: Let us take a starting point on any edge of G and head along 

the edge in the chosen direction. When arriving to a vertex, continue it straight ahead the edge 

opposite the entering one. Continuing to apply this rule reiteratively until return to the start 

point, we will obtain a first central circuit of G and it is a projection of one component of L. 

After that, we choose a point on another edge which not contained in the first circuit and 

continuing to apply the same algorithm until all the edges of the graph are exhausted [13]. 

Definition 2. For a 4-regular polyhedron graph G, the length Lc of a central circuit is the 

number of its edges, and the symbol of ave (Lc ) denotes the average length of central circuit 

of a polyhedron. 

As the definition, central circuits cover every edges of polyhedral graph G exactly once, 

thus the component number Nc of the corresponding link L can be calculated by the following 

equation: 

   Nc = E / ave (Lc ) = �ε �
i

i
c /�

i
iLc  (1) 

Where E denotes the edge number and ci denotes the ith central circuit. 

4. Polyhedral links

4.1. Extended Goldberg polyhedra  

Now, recall the class of new icosahedral and 4-regular polyhedra [31], whose the number 

of vertices and edges are decided by two coordinates (h, k), where 0< h ] k] 0 and the 

triangulation number T = h2+hk+k2. An Extended Goldberg polyhedral cage obeys some basic 

relations�
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   � ddV = 2Ε, 4V = 2E  (2)       

� SSf = 2Ε, 3 f3 +4 f4+5f5+6f6 = 2E or 3 f3 +5f5+6f6 = 2E  (3) 

   Euler theorem: V-E+F = 2  (4) 

Where Vd and fs are the number of vertices of degree d and the number of s-gonal faces, 

respectively, and (d = 4, s ] 3). In this paper, we will focus on (3, 4) - and (3, 0)-Goldberg 

polyhedra (Figure 4), which are obtained by adding 3- and 4-gonal or 3-gonal faces on 

icosahedral fullerene - Goldberg polyhedra. 

           
Figure 4. Extended Goldberg polyhedra derived from 32-hedron (C60). 

(a) The Ih (3, 0)-92-hedron. (b) The Ih (3, 4)-182-hedron

4.2. (3, 4)-Extended polyhedral links 

For a (3, 4)-Extended polyhedral link, the parent polyhedron is a Stretch-Extended 

Goldberg polyhedron, which have vertices number Vs = 60(h2+hk+k2), face number Fs = 

60(h2+hk+k2) +2, and h2+hk+k2 = T. By equation (4), the number of edges Es =120(h2+hk+k2) 

=120T.  

 In the kind of polyhedra, there are two different types of the central circuits, which 

contain only a pentagon and only a hexagon, defined as 5-circuit and 6-circuit, respectively. 

Each 5-circuit (Figure 5a) pass through 5 pentagons and 5 quadrangles and the contribution of 

each polygon to the circuit length is unit one, thus, the length of 5-circuit is L5 = 10. Each 

6-circuit (Figure 5b) pass through 6 triangles and 6 quadrangles, thus, the length of 6-circuit is 
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L6 = 12. Additionally, there are exactly 12 pentagons in a polyhedron, so the number of 

hexagons is Fs-12 = 10(h2+hk+k2-1). It means that the number of 5-circuits and 6-circuits are 

N5 = 12 and N6 = 10(T-1), respectively. Therefore, the ave (Lc) of a Stretch-Extended 

Goldberg polyhedron can be calculated by equation: L5×N5+L6×N6/ N5+N6. The result is 

[12×10+10(T-1) ×12] / [10T+2] = 60T / (5T+1). By equation (1), we obtain the component 

number Nc of (3, 4)-Extended polyhedral links is 10T+2. 

Figure 5. (a) The 5-circuit with length of 10, (b) The 6-circuit with length of 12 

These total circuit number, or component number10T+2 are magic numbers. Note that 

the face number of Goldberg polyhedra is 10T+2, thus, the capsomere number of a spherical 

virus is also equal to this number. The 5-circuit with length of 10 and 6-circuit with length of 

12 have C5 and C3 symmetry, hence, these two different circuits may been used to represent 

pentamers and hexamers of viral capsids, respectively. Note that these circuits have some 

particular property, such as the crosslinking and the existing of overlapping areas between any 

adjacent circuits, may present in some complex viral capsids [32]. 

If (h, k) = (1, 0), then T = 1, using odd tangles to cover 60 vertices of Ih (3, 

4)-182-hedron, then connect them will result in a series of nested networks with 60(2n+1) 

crossings and 12 components. When n = 0, in Figure 6 (a), each vertices of polyhedron 

transforms into a crossing point of the polyhedral links. Each circuit of length 10 transforms 

into a component which contains a pentagon of the parent polyhedron, note that the pentagon 

in the outermost circuit is distributed on the behind of paper. Moreover, any group of two 

adjacent central circuits is interlocked via Hopf links, i.e. no pair of loops can be separated 

without cutting. When n = 1, in Fig 6(b), it is combined in such a way that any two 
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component loops form a 41
2 link. 

Figure 6. I (3, 4)-182-hedral links with 1 and 3- tangles 

If (h, k) = (1, 1), then T= 3, using odd tangles to cover 180 vertices of Ih (3, 

4)-242-hedron, then connect them will result a series of nested networks with 180(2n+1) 

crossings and 32 components. Moreover, any group of two adjacent central circuits is 

interlocked via a link with crossing number of 4n+2, thus, the absolute value of linking 

number of such sub-link is 2n+1. The second example of n =1 is shown in Figure 7.  

Fig. 7. I (3, 4)-242-hedral links with 3-tangles 
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4.3. (3, 0)-Extended polyhedral links 

For a (3, 0)-Extended Goldberg polyhedral link, the parent polyhedron is a 

Rotate-Extended Goldberg polyhedron, which vertices number is VR = 30(h2+hk+k2), face  

number is FR = 30(h2+hk+k2)+2, and h2+hk+k2 = T. By equation (4), the number of edges ER = 

120(h2+hk+k2) = 60T.  

For each polyhedron, all of the central circuits have the same length; it means that the 

length of CC is an invariant for one of these kinds of polyhedra. Considered as a circle cutting 

polyhedral surface, each CC partitions all 12 pentagons into two equal segments, which are 

five in the interior and another five in the exterior regions. 

When T = 1, then the Ih (3, 0)-92-hedron is obtained. Any central circuits pass through 5 

pentagons and the remaining pentagon having no contribution to the circuit length is 

contained in the inner central position of a CC. Additionally, for a CC, there is a triangle 

between two pentagons, thus each circuit also passes 5 triangles and the length of central 

circuit is 10. By using our above method, the link with 30(2n+1) crossings and 60/10 = 6 

components have been obtained, the cases of n = 0 and 1 are shown in Figure 8. Note that, 

each loop is intersecting with any other loops to form a closely interlocked network, and with 

the increase of T, the length of loop will increase too. For all Extended Goldberg polyhedra, 

the accounting of loops number becomes more complicated. However, in the following 

special two cases, the components number can be obtained by discussion of the length of 

central circuits. We give some examples to elucidate our method and algorithm for 

calculating the component number. 

Figure 8. I (3, 0)-92-hedral links with 1 and 3-tangles
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In the first type polyhedra, the face number are Fn = f5+f6+f3 = 12+10(a2+2a)+20(a+1)2, 

then the edge number E = [5×12+6×10(a2+2a)+3×20(a+1)2] / 2 = 60(a+1)2  are given by 

equation (3), and the vertices number V = 30(a+1)2 are given by equation (2), where a 

denotes a natural number. In this case, each CC pass through 5 pentagons, 5a hexagons and 

5(a+1) triangles. Hence, the average length is also the length of all circuits is 10(a+1), then 

the component number Nc = 60(a+1)2/10(a+1) = 6(a+1).    

Figure 9. Two type of patches which are bounded by central circuits with different lengths.  
(a) A patch of I(3,0)-122-hedron with border of 5 hexagons, 5 pentagons and 10 triangles. 
(b) A patch of I (3, 0)-92-hedron with border of 6 hexagons, 3 pentagons and 9 triangles.  

If a = 1, using odd tangles to cover 120 vertices of Ih (3, 0)-122-hedron, then connect 

them will result a series of nested networks with 120(2n+1) crossings. Thanks to the 

invariability of circuit length, we are only demanded to calculate the length of any one of 

central circuits, then the component number of links will be obtained. Using a diagram 

(Figure 9a) to show the patch of polyhedral graph, this is bounded by one of the central 

circuits. Each pentagon and hexagon occurs five times, and each triangle occurs ten times on 

a circuit, so the length of CC is 20. Furthermore, the component number is 12 and each pair of 

adjacent loops in the embedding has a linking number of 2n+1. The example of n = 1 is 

shown in Figure 10.  

In the second type polyhedra, the face number are Fn = f5+f6+f3=12+10(a2+a) 

+20(a2+a+1), then the edge number E = 60(a2+a+1), and the vertices number are V = 

30(a2+a+1). In this case, each CC pass through 3 pentagons, 3(a+1) hexagons and 3(a+2) 
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triangles. Hence, the average length is 6(a+2), then the component number are Nc = 

10(a2+a+1)/ (a+2). If a = 1, using odd tangles to cover 90 vertices of Ih (3, 0)-92-hedron, then 

connect them will result a series of nested networks with 90(2n+1) crossings. The length of 

the CC is 18, which pass 3 pentagons, 6 hexagons and 9 triangles (Figure 9b). Therefore, the 

component number is 10 and the linking number of each pair of adjacent loops in the 

embedding is 2n+1 too. The example of n = 1 is shown in Figure11. 

Figure 10. I (3, 0)-122-hedral links with 3-tangles 

Figure 11. I (3, 0)-92-hedral links with 3-tangles 
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5. Conclusion 

As the increase of the number of tangle n, each link will take place a series of topological 

transformation and thus more polyhedral links will be gained. In summary, the polyhedral 

links constructed by even tangles are some simple knotted structures, which contain 5-rings 

and 6-rings such small cycles, but the odd tangles correspond to some warp and weft 

interwoven networks here, and sets up a new relationship between a 4-regular graph and its 

corresponding links. Therefore, these structures become more complex and the properties of 

links depend on the topology of polyhedra. The investigation of the component algorithm 

proves that the component numbers of our constructions are even. In fact, Corinne Cerf [33]

proved that every oriented alternating link with an even number of components is 

topologically chiral. After given an orientation, the chirality of these links is another 

important property, which has been discussed in paper [23]. 

Knotted networks, of substantial interest to bio-chemistry, have been realized in 

laboratory and nature. Therefore, the helical structure of metallo-organic intermediate and 

giant DNA strands may induce the formation of these mathematically rich entities. It also can 

be used to probe the possibility of crosslinking form for general types of viruses. 
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