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Abstract

A new methodology for understanding the construction of polyhedral links has been developed on the 

basis of 4-regular polyhedra and knot theory. In the method, we utilize uniform 2n-tangles (n is an integer) 

to cover all vertexes of Extended Goldberg polyhedra, and many infinite series of interlinked and 

interlocked architectures have been assembled. The growth rule of links with tangle of |n| = 1 and a class of 

topological transformation depending on the number of n are systematic enumerated. Our study reveals that 

these novel structures all have I symmetry and each belongs to a given topological configuration, D or L. 

Moreover, they provide some potential models for protein and DNA cages which have chirality.  

1. Introduction 

Polyhedral links, or chemically known as polyhedral catenanes, an uncommon feature of 

molecular architectures, have been the extraordinary topological objects of interest and study 

in recent decades [1-5]. Organic catenanes, which are formed by macrocycles, and DNA 

catenanes looped through circular single strand of DNA, have been synthesized in the 

laboratory [6-17]. At the same time, the theoretical treatment and description of these non-trivial 

molecular structures were developed in the field of knot theory [18-22], which study and 
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quantization of configurations of simple closed curves in Euclidean 3-space. Taking 

inspiration from molecular entanglement in biology, as seen in the topologically linked 

72-hedral protein rings of capsid [23], Qiu et al [24, 25] constructed some beautiful links based on 

Goldberg polyhedra and carbon nanotubes. Now, the underling topological principle of 

chemical catenanes brings new challenges and opportunities for making connections between 

mathematics and chemistry. 

From biology to chemistry, polyhedra are the well known high-symmetry fashions to 

mimic many substances in nature [26, 27]. Hence, their regular property allows them to serve as 

possible candidate backbones for chemical catenanes. Here, we focus on two series of novel 

geometrical objects with icosahedral symmetry [28-31]. Rotate-Extended polyhedra, defined as 

? (3, 0) –Goldberg polyhedra, and Stretch-Extended Goldberg, defined as ? (3, 4) –Goldberg 

polyhedra. Their numbers of vertices and edges, respectively, satisfy the following equations:  

)(30 22 khkhVR ++= � )(60 22 khkhVS ++= �

2)(30 22 +++= khkhFR � 2)(60 22 +++= khkhFS . 

Where h and k are two integers and 00 ≥≥< kh and have been defined as a two 

dimensional Goldberg vector G = (h, k) [32]. In particular, these 4-regular polyhedra, i.e. four 

edges meet at each vertex, can be used to describe the surfaces of icosahedral capsids [33, 34]

which are not covered by Goldberg polyhedra. 

This article combines tangle theory [1] with Extended Goldberg polyhedra, and proposes 

a new approach for description of polyhedral links with I symmetry. Tangles, the fundamental 

unit of knotted and catenated topologies, can be divided into odd and even types depending on 

their half-twist numbers. We find that structures obtained by even tangles can find their 

application in molding biomolecules, thus, this paper will consider only even tangles. 

Research on the chiral criterion and topological transformation of these polyhedral links may 

aids in understanding the molecular design and assembly principle of protein catenanes, and 

offers a new route to DNA polyhedral catenanes. Moreover, these chiral polyhedral links may 

provide some theoretical models for icosahedral viral capsids [35], which possess handedness. 

For convenience, we denote Goldberg polyhedra and their links by GP and GPL, 
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Rotate-Extended Goldberg polyhedra and their links by REGP and REGPL, Stretch-Extended 

Goldberg polyhedra and their links by SEGP and SEGPL. 

2. Fabrication 

Definition 1. In knot or link diagrams D, a tangle A is a region in the projection plane 

with four emerging arcs surrounded by a circle. Furthermore, there are four points where the 

knot or link crosses the circle as occurring in the four fixed directions {NW, NE, SW, SE}. We 

define that A as a positive tangle when it is resulted by left-handed twists, and it is considered 

to be negative when it has only right-handed twists. 

It appears that the tangle embedding theory has been applied to model DNA 

recombination and protein-DNA binding successfully [36-38]. From the point of view of 

molecular design, tangles can also be used as the building blocks of knot and link projections, 

thus, the identical unit tangles can be assembled into predesigned topologies. In our approach 

of which defined as tangle composition, the construction of polyhedral links will satisfy the 

following three processes: 

(i) Tangles selection. Using even (2n) tangles as the fundamental unit to replace all the 

four-valent vertices of EGP, and the absolute value |n| denotes that the number of half-twists 

which are put in a tangle. Thus, there are some full-turn twists contained in an even tangle, 

and the overpass crossing and underpass crossings appear in pair wise. Figure 1 illustrates 

four different tangles with n of ±1 and ±2. In general, there are two crossings emerging when 

n = ±1 and four crossings emerging when n = ±2. 

(ii) Tangles position. We define the external space Se are the regions between the end of 

the NW and SW or NE and SE. When fixing the tangles on vertices, the four arcs will 

superpose the four edges coming out from the same vertex, then ensure Se will distribute on 

the 3-gonal faces of a REGP or 4-gonal faces of a SEGP. 

(iii) Tangles connection. Connecting the arc end of a tangle to the arc end of four 

adjoining tangles along edges, then some alternating EGPLs and SGPLs with even tangles at 

their vertices are obtained. 
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Figure 1. Even tangles obtained by 2n half-twists  

As a result, 5-member and 6-member rings will be occurred in EGPL, and 5-member, 

6-member and 3-member rings are interwound with even number of crossings in SGPL. Thus, 

for two infinite series polyhedral links, the number of components CR and CS, and the number 

of crossings NR and NS can be easy calculated by following equations: 

2)(10 22
65 +++=+= khkhRRC R ; 2)(30 22

365 +++=++= khkhRRRC S ; 

)(602 22 khkhnnVN R ++== ; )(1202 22 khkhnnVN S ++== . 

In addition, the pattern of twists in tangles of polyhedral links destroys the reflection 

operations of icosahedral symmetry, and then these links only retain the rotational symmetry 

of icosahedrons. It means that they are belonged to the point group I, therefore, chiral.

Definition 2. Given an oriented link K, the linking number L (K) is one half the sums of 

the characteristics (i.e., the crossing number +1 or -1 which was notated by reference [1]) of 

the intercomponent crossings. It has been defined that the link as D configuration if L (K) > 0, 

whereas the link is L configuration if L (K) < 0 [39]. 

 The linking number is an invariant of K, thus, L (K) can be used to help us to determine 

the chirality of the orientated link. According to our design, if all rings are given the same 

orientation, the linking number of a GPL corresponds to the number of full turn twists at all 

vertexes. By definition 1 and 2, we can conclude that the positive tangles yield D polyhedral 

links, whose linking numbers are positive, if, conversely, the negative tangles will yield L
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polyhedral links, whose linking numbers are negative. These two different configurations 

cannot be interconvert by continuous deformation. Thus, they exit as a pair of topological 

enantiomorphs. 

3. The links with 2 and -2 tangle 

In this section, the results of links with 2 and -2 tangle (|n| = 1) is systematic enumerated 

in "racemic" pairs. In addition, graphic illustrations of these topological structures are 

presented into two classes depending on the symmetry of original polyhedra. In particular, 

these polyhedral links may provide some potential models for icosahedral viral capsids which 

possess chirality. Such as the handedness of herpes simplex virus capsid is not caused by its 

nonskew surface lattice, and it may be generated from the entanglement of side-chain amino 

acid each other by covalently bond to hook the asymmetric triplexes, which provide a 

particular stabilization mechanism [35]. Furthermore, each viral capsid favors a unique 

chirality due to the properties of spontaneous broken symmetry, which are of considerable 

biological interest. Thus, capsids with levo and dextro form may be characterized by L and D 

polyhedral links, respectively. 

3.1. The first type polyhedral links 

The symmetry of EGP depends on Goldberg vector G = (h, k) [32]. When G = (h, 0) or (h, 

h), the corresponding series of achiral EGP have the full Ih point group, then the type I EGPL

with only rotational point group I are generated by our method above. Therefore, the mirror 

plane of polyhedra is disappeared in this process and the chirality is caused. The first three 

members of this type EGPL are depicted in the following parts.  

The first case, if  

322)0011(302)(30),0,1( 2222 =++×+=+++== khkhFG

and  

622)0011(602)(60 2222 =++×+=+++= khkhF , 
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then the I (3,0)-32 and the I (3,4)-62-polyhedral links are obtained (Figure 2, 3). They all exist 

as topological enantiomorphs, of n = 1, the corresponding configuration is D, whereas of n = 

-1, the corresponding configuration is L. For the I (3, 0)-32 - polyhedral link, the number of 

components and crossings are     

122)0011(10 22 =++×+=RC , 60)0011(60 22 =+×+=RN . 

For the I�3,4�-62 - polyhedral link, the number of components and crossings are  

322)0011(30 22 =++×+=SC , 120)0011(120 22 =+×+=SN . 

Figure 2. I (3, 0)-32-hedral links. The D configuration link derived from a polyhedron by using 2 tangles to 
cover vertexes; the L configuration link derived from a polyhedron by using -2 tangles to cover vertexes. 

The orientations of all rings are same. 

Figure 3. I (3, 4)-62-hedral links with |2| tangles of D and L configuration 
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If  

922)1111(30),1,1( 22 =++×+== FG

and  

1822)1111(60 22 =++×+=F , 

then the I (3, 0)-92 and the I (3, 4)-182-polyhedral links are obtained (Figure 4, 5). For the I 

(3, 0)-92-polyhedral link, the crossing number NR is 180, the component number CR is 32, 

which includes 12 pentagonal rings and 20 hexangular rings. By rings, we mean an unknotted 

closed polygonal curve. For the I (3, 4)-182-polyhedral link, the crossing number NR is 180, 

the component number CR is 32, which include 12 pentagonal, 20 hexangular and 60 

triangular rings.  

Figure 4. I (3, 0)-92-hedral links with |2| tangles of D and L configuration 

   

   Figure 5. I (3, 4)-182-hedral links with |2| tangles of D and L configuration 
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If  

1222)0022(30),0,2( 22 =++×+== FG

and  

2422)1111(60 22 =++×+=F , 

then the I (3, 0)-122 and the I (3, 4)-242-polyhedral links are obtained (Figure 6, 7). For the I 

(3, 0)-122-polyhedral link, the crossing number NR is 240, the component number CR is 42, 

which include 12 pentagonal rings and 30 hexangular rings. For the I (3, 4)-242-polyhedral 

link, the crossing number NR is 480, the component number CR is 122, which includes 12 

pentagonal, 30 hexangular and 180 triangular rings.

Figure 6. I (3, 0)-122-hedral links with |2| tangles of D and L configuration 

Figure 7. I (3, 4)-242-hedral links with |2| tangles of D and L configuration 
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3.2. The second type polyhedral links 

In contrast with the type I EGPL, the series of type II polyhedral links are obtained from 

EGP with I symmetry, which is related to Goldberg vector G (h, k), where 0 < h < k. Hence, 

the symmetry remains unchanged and the chirality is maintained in this process. The 

following are some examples of the type II EGPL. 

 If  

2122)1122(302)(30),1,2( 2222 =++×+=+++== khkhFG

and  

4222)2122(602)(60 2222 =++×+=+++= khkhF , 

the I (3, 0)-212 and I (3, 4)-422-polyhedral links are obtained (Figure 8, 9). For the I (3, 

0)-212-polyhedral link, its component number CR = 10(22+2�1+12)+2 = 72, and its crossing 

number NR = 60(22+2�1+12) = 420. For the I (3, 4)-422-polyhedral link, its component 

number CS = 120(22+2�1+12)+2 = 212, and its crossing number NS = 120(22+2�1+12) = 

840. 

Figure 8. I (3, 0)-212-hedral links with |2| tangles of D and L configuration 
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Figure 9. I (3, 4)-422-hedral links with |2| tangles of D and L configuration 

If G = (3, 1), F = 30(32+3×1+12)+2 = 392 and F = 60(32+3×1+12)+2 = 782, then the I 

(3,0)-392 and I (3,4)-782-polyhedral links are obtained (Figure 10, 11). For the I (3, 

0)-392-polyhedral link, the crossing number NR = 780, the component number CR = 132, 

which are nested cages interlocked by 12 pentagonal rings and hexangular rings. For the I (3, 

4)-782-polyhedral link, the crossing number NS = 1560, the component number CS = 392, 

which are nested cages interlocked by 12 pentagonal, 120 hexangular and 260 triangular 

rings. 

Figure 10. I (3, 0)-392-hedral links with |2| tangles of D and L configuration 
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Figure 11. I (3, 4)-782-hedral links with |2| tangles of D and L configuration 

4. The topological transformation of links 

Symmetry plays an important role as the guiding principle for the design of novel 

molecules, thus, the point symmetry group I herein is an invariant characteristic and criteria 

for topological chirality of a polyhedral link. It is shown that if we retain the rigidly 

presentation with I symmetry, such a transformation as alter the number of tangle 2n leads to 

many other infinite series of links whose members are different isotopy types. Such as n =�2, 

whose link graphs is illustrated in Figure 12, by using tangles with two full twists to cover 

vertexes of polyhedra, and the obtained structures are not topological equivalent to the links 

with one full twist when n =�1. As a conclusion, the topological transformation has the 

following distinctive features: 

(i) The 2n tangle at each vertex positively adds a same configurationally full twist at a 

time, such the configuration of vertexes will transfers to every edges step by step and form 

double-helix structures finally. This change means that nicks one strand of the tangle open, 

twists it once around the other strand, and reglues the two ends together. Assuming the axis 

still lies in a plane, we have increased or decreased each of L (K) by one operation.

This mathematical phenomenon also has interesting implications for biochemistry, and 

nature gets around this problem by providing enzymes called topoisomerases. Suppose now 

that an enzyme add or remove 10.5 base pairs per twist after one DNA recombination. If 

considering of tangled DNA as a ribbon, then the central line of the ribbon is referred to as the 
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helix axis of the DNA molecule-the polyhedral backbone. It has been proved that the linking 

number L(K) can be split into two geometric properties called the average writhe Wr and the 

twist Tw, which is expressed by the White equation L(K) = Wr +Tw [22]. In our final models, 

the linking number L (K) is equal to the twist Tw, then Wr = 0. Thus, a polyhedral link is not 

the supercoiling of the DNA strands and the helix axis (polyhedral backbones) can been 

transformed into a plane graph. 

Figure 12. The plane graphs of I (3, 0)-32-hedral links with |4| tangles 

(ii) The external space Se will be gradually shrinking, in general, Se which distribute on 

the 3-gonal faces shrink into vertex conformation of three branches, and Se which distribute on 

the 4-gonal faces collapse into vertex conformation of four branches. Finally, if n is large 

enough, the backbone structures of polyhedral links will undergo deformations, which named 

“triangle -collapsing” and “quadrangle- collapsing”, i.e. the inverse of truncation of 3-regular 

and 4-regular vertices. In general, a REGPL will be transformed into a new form of GPL, and 

a SEGRL will be transformed into a new form of REGPL. Two examples of these new nested 

structures, which are illustrated in Figure 13, are obtained by the topological transformation 

from I (3, 0)-32 and I (3, 4)-62- polyhedral links. During the process, all the polyhedral links 

preserve their absolute configuration, in these two cases, D.  

It is interesting to note that adding the different base-pair sequences to these pure 

mathematical structures, the resulting constructions are similar to DNA catenanes. Recently, 

some large 3-dimension structures such as dodecahedra (12-hedron) and buckyball 
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(32-hedron) have been designed to self-assembly by DNA [17]. Further considering this 

topological transformation with the augmentation of twist number n, we see that the 

polyhedral backbone of links will undergo a geometric deformation in agreement with the 

topological requirement, then spring into some infinite series of new polyhedral links. It 

means that this non-isotopic transformation may guide the experiment and suggested as a 

possible synthetic route, which is topology-support-geometry, i.e. the geometric backbone of 

polyhedral links is decided by the predetermined topological structure of polyhedral links. 

   

Figure 13. (a) The 12-polyhedral links derived from I (3, 0)-32-polyhedral links  

(b) The I (3, 0)-32-polyhedral links derived from I (3, 4)-62-polyhedral links 

5.  Conclusions 

Research on even tangles develops a new method to construct the novel interlocked 

cages based on Extended Goldberg polyhedra, which are 4-regular. The new kinds of 

interlinked links are effective complements for tabulating the link table. Each of the 

polyhedral links can exists in two mirror image forms, denoted D and L, and it is usually true 

that they are analogous to some encountered in chemistry and biology. In chemistry, the chiral 

molecule is partitioned into two homochirality classes, denoted R and S, [ and \, etc. In 

biology, the viral capsid may be one of them and a new medicinal model is the other. 

Particularly, these polyhedral links have I symmetry and therefore are said to possess 

topological chirality. Hence, they provide some potential models for icosahedral capsids, 
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which possess chirality. In addition, with the increase of the tangle number of 2n, or the twist 

number of n, the polyhedral links will take place a class of non-isotopy transformation. These 

topological transformations satisfy the icosahedral symmetry group and show interesting 

mathematical properties and some possible bio-chemical significance. Covering the 

theoretical transformation may be one of ways in understanding the experimental synthesis of 

DNA catenanes.  

Odd tangles, other building blocks of polyhedral links, will lead to more complex 

topological structures. The research of those constructions is of importance in understanding 

the molecular design of polehedral links from tangles and we shall discuss them in detail 

elsewhere. 
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