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Abstract

Resistance distance was introduced by Klein and Randić. The
Kirchhoff index Kf(G) of a graph G is the sum of resistance distances
between all pairs of vertices. In this paper, we give the second maximal
and minimal Kirchhoff indices of unicyclic graphs and characterize the
extremal graphs.

1 Introduction

In 1993, Klein and Randić [1] defined a new distance function named resis-

tance distance on the basis of electrical network theory. The term resistance

distance was used because of the physical interpretation: one imagines unit
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resistors on each edge of a connected graph G with vertices v1, v2, · · · , vn and

takes the resistance distance between vertices vi and vj of G to be the effec-

tive resistance between vertices vi and vj, denoted by rG(vi, vj). Recall that

the conventional distance between vertices vi and vj, denoted by dG(vi, vj),

is the length of a shortest path between them and the famous Wiener index

[2] is the sum of distances between all pairs of vertices; that is,

W (G) =
∑
i<j

d(vi, vj).

Analogue to Wiener index, the Kirchhoff index [3] is defined as

Kf(G) =
∑
i<j

r(vi, vj).

Similar to the conventional distance, the resistance distance is also intrin-

sic to the graph, not only with some nice purely mathematical and physical

interpretations [4,5], but with a substantial potential for chemical applica-

tions. In fact, for those two distance functions, the shortest-path might

be imagined to be more relevant when there is corpuscular communication

(along edges) between two vertices, whereas the resistance distance might be

imagined to be more relevant when the communication is wave- or fluid-like.

Then that chemical communication in molecules is rather wavelike suggests

the utility of this concept in chemistry. So in recent years, the resistance dis-

tance was much studied in the chemical literature [6-17]. It is found that the

resistance distance is closely related with many well known graph invariants,

such as the connectivity index, the Balaban index, etc. This further suggests

the resistance distance is worthy of study.

The resistance distance is also well studied in mathematical literatures.

Much work has been done to compute Kirchhoff index of some classes of

graphs, or give some bounds for Kirchhoff index of graphs and characterize

extremal graphs [10,15,18].

For instance, unicyclic graphs with extremal Kirchhoff index are charac-

terized and sharp bounds for Kirchhoff index of such graphs are obtained

[19].
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In this paper, we give the second maximal Kirchhoff index among n-vertex

unicyclic graphs and characterize extremal graphs as well.

2 Some Lemmas

For convenience, we represent a unicyclic graph G with the unique cycle

Cl = v1v2 · · · vlv1 as G = U(Cl; T1, T2, · · · , Tl), where Ti is the component of

G − E(Cl) containing vi, 1 ≤ i ≤ l. Obviously, Ti is a tree rooted at vi, see

Figure 1(a). We say Ti trivial if it is an isolated vertex.

Let U(n, l) be the set of all unicyclic graphs with n vertices and the

unique cycle Cl, Sl
n the unicyclic graph obtained from cycle Cl by adding

n− l pendant edges to a vertex of Cl and P l
n the unicyclic graph obtained by

identifying one end vertex of path Pn−l+1 with any vertex of Cl, see Figure

1(b)(c). It is obvious that Sn
n = P n

n = Cn.

....

v1

v2vl

T1

T2Tl

T3

v3

...Cl

Pn−l+1

U(Cl; T1, T2, · · · , Tl)

Figure 1. The graphs U(Cl; T1, T2, · · · , Tl), P l
n and Sl

n.

.....

}︷ ︸︸ ︷
Cl n − lCl

P l
n Sl

n

For a tree, the Kirchhoff index coincides with the Wiener index. It was

shown that Pn and Sn have the maximal and minimal Kirchhoff index among

all trees with n vertices, respectively.

Lemma 2.1([20]). Let T be a n-tree different from Pn and Sn. Then

Kf(Sn) < Kf(T ) < Kf(Pn).
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In [19], it was shown that P l
n and Sl

n have the maximal and minimal

Kirchhoff index among U(n, l), respectively.

Lemma 2.2([19]). Let G ∈ U(n, l).

(i) If G �= P l
n, then Kf(G) < Kf(P l

n);

(ii) If G �= Sl
n, then Kf(G) > Kf(Sl

n).

Lemma 2.3([1]). Let x be a cut vertex of a connected graph and a and

b be vertices occurring in different components which arise upon deletion of

x. Then

rG(a, b) = rG(a, x) + rG(x, b).

Lemma 2.4. Let G1 and G2 be two connected graphs with exactly one

common vertex x, and G = G1 ∪ G2. Then

Kf(G) = Kf(G1)+Kf(G2)+(|V (G1)|−1)Kfx(G2)+(|V (G2)|−1)Kfx(G1)

where Kfx(Gi) =
∑

y∈V (Gi)
rGi

(x, y) is the sum of resistance distances between

x and other vertices of Gi, i = 1, 2.

Proof. From the definition of Kirchhoff index and Lemma 2.3, we have

Kf(G)
=

∑
i<j

rG(vi, vj)

= Kf(G1) + Kf(G2) +
∑

a∈V (G1)−{x}

∑
b∈V (G2)−{x}

rG(a, b)

= Kf(G1) + Kf(G2) +
∑

a∈V (G1)−{x}

∑
b∈V (G2){x}

(rG(a, x) + rG(x, b))

= Kf(G1) + Kf(G2) + (|V (G1)| − 1)Kfx(G2) + (|V (G2)| − 1)Kfx(G1).

... ...G G GT
T0 Px x x

G1 G2 G3
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... ...G x S

G′
3

G GT ′ T ′
0x x

G′
1 G′

2

Figure 2.

Lemma 2.5. (i) If G1, G2 and G3 are obtained from a connected graph

G by attaching T , T0 and P to the vertex x of G, respectively, as shown in

Figure 2, where T , T0 and the path P are different trees rooted at x with the

same size. Then

Kf(G1) < Kf(G2) < Kf(G3).

(ii) If G′
1, G′

2 and G′
3 are obtained from a connected graph G by attaching

T ′, T ′
0 and S to the vertex x of G, respectively, as shown in Figure 2, where

T ′, T ′
0 and the star S are different trees rooted at x with the same size. Then

Kf(G′
1) > Kf(G′

2) > Kf(G′
3).

Proof. Since Kirchhoff index and Wiener index of trees coincide, we

have (i) Kfx(T ) < Kfx(T0) < Kfx(P ) and Kf(T ) < Kf(T0) < Kf(P ); (ii)

Kfx(T
′) > Kfx(T

′
0) > Kfx(S) and Kf(T ′) > Kf(T ′

0) > Kf(S). Lemma 2.5

is a immediate result of Lemma 2.4.

Lemma 2.6. (i) Let G be a connected graph with two pendant paths

P1 = u1u2 · · ·ur and P2 = v1v2 · · · vt, and r ≥ 2, t ≥ 2, depicted in Figure

3(i). If Kfvt(G) ≥ Kfur(G), then

Kf(G′) > Kf(G)

where G′ = G − urur−1 + vtur.

(ii) Let G be a connected graph with two nontrivial stars S1 and S2

attached at their centers x and y, and x1 and y1 are leaves of S1 and S2,

respectively, depicted in Figure 3(ii). If Kfx1(G) ≤ Kfy1(G), then

Kf(G′) < Kf(G)
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where G′ = G − yy1 + xy1.

..... .....
ur

u1 v1 vtur−1

(i)

.....

.....G G

(ii)

Figure 3.

x

y

x1

y1

Proof. (i) For u, v ∈ V (G) − {ur}, we have rG(u, v) = rG′(u, v), and

Kfur(G
′) = Kfvt(G) − rG(ur, vt) + |V (G)| − 1 > Kfvt(G) ≥ Kfur(G).

So, Kf(G′) = Kf(G) − Kfur(G) + Kfur(G
′) > Kf(G).

(ii) For any u, v ∈ V (G)− {y1}, rG(u, v) = rG′(u, v). And rG(x1, y1) > 2,

Kfy1(G
′) = Kfx1(G

′) = Kfx1(G) − rG(x1, y1) + 2 < Kfx1(G) ≤ Kfy1(G).

So, Kf(G′) = Kf(G) − Kfy1(G) + Kfy1(G
′) < Kf(G).

3 The second maximal Kirchhoff index of uni-

cyclic graphs

Theorem 3.1. Let G ∈ U(n, l), 3 ≤ l ≤ n − 3 and G �= P l
n.

(i) If n ≥ 8, then Kf(G) ≤ Kf(H0) with the equality if and only if

G ∼= H0 (see Figure 4(3));

(ii) If n = 7, then Kf(G) ≤ Kf(H0) = Kf(H[ l
2
]+1) with the equality if

and only if G ∼= H0 or G ∼= H[ l
2
]+1;

(iii) If n = 6, then Kf(G) ≤ Kf(H1) with the equality if and only if

G ∼= H1.

Proof. Suppose that G = U(Cl; T1, T2, · · · , Tl) has the second maximal

Kirchhoff index among U(n, l).

First, at most two of T1, T2, · · · , Tl are not trivial.
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Otherwise, without loss of generality, we assume that T1, T2, T3 are not

trivial. They must be paths from Lemmas 2.4, 2.2(i) and 2.1. Let T1 =

v1a2a3 · · · ar, T2 = v2b2b3 · · · bs, T3 = v3c2c3 · · · ct. If Kfar(G) ≥ Kfbs(G),

then

Kf(G) < Kf(G − bs−1bs + arbs) < Kf(P l
n)

by Lemma 2.6. If Kfar(G) < Kfbs(G), we also have from Lemma 2.6

Kf(G) < Kf(G − ar−1ar + bsar) < Kf(P l
n).

This contradicts the choice of G.

Next, if exactly two of T1, T2, · · · , Tl are not trivial, without loss of gen-

erality, we assume that T1 and Ti are not trivial, 1 < i ≤ l. Then they are

paths from Lemmas 2.4, 2.2(i) and 2.1, i.e., G is the graph shown in Figure

4(1). Let T1 = v1a2 · · · ar and Ti = vib2 · · · bs, where r + s + l = n + 2, r ≥ 2

and s ≥ 2. From Lemma 2.6(i), we have r = 2 or s = 2. Without loss of

generality, assume that s = 2, i.e., G = Hi is the graph shown in Figure 4(2).

Then r + l = n. Calculating immediately by Lemma 2.4, we have

Kf(Hi) = Kf(Cl) + Kf(Pr) + Kf(P2) + (n − l)Kfv1(Cl)
+(n − r)Kfv1(Pr) + (n − 2)Kfvi

(P2) + (r − 1)rCl
(v1, vi)

= Kf(Cl) + Kf(Pn−l) + 1 + (n − l)Kfv1(Cl)
+1

2
r(r − 1)(n − r) + (n − 2) + (r − 1)rCl

(v1, vi)
= Kf(Cl) + (n − l)Kfv1(Cl) + Kf(Pn−l) + (n − 1)

+1
2
(n − l)(n − l − 1)l + (n − l − 1)rCl

(v1, vi)

where

rCl
(v1, vi) =

(i − 1)(l − i + 1)

l
≤

⎧⎪⎨
⎪⎩

l
4
, if l is even;

(l−1)(l+1)
4l

, if l is odd

with the equality if and only if i = [ l
2
] + 1 or i = [ l+1

2
] + 1.
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... Clv1a2ar ar−1 b2

vi

(1)

(2) Hi

...Cl v1

T0

(3) H0

... ...Clv1 vi
b2 b3 bsa2a3ar

Figure 4.

If exactly one of T1, T2, · · · , Tl is not trivial, without loss of generality, we

assume that T1 is not trivial. Since G �= P l
n, T1 �= Pn−l+1. From Lemma 2.4

and Kfv1(T1) ≤ Kfv1(T0), we know that G is the graph H0 shown in Figure

4(3).

Kf(H0) = Kf(Cl) + Kf(T0) + (n − l)Kfv1(Cl) + (l − 1)Kfv1(T0)
= Kf(Cl) + Kf(Pn−l) + 1

2
(n − l − 1)(n − l − 2) + (n − l + 1)

+(n − l)Kfv1(Cl) + 1
2
(n − l + 2)(n − l − 1)(l − 1).

So, we only need to compare the Kirchhoff indices of Hi and H0.

I. If l is even, then l ≥ 4, rCl
(v1, vi) ≤ rCl

(v1, v l
2
+1) = 1

4
l and

Kf(Hi) − Kf(H0)
≤ Kf(H[ l

2
]+1) − Kf(H0)

= −4 + 2n − nl + l2 + (n − l − 1)rCl
(v1, v l

2
+1)

= −4 + 2n − l
4
− 3nl

4
+ 3l2

4
.

Let f(l) = −4 + 2n − l
4
− 3nl

4
+ 3l2

4
. We have

f(4) = 7 − n and f(n − 3) =
7

2
− n

2
.

It follows that

(i) Kf(Hi) < Kf(H0) for n ≥ 8;

(ii) Kf(Hi) ≤ Kf(H0) = Kf(H l
2
+1) for n = 7.

II. If l is odd and n ≥ 8, then
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rCl
(v1, vi) ≤ rCl

(v1, v[ l
2
]+1) = rCl

(v1, v[ l+1
2

]+1) = (l−1)(l+1)
4l

< l+1
4

.

For l = 3, we have

Kf(Hi) − Kf(H0)
≤ Kf(H[ l

2
]+1) − Kf(H0) = Kf(H[ l+1

2
]+1) − Kf(H0)

= −4 + 2n − nl + l2 + (n − l − 1)rCl
(v1, v[ l

2
]+1)

= −4 + 2n − nl + l2 + (l+1)(l−1)
4l

(n − l − 1)
= 7

3
− n

3
.

For l > 3, we have

Kf(Hi) − Kf(H0)
≤ Kf(H[ l

2
]+1) − Kf(H0) = Kf(H[ l+1

2
]+1) − Kf(H0)

= −4 + 2n − nl + l2 + (n − l − 1)rCl
(v1, v[ l

2
]+1)

< −4 + 2n − nl + l2 + l+1
4

(n − l − 1)

= −17
4

+ 9n
4
− l

2
− 3nl

4
+ 3l2

4
.

Let g(l) = −17
4

+ 9n
4
− l

2
− 3nl

4
+ 3l2

4
. Then g(5) = 12− 3n

2
and g(n−3) = 4−n

2
.

Therefore, Kf(Hi) < Kf(H0) for n ≥ 8.

III. If l is odd, and n = 6, 7, then l = 3 since 3 ≤ l ≤ n − 3. We have

Kf(H[ l
2
]+1) − Kf(H0) = Kf(H[ l+1

2
]+1) − Kf(H0)

= −4 + 2n − nl + l2 + (n − l − 1)rCl
(v1, v[ l

2
]+1)

= −4 + 2n − nl + l2 + (l+1)(l−1)
4l

(n − l − 1)
= 7

3
− n

3
.

It follows that (i) Kf(Hi) ≤ Kf(H0) = Kf(H[ l
2
]+1) for n = 7 and l = 3;

(ii) Kf(H0) < Kf(H[ l
2
]+1) for n = 6 and l = 3.

Corollary 3.2. For n ≥ 7, the second maximal Kirchhoff index among

U(n, l) is

Kf(H0) = 3 − 4n

3
+

n3

6
+

l

4
+

nl

2
− l2

2
− nl2

3
+

l3

4

Proof. From Theorem 3.1 and Lemma 2.5(i), we know that the second

maximal Kirchhoff index among U(n, l) is Kf(H0) for n ≥ 7.

Note that Kf(Cl) = l3−l
12

, Kfv1(Cl) = l2−1
6

and Kf(Pn−l) = 1
6
((n − l)3 −

(n − l)).
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From the proof of Theorem 3.1, we have

Kf(H0) = Kf(Cl) + Kf(Pn−l) + 1
2
(n − l − 1)(n − l − 2) + (n − l + 1)

+(n − l)Kfv1(Cl) + 1
2
(n − l + 2)(n − l − 1)(l − 1)

= 3 − 4n
3

+ n3

6
+ l

4
+ nl

2
− l2

2
− nl2

3
+ l3

4
.

4 The second minimal Kirchhoff index of uni-

cyclic graphs

Theorem 4.1. If G ∈ U(n, l), 3 ≤ l ≤ n − 3 and G �= Sl
n, then Kf(G) ≥

Kf(F2) with the equality if and only if G = F2 (see Figure 5).

Proof. Suppose that G = U(Cl; T1, T2, · · · , Tl) has the second maximal

Kirchhoff index among U(n, l).

First, at most two of T1, T2, · · · , Tl are not trivial.

Otherwise, we may assume that T1, T2, T3 are not trivial. They must

be stars with centers v1, v2, v3, respectively, from Lemmas 2.4, 2.2(ii) and

2.1. Let V (T1) = {v1, a2, a3, · · · , ar}, V (T2) = {v2, b2, b3, · · · , bs}, V (T3) =

{v3, c2, c3, · · · , ct}. Without loss of generality, we assume that Kfa2(G) ≤
Kfb2(G), then

Kf(G) > Kf(G − v2b2 + v1b2) > Kf(Sl
n)

by Lemma 2.6(ii). This contradicts the choice of G.

Next, if exactly two of T1, T2, · · · , Tl are not trivial, without loss of gen-

erality, we assume that T1 and Ti are not trivial, 1 < i ≤ l. Then they

are stars with centers v1, vi, respectively, from Lemmas 2.4, 2.2(ii) and 2.1,

i.e., G is the graph shown in Figure 5(1). Let V (T1) = {v1, a2, a3, · · · , ar},
V (Ti) = {vi, b2, b3, · · · , bs}, where r + s + l = n + 2, r ≥ 2 and s ≥ 2. From

Lemma 2.6, we have r = 2 or s = 2. Without loss of generality, assume

that s = 2, i.e., G = Fi is the graph shown in Figure 5(2). Then r + l = n.

Calculating immediately by Lemma 2.4, we have

Kf(Fi) = Kf(Cl) + (n − l)Kfv1(Cl) + (n − l − 1)rCl
(v1, vi)

+(n − 1)(n − l)

where

rCl
(v1, vi) =

(i − 1)(l − i + 1)

l
≥ l − 1

l
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and Kf(Fi) ≥ Kf(F2) with the equality if and only if i = 2 or i = l.

Clv1
b2

vi

(2) Fi

Cl v1

T0

(3) F0

...
...

...
...

a2

ar

b2

bs

a2

ar

(1)

Clv1 vi

Figure 5.

If exactly one of T1, T2, · · · , Tl is not trivial, without loss of generality, we

assume that T1 is not trivial. Since G �= Sl
n, T1 �= Sn−l+1. From Lemma 2.4

and Kfv1(T1) ≥ Kfv1(T0), we know that G is the graph F0 shown in Figure

5(3).

Kf(F0) = Kf(Cl) + (n − l)Kfv1(Cl) + n(n − l) + l − 3.

Note that F2
∼= Fl, we only need to compare Kf(F2) and Kf(F0).

Kf(F2) − Kf(F0) = −1

l
− n

l
− l + 4 < 0

since 3 ≤ l < n.

So, F2 is the unique graph with the second minimal Kirchhoff index among

U(n, l) from Lemma 2.5(ii).

Using Kf(Cl) = l3−l
12

and Kfv1(Cl) = l2−1
6

, we have

Corollary 4.2. For n ≥ 6, the second minimal Kirchhoff index among

U(n, l) is

Kf(F2) = − 1

12
l3 +

1

6
nl2 − nl +

1

12
l − n

l
+

1

l
+ n2 − 1

6
n.
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