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Abstract

The Wiener index is equal to the sum of distances between all pairs of vertices of the
underlying (connected) graph. The edge-Wiener index is conceived in an analogous manner
as the sum of distances between all pairs of edges of the underlying (connected) graph.
Several possible distances between edges of a graph are considered and, according to these,
the corresponding edge-Wiener indices defined. Several of these edge-Wiener indices are
mutually related, but two of them are independent novel structure descriptors. We report
explicit combinatorial expressions of these two edge-Wiener indices of some familiar graphs.
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INTRODUCTION

The ordinary (vertex) version of the Wiener index (or Wiener number) of a con-

nected graph G is the sum of distances between all pairs of vertices of G , that is,

W = W (G) =
∑

{u,v}⊆V (G)

d(u, v|G) (1)

where d(u, v|G) denotes the distance between the vertices u and v , and where the

other details are explained below.

This index was introduced by the chemist Harold Wiener [19] within the study

of relations between the structure of organic compounds and their properties. (In

the paper [19] the boiling points of alkanes was considered). The first mathematical

paper on W was published somewhat later [10]. Since then, numerous articles were

published in the chemical and mathematical literature, devoted to the Wiener index

and various methods for its calculation [1–9,11–18,20].

It seems that the edge version of the Wiener index has not been considered until

now. In analogy with Eq. (1), the edge-Wiener index needs to be defined as

We = We(G) =
∑

{e,f}⊆E(G)

d(e, f |G) (2)

where d(e, f |G) stands for the distance between the edges e and f of the graph G . In

order that formula (2) be meaningful, we have to specify what d(e, f |G) actually is.

In what follows we show that the “distance between edges” can be defined in several

non-equivalent ways. Therefore, we will have several non-equivalent edge-Wiener

indices.

BASIC DEFINITIONS

We first recall the general definition of distance.

Let S be any set. The distance in S is a mapping δ : S × S → R , such that for

any a, b, c ∈ S ,
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1◦ δ(a, b) ≥ 0

2◦ δ(a, b) = 0 ⇐⇒ a = b

3◦ δ(a, b) = δ(b, a)

4◦ δ(a, b) + δ(b, c) ≥ δ(a, c) .

Let G be a graph, and V (G) , E(G) be the sets of its vertices and edges, respec-

tively. Throughout this paper we suppose that G is connected.

Definition 1. The distance between the vertices u, v ∈ V (G) is equal to the length

of (= number of edges in) a shortest path connecting u and v . This distance will be

denoted by d(u, v) or d(u, v|G) .

It is well known (and easy to verify) that d satisfies the conditions 1◦–4◦ .

The original Wiener index of a connected graph G is equal to the sum of distances

between all pairs of vertices of G , cf. Eq. (1). Because of property 2◦ , it is irrelevant

whether the summation in (1) includes the case u = v .

In order to arrive at the edge version of the Wiener index, Eq. (2), we need to

define the distance between edges. This can be done is several ways. Our first guess

is formulated in Definition 2.

Let L(G) be the line graph of G .

Definition 2a. The distance between the edges e, f ∈ E(G) is equal to the distance

between the vertices e, f in the line graph of G . We denote this distance by d0(e, f)

or d0(e, f |G) . Thus,

d0(e, f |G) = d(e, f |L(G)) . (3)

Definition 2b The edge-Wiener index pertaining to d0 , denoted by We0 , is

We0 = We0(G) =
∑

{e,f}⊆E(G)

d0(e, f |G) . (4)

The fact that the distance d0 between edges satisfies the conditions 1◦–4◦ is evident

from the relation (3). From Definition 2 it immediately follows that

We0(G) = W (L(G)) .
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ALTERNATIVE APPROACHES

Let e, f ∈ E(G) and let e = (u, v) , f = (x, y) .

Definition 3. d1(e, f) = min{d(u, x), d(u, y), d(v, x), d(v, y)} .

Definition 4. d2(e, f) = max{d(u, x), d(u, y), d(v, x), d(v, y)} .

Based on the above two definitions we conceive the following edge-versions of the

Wiener index:

We1 = We1(G) =
∑

{e,f}⊆E(G)

d1(e, f |G) (5)

and

We2 = We2(G) =
∑

{e,f}⊆E(G)

d2(e, f |G) . (6)

The summations on the right–hand sides of (5) and (6) embrace also the terms

with e = f . Because of d1(e, e) = 0 , in the case of We1 this is immaterial. However,

in view of d2(e, e) = 1 , this details is relevant in the case of We2 . If preferred, instead

of the We2 we may consider its variant:

W
∗

e2 = W
∗

e2(G) =
∑

{e,f}⊆E(G)

e�=f

d2(e, f |G) . (7)

Evidently, W ∗

e2 = We2−m , where m stands for the number of edges of the underlying

graph. In what follows we show that, from a mathematical point of view, the choice

W ∗

e2 happens to be better than We2 .

It should be pointed out that the distance–like quantities d1 and d2 are not true

distances, i. e., they do not satisfy the conditions 1◦–4◦ . To see this, consider the

following.

e

f

d1(e, f) = 0 , e �= f . Condition 2◦ is violated.

- 666 -



e f g

d1(e, f) = 0 , d1(f, g) = 0 , but d1(e, g) = 1 . Therefore, d1(e, f) + d1(f, g) = 0 <

d1(e, g) . Condition 4◦ is violated.

If e = f , then d2(e, f) = 1 , and condition 2◦ is violated.

We now proceed to amend the above difficulties.

Definition 5.

d3(e, f) =

{
d1(e, f) + 1 if e �= f

d1(e, f) if e = f .

Lemma 6. For all e, f ∈ E(G) , d3(e, f) = d0(e, f) .

Proof. Case 1 : e = f . Then d3(e, f) = d1(e, f) = 0 and also d0(e, f) = 0 .

Case 2 : e is incident to f . Then d3(e, f) = d1(e, f) + 1 = 0 + 1 = 1 . The edges

e and f correspond to adjacent vertices in L(G) . Therefore, d(e, f |L(G)) = 1 i. e.,

d0(e, f |G) = 1 and the equality in Lemma 6 holds.

Case 3 : e and f are independent edges:

e

f

u v

x y

Let d1(e, f) = k and therefore d3(e, f) = k + 1 . This means that the minimal

distance between the vertex pairs (u, x) , (u, y) , (v, x) , and (v, y) is k . Without loss

of generality, we assume that d(u, x) = k . If d(u, x) = k , then the (shortest) path

starting at u and ending at x possesses k edges. Then the (shortest) path starting

at edge e and ending at the edge f possesses k + 2 edges. The respective path in

L(G) possesses k + 2 vertices. Thus the length of this path (in L(G)) is k + 1 . Thus,

d(e, f |L(G)) = k + 1 , i. e., d0(f, g|G) = k + 1 . The equality in Lemma 6 holds. �

Corollary 7. The quantity d3 , defined via Definition 5, satisfies conditions 1◦–4◦

and is thus a true distance.
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Corollary 8. Let m be the number of edges of the graph G . Then,

We1(G) = We0(G) − 1

2
m(m − 1) .

Proof.

We1(G) =
∑

{e,f}⊆E(G)

d1(e, f |G)

=
∑

{e,f}⊆E(G)

e=f

d3(e, f |G) +
∑

{e,f}⊆E(G)

e�=f

[d3(e, f |G) − 1]

=
∑

{e,f}⊆E(G)

e=f

d0(e, f |G) +
∑

{e,f}⊆E(G)

e�=f

d0(e, f |G) −
(

m

2

)

=
∑

{e,f}⊆E(G)

d0(e, f |G) −
(

m

2

)
= We0 − 1

2
m(m − 1) . �

Corollary 9. We1(G) = W (L(G)) − m(m − 1)/2 .

It seems that it is not possible to “improve” the distance-like quantity d2 in a

manner similar to what we did with d1 . This is seen from the following examples:

e e e

f f f

d (e,f)=1

d (e,f)=2 d (e,f)=2 d (e,f)=2

d (e,f)=2d (e,f)=3
222

0 0 0

However, fortunately, there is a simple way out of the problem.

Definition 10.

d4(e, f) =

{
d2(e, f) if e �= f

0 if e = f .

Lemma 11. The quantity d4 satisfies the conditions 1◦–4◦ and is thus a true distance.

- 668 -



Proof. The fact that conditions 1◦–3◦ are obeyed is evident. In order to verify

that also 4◦ holds, we have to consider two cases. Let e = (u, v) , f = (x, y) , and

g = (p, q) .

Case 1 .

e

f

u v

x y

p qg

longest distance

longest distance

d2(e, f) = d(u, x) and d2(f, g) = d(x, p) . Then, evidently, the longest distance

between the vertices u, v and p, q is either d(u, x) + d(x, p) or smaller. Condition 4◦

holds.

Case 2 .

e

f

u v

x y

p qg

longest distance

longest distance

d2(e, f) = d(u, x) and d2(f, g) = d(y, p) . The path going through p, y, x,u has

length d(u, x) + d(y, p) + 1 , but this is not the shortest path between u and p . For

instance, (u, x, p) is shorter, of length at most d(u, x)+d(y, p) . Therefore the distance

between u and p is less than or equal to d(u, x) + d(y, p) . Condition 4◦ holds. �

CONCLUSIONS

We found two mathematically consistent ways to define the edge-Wiener index:

either as We0 , Eq. (4), or as We4 , Eq. (8),

We4 = We4(G) =
∑

{e,f}⊆E(G)

d4(e, f |G) . (8)
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As already pointed out, the edge-Wiener index We1 , Eq. (6), is not based on

a correct edge–distance concept and therefore should be abandoned. However, by

adding to it the simple (and, in most applications, constant) term m(m − 1)/2 it

becomes equal to the well-defined We0 :

We1(G) +
1

2
m(m − 1) = We0(G) . (9)

Analogously, the usage of the edge-Wiener index We2 , Eq. (6), should also be

avoided, and preference given to We4 . However, it is sufficient to subtract from We2

the simple (and, in most applications, constant) term m , and then it coincides with

its well-defined congener We4 :

We2(G) − m = We4(G) . (10)

On the other hand, We2 − m is just the edge-Wiener index W ∗

e2 , Eq. (7). In other

words, the quantities We4(G) and W ∗

e2(G) coincide for all graphs G .

Bearing in mind the relations (9) and (10), the difference between We1 and We0

as well as between We2 and We4 is, from a practitioner’s point of view, insignificant.

Consequently, in practical (especially QSPR and QSAR) applications We1 and We2

would perform equally well as We0 and We4 , respectively. Yet, we prefer We0 and

We4 (or, what is the same, W ∗

e2) over We1 and We2 , and recommend their usage in

the future.

THE EDGE-WIENER INDICES OF SOME FAMILIAR GRAPHS

Let, as usual, Pn , Sn , Cn , and Kn , denote, respectively, the n-vertex path, star,

cycle, and complete graph. Let Ka,b be the complete bipartite graph on a+b vertices.

Then by means of simple combinatorial considerations (the details of which will be

omitted) we arrive at the following formulas for the edge-Wiener indices We0 and

We4 , Eqs. (4) and (8). The other edge-Wiener indices can then be computed by

using the relations (9) and (10) and by bearing in mind that Pn , Sn , Cn , Kn , and

Ka,b have n − 1 , n − 1 , n , n(n − 1)/2 , and ab edges, respectively.
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We0(Pn) = 1
6
n(n − 1)(n − 2) ; We4(Pn) = 1

6
(n − 1)(n − 2)(n + 3)

We0(Sn) = 1
2
(n − 1)(n − 2) ; We4(Sn) = (n − 1)(n − 2)

We0(Cn) = 1
8
n3 if n is even

We0(Cn) = 1
8
n(n2 − 1) if n is odd

We4(Cn) = 1
8
n(n2 + 4n − 8) if n is even

We4(Cn) = 1
8
n(n − 1)(n + 5) if n is odd

We0(Kn) = 1
4
n(n − 1)2 (n − 2) ; We4(Kn) = 1

8
n(n + 1)(n − 1)(n − 2)

We0(Ka,b) = 1
2
ab(2ab − a − b) ; We4(Ka,b) = ab(ab − 1) .
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[6] V. Chepoi, S. Klavžar, The Wiener index and the Szeged index of benzenoid

systems in linear time, J. Chem. Inf. Comput. Sci. 37 (1997) 752–755.

[7] H. Deng, The trees on n ≥ 9 vertices with the first to seventeenth greatest

Wiener indices, MATCH Commun. Math. Comput. Chem. 57 (2007) 393–402.

[8] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and

applications, Acta Appl. Math. 66 (2001) 211–249.

- 671 -



[9] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal
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the Wiener index of fasciagraph and rotagraphs, J. Chem. Inf. Comput. Sci. 35

(1995) 834–840.

[15] H. Liu, X. F. Pan, On the Wiener index of trees with fixed diameter, MATCH

Commun. Math. Comput. Chem. 60 (2008) 85–94.

[16] P. Senn, The computation of the distance matrix and the Wiener index for graphs

of arbitrary complexity with weighted vertices and edges, Comput. Chem. 12

(1988) 219–227.
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